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Abstract- Artificial Neural Networks became a common 
solution for a wide variety of problems in many fields, such as 
control and pattern recognition to name but a few. Many 
solutions found in these and other Artificial Neural Network 
fields have reached a hardware implementation phase, either 
commercial or with prototypes. The most frequent solution for 
the implementation of Artificial Neural Networks consists of 
training and implementing the Artificial Neural Networks 
within a computer. In this paper we discussed the hardware 
aspects of ANN and its applications in various field. 
Keywords-Artificial Neural Network, Hardware of ANN, 
applications of ANN 

I. Introduction 
The field of Artificial Neural Networks (ANN) has crossed 
different stages of development. One of the most important 
steps was achieved when Cybenko (Cybenko, 1989) proved 
that they could be used as universal approximators. A negative 
stage was brought by the book of Minsky and Papert called 
Perceptrons (Minsky et al., 1969). This negative phase was 
overcome when algorithms for training of multilayer ANN 
where proposed in the decade of the 80s.Since then much 
work has been done regarding ANN and their application to 
many different fields (Dias et al., 2001). Naturally the 
successful application to some areas led to commercial or 
specific applications that can work without having a computer 
attached. The need for leaving the most common 
implementation of ANN with a computer might arise from a 
number of reasons: reducing the cost of the implementation, 
achieving higher processing speed or simpler 
implementations. Reducing cost or having simpler 
implementations can be achieved simply by replacing the 
computer by specific hardware. Unlike the conventional von-
Neumann architecture of computers that is sequential in 
nature, ANN profit from massively parallel processing (Liao). 
This can be exploited by specific hardware to increase 
processing speed. For these applications that share the 
necessity of working without a computer, some dedicated 
hardware has already been built avoiding the difficulty of 
producing hardware for each new application. A large variety 
of hardware has been designed to exploit the inherent 
parallelism of the neural network models. Despite the 
tremendous growth in the digital computing power of general-
purpose processors, neural network hardware has been found 
to be promising in some specialized applications, such as 
image processing, speech synthesis and analysis, pattern 
recognition, high energy physics and so on. Neural network 
hardware is usually defined as those devices designed to 
implement neural architectures and learning algorithms, 

especially those devices that take advantage of the parallel 
nature inherent to ANNs. 
The hardware produced has been a result of different needs 
and therefore has different uses. In order to choose hardware 
for a specific application, details about each circuit will be 
needed. The different solutions might be useful or not 
depending on the precision used for the weights, maximum 
number of weights, type of network implemented, availability 
of one circuit training algorithms and other characteristics. 
This article is confined to reporting the commercial chips that 
have been developed specifically for Artificial Neural 
Networks, independently of the technology used (Application 
Specific Integrated Circuits, Field Programmable Gate Arrays, 
Sea of Gates or others), leaving out others solutions. This 
option has been made because, aside from some hybrid 
solutions, most of the other solutions are based on cards which 
are built either with these chips, Digital Signal Processors or 
Reduced Instruction Set Computers. The utility of this study 
can therefore be summarized in two different directions: a 
short reference for those who need hardware for a specific 
implementation and information about the existing solutions 
for those who seek to develop a new implementation.

II.  Artificial Neuron Model And Neural Network 
Structure 

The study of artificial neural networks has been inspired in 
part by the observation that biological learning system are 
built of very complex webs of interconnected neurons. 
Typically, the human brain consists of approximately 1011

neurons, each with an average of 103 - 104 connections. It is 
believed that the immense computing power of the brain is the 
result of the parallel and distributed computing performed by 
these neurons [1]. The transmission of signals in biological 
neurons through synapses is a complicated chemical process 
in which specific transmitter substances are released from the 
sending side of the synapse. The effect is to raise or lower the 
electrical potential inside the body of the receiving cell. The 
neuron fires if the potential reaches a threshold. This is the 
characteristic that the artificial neuron model proposed by 
McCulloch and Pitts [2] attempts to reproduce. This neuron 
model is widely used in artificial neuron networks with some 
variations (Figure 1). 

