
Hardware Aspects of Artificial Neural Network and Its Applications

Maria Jamal Sayed A Imam
ECE Department,GGSIPU ECE Departmente ,JMI
Kashmere Gate,Delhi-6,India Jamia Nagar,Delhi-25

Abstract- Artificial Neural Networks became a common
solution for a wide variety of problems in many fields, such as
control and pattern recognition to name but a few. Many
solutions found in these and other Artificial Neural Network
fields have reached a hardware implementation phase, either
commercial or with prototypes. The most frequent solution for
the implementation of Artificial Neural Networks consists of
training and implementing the Artificial Neural Networks
within a computer. In this paper we discussed the hardware
aspects of ANN and its applications in various field.
Keywords-Artificial Neural Network, Hardware of ANN,
applications of ANN

I. Introduction
The field of Artificial Neural Networks (ANN) has crossed
different stages of development. One of the most important
steps was achieved when Cybenko (Cybenko, 1989) proved
that they could be used as universal approximators. A negative
stage was brought by the book of Minsky and Papert called
Perceptrons (Minsky et al., 1969). This negative phase was
overcome when algorithms for training of multilayer ANN
where proposed in the decade of the 80s.Since then much
work has been done regarding ANN and their application to
many different fields (Dias et al., 2001). Naturally the
successful application to some areas led to commercial or
specific applications that can work without having a computer
attached. The need for leaving the most common
implementation of ANN with a computer might arise from a
number of reasons: reducing the cost of the implementation,
achieving higher processing speed or simpler
implementations. Reducing cost or having simpler
implementations can be achieved simply by replacing the
computer by specific hardware. Unlike the conventional von-
Neumann architecture of computers that is sequential in
nature, ANN profit from massively parallel processing (Liao).
This can be exploited by specific hardware to increase
processing speed. For these applications that share the
necessity of working without a computer, some dedicated
hardware has already been built avoiding the difficulty of
producing hardware for each new application. A large variety
of hardware has been designed to exploit the inherent
parallelism of the neural network models. Despite the
tremendous growth in the digital computing power of general-
purpose processors, neural network hardware has been found
to be promising in some specialized applications, such as
image processing, speech synthesis and analysis, pattern
recognition, high energy physics and so on. Neural network
hardware is usually defined as those devices designed to
implement neural architectures and learning algorithms,

especially those devices that take advantage of the parallel
nature inherent to ANNs.
The hardware produced has been a result of different needs
and therefore has different uses. In order to choose hardware
for a specific application, details about each circuit will be
needed. The different solutions might be useful or not
depending on the precision used for the weights, maximum
number of weights, type of network implemented, availability
of one circuit training algorithms and other characteristics.
This article is confined to reporting the commercial chips that
have been developed specifically for Artificial Neural
Networks, independently of the technology used (Application
Specific Integrated Circuits, Field Programmable Gate Arrays,
Sea of Gates or others), leaving out others solutions. This
option has been made because, aside from some hybrid
solutions, most of the other solutions are based on cards which
are built either with these chips, Digital Signal Processors or
Reduced Instruction Set Computers. The utility of this study
can therefore be summarized in two different directions: a
short reference for those who need hardware for a specific
implementation and information about the existing solutions
for those who seek to develop a new implementation.

II. Artificial Neuron Model And Neural Network
Structure

The study of artificial neural networks has been inspired in
part by the observation that biological learning system are
built of very complex webs of interconnected neurons.
Typically, the human brain consists of approximately 1011

neurons, each with an average of 103 - 104 connections. It is
believed that the immense computing power of the brain is the
result of the parallel and distributed computing performed by
these neurons [1]. The transmission of signals in biological
neurons through synapses is a complicated chemical process
in which specific transmitter substances are released from the
sending side of the synapse. The effect is to raise or lower the
electrical potential inside the body of the receiving cell. The
neuron fires if the potential reaches a threshold. This is the
characteristic that the artificial neuron model proposed by
McCulloch and Pitts [2] attempts to reproduce. This neuron
model is widely used in artificial neuron networks with some
variations (Figure 1).