Figure 1: Artificial neuron model
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The artificial neuron presented in Figure 1 has N inputs, 
denoted as x 1 , x 2 ,…, xn . Each line connecting these inputs 
to the neuron is assigned a weight, denoted as ω1 , ω2 ,..., ωn , 
respectively. The action, which determines whether the neuron 
is to be fired or not, is given by the formula: 

  
The output of the neuron is a function of its action: 

y = f(a) 
Originally the neuron output function f(a) proposed in 
McCulloch-Pitts model was a threshold function. However, 
linear, ramp and sigmoid functions are also widely used today. 
An ANN system consists of a number of artificial neurons and 
a huge number of interconnections among them. According to 
the structure of the connections, two different classes of neural 
network architectures are identified [3](Figure 2).  In layered 
neural networks, the neurons are organized in the form of 
layers. The neurons in one layer get input from the previous 
layer and feed their output to the next layer. This type of 
network is called feedforward neural network. The first and 
last layers are input layer and output layer respectively, and 
the layers that are not input or output are called {\it hidden 
layers}. Networks with one or more hidden layers are called 
multi-layer networks. Multi-Layer perceptron is a well-known 
feedforward layered neural network, on which the 
Backpropagation learning algorithm [4] is implemented. 

Figure 2: (a) Layered feed forward neural network. (b) 
Recurrent neural network.

The structure, where connections to the neurons are to the 
same layer or the previous layers, shown in Figure 2 (b), is 
called recurrent neural network. Hopfield Neural Network [5] 
is an example of widely used recurrent networks. Kohonen's 
selforganizing map (SOM) is another well-known neural 
network paradigm introduced by Kohonen[6]. Many other 
ANN learning algorithms have been proposed, including 
algorithms for more specialized tasks. ANN models have been 
proved to be successful in a number of applications, including 
text to speech conversion [7], protein structure analysis, 
autonomous navigation, game playing, image and signal 
processing, intelligent vision, pattern recognition, etc. These 
artificial models rely heavily on highly interconnected 
computational units functioning in parallel. 

III.  Neural Network Hardware 
Artificial neural networks that solve difficult problems in 
areas such as speech recognition and synthesis, or pattern 
classification, consist of thousands of neuron with tens or 
hundreds of input each. Every neuron computes a weighted 
sum of its inputs and applies a non linear function to its result. 
Architectural parameters, such as the number of inputs per 
neuron and each neuron’s connectivity vary considerably 

within the network, and from application to application. A 
special purpose neural network processor must be flexible and 
powerful enough to accommodate a wide range of 
applications. At the same time, the requirement must be 
carefully balanced and the special nature of the task exploited 
to bring an efficient implementation within reach of today’s 
technology. 
We can distinguish two phases of operation in many neural 
network applications. During the learning phase, the topology 
and weights of the network are determined from the labeled 
set of examples using a rule such as back propagation, “or a 
network growing algorithm.” In the subsequent  retrieval  or 
classification phase,  the network parameters are fixed. 
The network recognizes pattern based on information stored in 
the architecture and weights during training. Since the 
computational and infrastructure requirements (training 
database) during the learning phase are considerably more 
complex than those for classification, efficiency 
considerations call for separate hardware for learning and 
retrieval. Network parameter determined during learning are 
downloaded in to processors specialized for the classification 
task. This approach , which we focus on here, contrasts with 
implementations of neural network processors with on chip 
learning. Those circuits are not suitable for pattern recognition 
problems we investigate here, because of limitations of 
training algorithms implemented on these chips or because of 
limited size of the network that can be trained.   
The basic operation performed by the neuron during 
classification is weighted sum, followed by non linear 
squashing function, typically a hyperbolic tangent or 
approximation thereof: 

    
We generally refer to the input xi of neuron as connection and 
ωi parameters as weight. Each input is either tied to the output 
y of another neuron or to an external input. Optionally, a bias 
b may be added to the weighted sum. 
The total number of connections in neural networks of 
applications such as hand written character recognition may 
amount to 10,000 to several hundred thousands “network that 
solve more general problems, such as recognition of entire 
words instead of isolated characters, require even larger 
numbers of connections”. The speed requirement of typical 
applications call for a few tens to several thousands of 
classifications per seconds. For each classification, the 
network must evaluate one multiplication and one addition for 
every connection, which translates to few billion multiply-add 
operations per second. Only parallel implementations, in 
which several connections are evaluated concurrently, achieve 
such computational power. 
The most general network topology permits connections 
between any two neuron. Such a high degree of (possible) 
connectivity, combined with the need for the parallel 
processing, result in enormous hardware requirements, and 
therefore calls for compromise. Usually, the neurons in a 
network are arranged in layers, each of which receive inputs 
only from the neuron in the previous layer. Layers may be 
fully connected; that is , each neuron may be connected to 
every neuron in the preceding layer. Often, however, we use 
local connectivity to express knowledge about the problem 
(geomatric relations such as neighborhood of pixel in an 
image) in the network architecture and thus improve the 
recognition performance. 
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For example, the fact that some pixel  in an image are adjacent 
to each other can be built into the network architecture by 
constraining neurons to receive inputs only from neighboring 
pixels. In a fully connected topology, such information must 
be derived from the training set during the learning phase, 
usually meeting with only partial success. 
A neural network processor could be designed to implement 
only networks with fully connected topology. Local 
connectivity would then be realized by simply setting the 
weights of unused connection to zero. Since in typical neural 
networks the ratio of such unused connections to actual 
connections is easily 100, such an implementation is 
unacceptable in efficient. The added complexity of hardware 
required to support local connectivity is no match for the 
millions of connection saved. 
Another challenge for a compact hardware implementation of 
a classifier is the amount of memory needed for storing 
several tens of hundreds of thousands of weights. Fortunately, 
the weights of many neurons in important connection
topologies, including time delay or feature extraction neural 
network, are identical. In these architectures the connection 
topology corresponds to one or higher dimensional 
convolution, followed by nonlinear squashing function, as 
illustrated. We can realize such a structure with a single, time 
multiplexed neuron with corresponding saving of storage and 
computing devices. 
We can further optimize the hardware complexity by matching 
the computational accuracy of the processor to the 
requirements of typical neural networks. Both experience and 
theory indicate that neural network classifiers can be designed 
to be insensitive to low- resolution arithmetic.  

IV.  Hardware Specifications 
From the point of view of the user, the first step towards 
selecting a hardware solution is a short hardware specification. 
This specification includes the type of ANN (feedforward 
multi-layer, Radial Basis Function, Kohonen, etc.), the 
number of neurons, number of external input and outputs, the 
number of connections to each neuron, the precision, the speed 
of operation or performance and other characteristics that can 
be more or less important depending on the application. Most 
of these characteristics can be derived directly from the 
application to be developed, while others deserve a closer 
look. The precision used should be an important parameter to 
take into account. There might be a different precision for a 
number of parts: inputs, outputs, weights, internal calculations, 
accumulators and multiplication. The performance of the 
circuit can be measured in many different ways and is an issue 
that is far from being consensual. The most common 
performance rating is Connection Per Second (CPS) (Lindsey, 
et al., 1994) which is defined as the number of multiply and 
accumulate operations per second during the recall or 
execution phase. An equivalent measure exists for the learning 
phase: Connection Update Per Second (CUPS) and rates the 
number of weight changes per second. Other measures exist as 
well. The value of CPS can be normalized dividing it by the 
number of weights Nw (equation 1) obtaining the Connection 
Per Second Per Weight (CPSPW), which was suggested as a 
better way of rating the performance of each solution (Holler, 
1991). CPSPW= CPS/Nw (1) Another measure is Connection 
Primitives Per Second (CPPS), which can be calculated as: 
CPPS=binxbwxCPS (2) where bin is the number of bits used 
for the input and bw is the number of bits used for the weights. 
This measure allows the precision to be included in the 
performance measure (Keulan et al., 1994) (Schüffny, et al., 