Figure 1: Artificial neuron model

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering
Editor In Chief Dr. R. K. Singh. Copyright © 2012 Universal Association of Computer and Electronics Engineers.
All rights reserved. ISBN: 978-981-07-1847-3
doi:10.3850/978-981-07-1847-3 P0979

460

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

The artificial neuron presented in Figure 1 has N inputs,
denoted as x 1 , x 2 ,…, xn . Each line connecting these inputs
to the neuron is assigned a weight, denoted as ω1 , ω2 ,..., ωn ,
respectively. The action, which determines whether the neuron
is to be fired or not, is given by the formula:

The output of the neuron is a function of its action:

y = f(a)
Originally the neuron output function f(a) proposed in
McCulloch-Pitts model was a threshold function. However,
linear, ramp and sigmoid functions are also widely used today.
An ANN system consists of a number of artificial neurons and
a huge number of interconnections among them. According to
the structure of the connections, two different classes of neural
network architectures are identified [3](Figure 2). In layered
neural networks, the neurons are organized in the form of
layers. The neurons in one layer get input from the previous
layer and feed their output to the next layer. This type of
network is called feedforward neural network. The first and
last layers are input layer and output layer respectively, and
the layers that are not input or output are called {\it hidden
layers}. Networks with one or more hidden layers are called
multi-layer networks. Multi-Layer perceptron is a well-known
feedforward layered neural network, on which the
Backpropagation learning algorithm [4] is implemented.

Figure 2: (a) Layered feed forward neural network. (b)
Recurrent neural network.

The structure, where connections to the neurons are to the
same layer or the previous layers, shown in Figure 2 (b), is
called recurrent neural network. Hopfield Neural Network [5]
is an example of widely used recurrent networks. Kohonen's
selforganizing map (SOM) is another well-known neural
network paradigm introduced by Kohonen[6]. Many other
ANN learning algorithms have been proposed, including
algorithms for more specialized tasks. ANN models have been
proved to be successful in a number of applications, including
text to speech conversion [7], protein structure analysis,
autonomous navigation, game playing, image and signal
processing, intelligent vision, pattern recognition, etc. These
artificial models rely heavily on highly interconnected
computational units functioning in parallel.

III. Neural Network Hardware
Artificial neural networks that solve difficult problems in
areas such as speech recognition and synthesis, or pattern
classification, consist of thousands of neuron with tens or
hundreds of input each. Every neuron computes a weighted
sum of its inputs and applies a non linear function to its result.
Architectural parameters, such as the number of inputs per
neuron and each neuron’s connectivity vary considerably

within the network, and from application to application. A
special purpose neural network processor must be flexible and
powerful enough to accommodate a wide range of
applications. At the same time, the requirement must be
carefully balanced and the special nature of the task exploited
to bring an efficient implementation within reach of today’s
technology.
We can distinguish two phases of operation in many neural
network applications. During the learning phase, the topology
and weights of the network are determined from the labeled
set of examples using a rule such as back propagation, “or a
network growing algorithm.” In the subsequent retrieval or
classification phase, the network parameters are fixed.
The network recognizes pattern based on information stored in
the architecture and weights during training. Since the
computational and infrastructure requirements (training
database) during the learning phase are considerably more
complex than those for classification, efficiency
considerations call for separate hardware for learning and
retrieval. Network parameter determined during learning are
downloaded in to processors specialized for the classification
task. This approach , which we focus on here, contrasts with
implementations of neural network processors with on chip
learning. Those circuits are not suitable for pattern recognition
problems we investigate here, because of limitations of
training algorithms implemented on these chips or because of
limited size of the network that can be trained.
The basic operation performed by the neuron during
classification is weighted sum, followed by non linear
squashing function, typically a hyperbolic tangent or
approximation thereof:

We generally refer to the input xi of neuron as connection and
ωi parameters as weight. Each input is either tied to the output
y of another neuron or to an external input. Optionally, a bias
b may be added to the weighted sum.
The total number of connections in neural networks of
applications such as hand written character recognition may
amount to 10,000 to several hundred thousands “network that
solve more general problems, such as recognition of entire
words instead of isolated characters, require even larger
numbers of connections”. The speed requirement of typical
applications call for a few tens to several thousands of
classifications per seconds. For each classification, the
network must evaluate one multiplication and one addition for
every connection, which translates to few billion multiply-add
operations per second. Only parallel implementations, in
which several connections are evaluated concurrently, achieve
such computational power.
The most general network topology permits connections
between any two neuron. Such a high degree of (possible)
connectivity, combined with the need for the parallel
processing, result in enormous hardware requirements, and
therefore calls for compromise. Usually, the neurons in a
network are arranged in layers, each of which receive inputs
only from the neuron in the previous layer. Layers may be
fully connected; that is , each neuron may be connected to
every neuron in the preceding layer. Often, however, we use
local connectivity to express knowledge about the problem
(geomatric relations such as neighborhood of pixel in an
image) in the network architecture and thus improve the
recognition performance.

461

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

For example, the fact that some pixel in an image are adjacent
to each other can be built into the network architecture by
constraining neurons to receive inputs only from neighboring
pixels. In a fully connected topology, such information must
be derived from the training set during the learning phase,
usually meeting with only partial success.
A neural network processor could be designed to implement
only networks with fully connected topology. Local
connectivity would then be realized by simply setting the
weights of unused connection to zero. Since in typical neural
networks the ratio of such unused connections to actual
connections is easily 100, such an implementation is
unacceptable in efficient. The added complexity of hardware
required to support local connectivity is no match for the
millions of connection saved.
Another challenge for a compact hardware implementation of
a classifier is the amount of memory needed for storing
several tens of hundreds of thousands of weights. Fortunately,
the weights of many neurons in important connection
topologies, including time delay or feature extraction neural
network, are identical. In these architectures the connection
topology corresponds to one or higher dimensional
convolution, followed by nonlinear squashing function, as
illustrated. We can realize such a structure with a single, time
multiplexed neuron with corresponding saving of storage and
computing devices.
We can further optimize the hardware complexity by matching
the computational accuracy of the processor to the
requirements of typical neural networks. Both experience and
theory indicate that neural network classifiers can be designed
to be insensitive to low- resolution arithmetic.

IV. Hardware Specifications
From the point of view of the user, the first step towards
selecting a hardware solution is a short hardware specification.
This specification includes the type of ANN (feedforward
multi-layer, Radial Basis Function, Kohonen, etc.), the
number of neurons, number of external input and outputs, the
number of connections to each neuron, the precision, the speed
of operation or performance and other characteristics that can
be more or less important depending on the application. Most
of these characteristics can be derived directly from the
application to be developed, while others deserve a closer
look. The precision used should be an important parameter to
take into account. There might be a different precision for a
number of parts: inputs, outputs, weights, internal calculations,
accumulators and multiplication. The performance of the
circuit can be measured in many different ways and is an issue
that is far from being consensual. The most common
performance rating is Connection Per Second (CPS) (Lindsey,
et al., 1994) which is defined as the number of multiply and
accumulate operations per second during the recall or
execution phase. An equivalent measure exists for the learning
phase: Connection Update Per Second (CUPS) and rates the
number of weight changes per second. Other measures exist as
well. The value of CPS can be normalized dividing it by the
number of weights Nw (equation 1) obtaining the Connection
Per Second Per Weight (CPSPW), which was suggested as a
better way of rating the performance of each solution (Holler,
1991). CPSPW= CPS/Nw (1) Another measure is Connection
Primitives Per Second (CPPS), which can be calculated as:
CPPS=binxbwxCPS (2) where bin is the number of bits used
for the input and bw is the number of bits used for the weights.
This measure allows the precision to be included in the
performance measure (Keulan et al., 1994) (Schüffny, et al.,