1999). These two measures can also be applied to CUPS. 
Another parameter that can be used to analyze performance is 
power dissipation (Schüffny, et al., 1999). Depending on 
technology, clock frequency, number of processing elements, 
accuracy, etc, each hardware solution has a measure of power 
dissipation which cannot be compared directly. An energy per 
connection measure was proposed in (Schüffny, et al., 1999). 
This measure is an indicator of the energy efficacy in the 
circuits and is becoming more important as the integration in 
the solutions increases because the need to carry away 
dissipated power limits integration density at system level. 
Unfortunately this measure is frequently not available for most 
of the chips, which made it impossible to include it in this 
survey. For a more detailed specification other information 
may be taken into account: learning facilities, cascadability, 
type of storage of the weights, type of implementation of the 
activation functions, clock rate, number of inputs and outputs 
and technology or type of implementation of the circuit 
(analog, digital or mixed). 

V.  Classification of Neural Network Hardware 
Neural network hardware ranges from single stand-alone 
neurochips to full-fledged neurocomputers. A variety of 
attributes have been used to classify neural network hardware, 
such as system architecture, degree of parallelism, inter-
processor communication network, general purpose or special 
purpose device, on-chip or off-chip learning, and so on. 
Neural network hardware can be categorized into 4 classes by 
the degree of parallelism: coarse-grained, medium-grained, 
fine-grained and massive parallelism [8]. The number of 
processing elements yields the degree of parallelism of a 
system. The more parallel units there are, the faster data is 
processed. However, parallelism is expensive in terms of chip 
area or chip count. Therefore highly parallel systems usually 
employ simpler processing elements. The parallelism can be 
rated from only a few processing elements referred to as 
coarse-grained up to almost a one-to-one implementation of 
neural processing nodes called massive. There are no definite 
borders between these different categories. Parallel processing 
elements only speed up the computation when they do not run 
idle. Thus, for the system performance it is crucial that the 
inter-processor communication network provides the 
processing elements with sufficient data. Broadcast bus, linear 
array, systolic ring, crossbar and bidimensional mesh are the 
most frequently encountered communication networks of 
ANN systems [8]. Here we follow the scheme proposed in [9] 
and group neural network hardware into four main categories 
as shown in Figure 3. 