1999). These two measures can also be applied to CUPS.
Another parameter that can be used to analyze performance is
power dissipation (Schüffny, et al., 1999). Depending on
technology, clock frequency, number of processing elements,
accuracy, etc, each hardware solution has a measure of power
dissipation which cannot be compared directly. An energy per
connection measure was proposed in (Schüffny, et al., 1999).
This measure is an indicator of the energy efficacy in the
circuits and is becoming more important as the integration in
the solutions increases because the need to carry away
dissipated power limits integration density at system level.
Unfortunately this measure is frequently not available for most
of the chips, which made it impossible to include it in this
survey. For a more detailed specification other information
may be taken into account: learning facilities, cascadability,
type of storage of the weights, type of implementation of the
activation functions, clock rate, number of inputs and outputs
and technology or type of implementation of the circuit
(analog, digital or mixed).

V. Classification of Neural Network Hardware
Neural network hardware ranges from single stand-alone
neurochips to full-fledged neurocomputers. A variety of
attributes have been used to classify neural network hardware,
such as system architecture, degree of parallelism, inter-
processor communication network, general purpose or special
purpose device, on-chip or off-chip learning, and so on.
Neural network hardware can be categorized into 4 classes by
the degree of parallelism: coarse-grained, medium-grained,
fine-grained and massive parallelism [8]. The number of
processing elements yields the degree of parallelism of a
system. The more parallel units there are, the faster data is
processed. However, parallelism is expensive in terms of chip
area or chip count. Therefore highly parallel systems usually
employ simpler processing elements. The parallelism can be
rated from only a few processing elements referred to as
coarse-grained up to almost a one-to-one implementation of
neural processing nodes called massive. There are no definite
borders between these different categories. Parallel processing
elements only speed up the computation when they do not run
idle. Thus, for the system performance it is crucial that the
inter-processor communication network provides the
processing elements with sufficient data. Broadcast bus, linear
array, systolic ring, crossbar and bidimensional mesh are the
most frequently encountered communication networks of
ANN systems [8]. Here we follow the scheme proposed in [9]
and group neural network hardware into four main categories
as shown in Figure 3.

Figure 3: Neural network hardware categories after [5].
The first two main categories consist of neurocomputers based
on standard ICs. They consist of Accelerator boards which
speed up a conventional computer like a PC or workstation,
and parallel multiprocessor systems, which mostly run stand
alone and can be monitored by a host computer. The other

462

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

main categories are neurochips built from dedicated neural
ASICs (Application Specific Integrated Circuits). These
neurochips can be digital, analog, or hybrid. The rest of this
section will look at each of these categories and discuss their
advantages and disadvantages.
A. Accelerator Boards
Accelerator boards are the most frequently used neural
commercial hardware, because they are relatively cheap,
widely available, simple to connect to the PC or workstation,
and typically provided with user-friendly software tools. They
reside in the expansion slots and are used to speed up the
neural network computations. The speed-up that can be
achieved is at about one order of magnitude compared to
sequential implementations. Accelerator boards are usually
based on neural network chips but some just use fast digital
signal processors (DSP) that do very fast multiple-accumulate
operations. A drawback of accelerator boards is that they are
specialized for certain tasks, and thus lack flexibility and do
not offer many possibilities for setting up novel paradigms. A
good example of accelerator boards is IBM ZISC ISA and PCI
Cards. The ZISC036 chip was developed at the IBM Essonnes
Lab [10]. A single ZISC036 holds 36 neurons, or prototypes,
to implement an RBF network trained with the RCE (or ROI)
algorithm. The ISA card holds to 16 ZISC036 chips, giving
576 prototype neurons. The PCI card holds up to 19 chips for
684 prototypes. PCI card can process 165,000 patterns/sec,
where patterns are 64 8-bit element vectors. Other accelerator
systems include SAIC SIGMA-1 [11], Neuro Turbo [12],
HNC [27], etc.
B. Neurocomputers Built from General Purpose Processors
General-purpose processors offer enough programmability for
the implementation of neural functions. These
implementations will of course never be maximally efficient.
But because of their wide availability and relatively low
prices, a number of neurocomputers have been assembled
from generalpurpose chips. Implementations range from
architectures of simple, low-cost elements (for example, the
BSP400 [13] and COKOS [14]) to architectures with rather
sophisticated processors like transputers, which are unique for
their parallel I/O lines [15], or DSPs, which were primarily
developed for correlators and discrete Fourier transforms [16].
Much experience has been gained from these
implementations, which can be useful for the design of "true"
neurocomputers, i.e., dedicated neurocomputers completely
built from special purpose elements like neurochips. For
instance, in many cases the sigmoid function forms the most
computationally expensive part of the neural calculation. A
solution for this can be found in using a look-up table rather
than calculating the function [17]. Finding an interconnection
strategy for large numbers of processors has turned out to be
another non-trivial problem. Fortunately, much knowledge
about the architectures of these massively parallel computers
can be directly applied in the design of neural architectures.
The RAP (Ring Array Processor) [18] is an example of
neurocomputers built from general-purpose processors. It was
developed at the ICSI (International Computer Science
Institute, Berkeley, CA) and has been used as an essential
component in the development of connectionist algorithms for
speech recognition since 1990. Implementations consist of 4 to
40 Texas Instruments TITMS320C30 floating point DSPs
containing 256 Kbytes of fast static RAM and 4 Mbytes of
dynamic RAM each. These chips are connected via a ring of
Xilinx programmable gate arrays (PGAs), each implementing
a simple two-register data pipeline. Additionally each board

has a VME bus interface logic, which allows it to connect to a
host computer. The software support of RAP contains a
workstation based command interpreter, tools for the standard
C environment and a library of matrix and vector routines. A
single board can perform 57 MCPS when computing a multi-
layer perceptron network in forward operation, and 13.2
MCPS with backpropagation training.
C. Neurochips
For neurocomputers in Section 2 the neural functions are
programmed on general purpose processors. Dedicated circuits
are devised in special purpose chips for the neural functions.
This will speed up the neural iteration time by about 2 orders
of magnitude compared to general-purpose processor
implementations. Several implementation technologies can be
chosen for the design of neurochips. The main distinction lies
in choice of a fully digital, fully analog, or hybrid design.
Direct implementation in circuits in many cases alters the
exact functioning of the original (simulated or analyzed)
computational elements. This is mainly due to limited
precision. The influence of this limited precision is of great
importance to the proper functioning of the original paradigm.
In order to build large-scale implementations, many
neurochips have to be interconnected. Some chips are
therefore supplied with special communication channels.
Other neurochips are to be interconnected by specially
designed communication elements.

VI. Application of Artificial Neural Network
Neural networks have been successfully applied to broad
spectrum of data-intensive applications. The list below is
based on real-world success stories. It will give an overview
of the scope of problems that NeuroIntelligence can address.
1. Financial

Stock Market prediction
 Credit Worthiness
 Credit rating
 Bankruptcy Prediction
 Property Appraisal
 Fraud Detection
 Price Forecasts
 Economic Indicator Forecasts

2. Medical

Medical Diagnosis
 Detection And Evaluation of Medical Phenomena
 Patient’s length of Stay Forecasts
 Treatment Cost Estimation

3. Industrial

Process Control
 Quality Control
 Temperature and Force Prediction

4. Science

Pattern Recognition
Recipes and Chemical Formulation Optimisation
Chemical Compound Identification
Physical System Modelling
Ecosystem Evaluation
Polymer Identification
Recognising Genes
Botanical Classification
Signal Processing: Neural Filtering
Biological Systems Analysis

463

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

Ground Level Ozone Prognosis
Odour Analysis and Identification

5. Data Mining

Prediction
 Classification
 Change and Deviation Detection
 Knowledge Discovery
 Response Modelling
 Time series Analysis

6. Sales and Marketing

Sales forecasting
 targeted Marketing
 Service Usage faorecasts
 Retail Margins Forecasting

7. Operational Analysis

Retail Inventories optimisation
 Scheduling Optimisation
 Managerial Decision Making
 Cash Flow Forecasting

8. HR Management

Employee Selection and Hiring
 Employee Retention
 Staff Scheduling
 Personnel Profiling

9. Energy

Electrical Load Forecasting
Energy Demand Forecasting
Short and Long-Term Load Estimation
Predicting Gas/Coal Index Prices
Power Control Systems
Hydro Dam Monitoring

10. Others

Sports Betting
Making Horse and Dog Racing Picks
Quantitative Weather Forecasting
Games Development
Optimisation Problems, Routing
Agricultural Production Estimates

VII. Discussions

Among the challenges neural network hardware faces today
the competition with purpose hardware is probably the
toughest one: computer architecture is a highly competitive
domain that advances at an incredible pace. Neural networks
in software have become well-established money making tools
in a diverse range of pattern recognition and AI applications.
The area of ANN hardware on the other hand is not yet as
commercialized as general-purpose hardware. Also neural
networks hardware tends to be more algorithm-specific. This
requires a good knowledge about algorithms as well as system
design and leads to a high time-to-market. Therefore, general-
purpose computers can profit more often from advances in
technology and architectural revisions. Also, in many other
respects general-purpose hardware seems to be more user-
friendly: it is not bound to algorithmic a-priori-assumptions
and therefore offers high flexibility. Uniform programming
interfaces exist for general-purpose hardware. This can be
important not only to get a better start when programming a

system, but also to allow reusability when moving on to the
next hardware generation. On the other hand, there are ANN
problems, exceeding the computational capabilities of
workstations or PCs such as real-time applications, the
simulation of large networks or networks employing very
complex neuron models. For these applications neurohardware
is attractive. Other niche areas for neural hardware are
embedded applications of simple, hardwired networks, for
example, voice recognition chips, and neuromorphic systems
that directly implement a desired function, such as touchpad
and silicon retinas. Neurohardware might provide a much
better cost-to-performance ratio, lower power consumption
and smaller size. The field of neural network hardware has
become maturer since it's ``gold rush'' period in late 1980s and
early 1990s. Clearly an algorithmic success in artificial neural
networks would revive the area of neurohardware. As long as
conventional hardware can not provide sufficient performance,
there is a need for neural network hardware.

VIII. Conclusions

As per the study and investigations, the information collected
indicates that few neurochips are available commercially.
The appearance of new solutions indicates that this field is still
active, but the removal of the market of other solutions does
not seem to be good news. As (Heemskerk) indicates,
neurocomputer building is expensive in terms of development
time and resources, and little is known about the real
commercial prospects for working implementations.
Moreover, there is no clear consensus on how to exploit the
currently available VLSI and even ultra large-scale integration
(ULSI) technological capabilities for massively parallel neural
network hardware implementations. Another reason for not
actually building neurocomputers might lie in the fact that the
number and variety of (novel) neural network paradigms is
still increasing rapidly. For many paradigms the capabilities
are hardly known yet. Paradoxically, these capabilities can
only be tested in full when dedicated hardware is available.
These might be the reasons for the slow development of the
ANN hardware market in the last years, but the authors
believe that this situation will change in the near future with
the appearance of new hardware solutions. In the user
perspective, taking into account the information given here
about the existing market, it should be noted that there is no
“best” solution for every case but the most suitable solution
should be found for each case. This is the reason why the
authors decided not to make a performance comparison.
References
[1]. Rumelhart, D. E., McClelland, J. L. and the PDP Research
 Group, 1986, Parallel Distributed Processing:
 Exploration in the Microstructure of Cognition, vol. 1,
 MIT Press, Cambridge, Massachusetts, 1986.
[2]. McCulloch, W. S. and Pitts, W., 1943, A Logical Calculus
 of the Ideas Immanet in Nervous Activity. Bulletin of
 Mathematical Biophysics, vol. 5, 115-133, 1943.
[3]. Gelenbe, E. and Halici U., 1994, Lecture Notes on Neural
 Networks, METU.
 [4]. Rumelhart, D. E. and McClelland, J. L., 1986,
 ParallelDistributed Processing: Exploration in the
 Microstructure of Cognition (Vols. 1&2). Cambridge,
 MA: MIT Press.
 [5]. Hopfield, J. J., 1982, Neural Networks and Physical
 Systems with Emergent Collective Computational
 Abilities. Proceedings of the National Academy of
 Sciences USA

464

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

[6]. Kohonen, T., 1984, Selforganization and Associative
 Memory, Springer-Verlag.
[7]. Sejnowski, T. J. and Rosenberg, C. R., 1987, Parallel
 Networks That Learn to Pronounce English
 Text. Complex Systems, 1:145-168, 1987.
[8]. Schoenauer, T., Jahnke, A., Roth, U. and Klar, H., 1998,
 Digital Neurohardware: Principles and Perspectives.
 Proceedings of Neuronal Networks in Applications
 (NN'98), Magdeburg, 1998.
[9]. Heemskerk, J. N. H., 1995, Overview of Neural
 Hardware. Neurocomputers for Brain- Style
 Processing. Design, Implementation and Application, PhD
 Thesis, Unit of Experimental and Theoretical Psychology,
 Leiden University, the Netherlands.
[10]. Lindsey, C. S., Lindblad, Th., Sekniaidze, G.,
 Minerskjold, M., Szekely, S., and Eide, A.,1995,
 Experience with the IBM ZISC Neural Network Chip.
 Proceedings of 3rd Int.Workshop on Software
 Engineering, Artificial Intelligence, and Expert Systems,
 for High Energy and Nuclear Physics, Pisa, Italy, April
 3-8, 1995.
[11]. Treleaven, P. C., 1989, Neurocomputers. International
 Journal of Neurocomputing, 1, 4-31, 1989.
[12]. Arif, A. F., Kuno, S., Iwata., A. and Yoshita, Y., 1993,
 A Neural Network Accelerator Using Matrix Memory
 with Broadcast Bus. Proceedings of the IJCNN-93-
 Nagoya, 3050-3053, 1993.
[13]. Heemskerk, J.N.H., Hoekstra, J., Murre, J.M.J., Kemna,
 L.H.J.K. and Hudson, P.T.W.,1994, The BSP400: A
 Modular Neurocomputer. Microprocessors and
 Microsystems, 18, 2, 67-78, 1994. [14]. Speckman, H.,
 Thole, P. and Rosentiel, W., 1993, COKOS:
 A Coprocessor for Kohonen'sSelforganizing Map.
 Proceedings of the ICANN-93-Amsterdam,
 London Springer-Verlag, 1040-1045, 1993. 79.
[15]. Foo, S. K., Saratchandran, P. and Sundararajan, N.,
 1993, Parallel Implementation of Backpropagation on
 Transputers. Proceedings of the IJCNN-93-Nagoya,
 3058-3061, 1993.
[16]. Onuki, J., Maenosono, T., Shibata, M., Iima, N., Mitsui,
 H., Yoshida, Y. and Sobne., M.,1993, ANN
 Accelerator by Parallel Processor Based on DSP.
 Proceedings of the IJCNN 93-Nagoya, 1913-
 1916, 1993.
[17]. Shams, S. and Gaudiot, J., 1992, Efficient
 Implementation of Neural Networks on the
 DREAM Machine. Proceedings of the 11th International
 Conference on Pattern Recognition, The Hague,
 The Netherlands, 204-208, 1992.
[18]. Morgan, N., Beck, J., Kohn, P., Bilmes, J., Allman, E.
 and Beer, J., 1992, The Ring Array Processor: A
 Multiprocessing Peripheral for Connectionist
 Applications. Journal of Parallel and Distributed
 Computing, 14, 248-259, 1992.

465