Figure 3: Neural network hardware categories after [5]. 
The first two main categories consist of neurocomputers based 
on standard ICs. They consist of Accelerator boards which 
speed up a conventional computer like a PC or workstation, 
and parallel multiprocessor systems, which mostly run stand 
alone and can be monitored by a host computer. The other 
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main categories are neurochips built from dedicated neural 
ASICs (Application Specific Integrated Circuits). These 
neurochips can be digital, analog, or hybrid. The rest of this 
section will look at each of these categories and discuss their 
advantages and disadvantages. 
A. Accelerator Boards
Accelerator boards are the most frequently used neural 
commercial hardware, because they are relatively cheap, 
widely available, simple to connect to the PC or workstation, 
and typically provided with user-friendly software tools. They 
reside in the expansion slots and are used to speed up the 
neural network computations. The speed-up that can be 
achieved is at about one order of magnitude compared to 
sequential implementations. Accelerator boards are usually 
based on neural network chips but some just use fast digital 
signal processors (DSP) that do very fast multiple-accumulate 
operations. A drawback of accelerator boards is that they are 
specialized for certain tasks, and thus lack flexibility and do 
not offer many possibilities for setting up novel paradigms. A 
good example of accelerator boards is IBM ZISC ISA and PCI 
Cards. The ZISC036 chip was developed at the IBM Essonnes 
Lab [10]. A single ZISC036 holds 36 neurons, or prototypes, 
to implement an RBF network trained with the RCE (or ROI) 
algorithm. The ISA card holds to 16 ZISC036 chips, giving 
576 prototype neurons. The PCI card holds up to 19 chips for 
684 prototypes. PCI card can process 165,000 patterns/sec, 
where patterns are 64 8-bit element vectors. Other accelerator 
systems include SAIC SIGMA-1 [11], Neuro Turbo [12], 
HNC [27], etc. 
B.  Neurocomputers Built from General Purpose Processors 
General-purpose processors offer enough programmability for 
the implementation of neural functions. These 
implementations will of course never be maximally efficient. 
But because of their wide availability and relatively low 
prices, a number of neurocomputers have been assembled 
from generalpurpose chips. Implementations range from 
architectures of simple, low-cost elements (for example, the 
BSP400 [13] and COKOS [14]) to architectures with rather 
sophisticated processors like transputers, which are unique for 
their parallel I/O lines [15], or DSPs, which were primarily 
developed for correlators and discrete Fourier transforms [16]. 
Much experience has been gained from these 
implementations, which can be useful for the design of "true" 
neurocomputers, i.e., dedicated neurocomputers completely 
built from special purpose elements like neurochips. For 
instance, in many cases the sigmoid function forms the most 
computationally expensive part of the neural calculation. A 
solution for this can be found in using a look-up table rather 
than calculating the function [17]. Finding an interconnection 
strategy for large numbers of processors has turned out to be 
another non-trivial problem. Fortunately, much knowledge 
about the architectures of these massively  parallel computers 
can be directly applied in the design of neural architectures. 
The RAP (Ring Array Processor) [18] is an example of 
neurocomputers built from general-purpose processors. It was 
developed at the ICSI (International Computer Science 
Institute, Berkeley, CA) and has been used as an essential 
component in the development of connectionist algorithms for 
speech recognition since 1990. Implementations consist of 4 to 
40 Texas Instruments TITMS320C30 floating point DSPs 
containing 256 Kbytes of fast static RAM and 4 Mbytes of 
dynamic RAM each. These chips are connected via a ring of 
Xilinx programmable gate arrays (PGAs), each implementing 
a simple two-register data pipeline. Additionally each board 

has a VME bus interface logic, which allows it to connect to a 
host computer. The software support of RAP contains a 
workstation based command interpreter, tools for the standard 
C environment and a library of matrix and vector routines. A 
single board can perform 57 MCPS when computing a multi-
layer perceptron network in forward operation, and 13.2 
MCPS with backpropagation training. 
C. Neurochips 
For neurocomputers in Section 2 the neural functions are 
programmed on general purpose processors. Dedicated circuits 
are devised in special purpose chips for the neural functions. 
This will speed up the neural iteration time by about 2 orders 
of magnitude compared to general-purpose processor 
implementations. Several implementation technologies can be 
chosen for the design of neurochips. The main distinction lies 
in choice of a fully digital, fully analog, or hybrid design. 
Direct implementation in circuits in many cases alters the 
exact functioning of the original (simulated or analyzed) 
computational elements. This is mainly due to limited 
precision. The influence of this limited precision is of great 
importance to the proper functioning of the original paradigm. 
In order to build large-scale implementations, many
neurochips have to be interconnected. Some chips are 
therefore supplied with special communication channels. 
Other neurochips are to be interconnected by specially 
designed communication elements. 

VI.  Application of Artificial Neural Network 
Neural networks have been successfully applied to broad 
spectrum of data-intensive applications. The list below is 
based on real-world success stories. It will give  an overview 
of the scope of problems that NeuroIntelligence can address. 
1. Financial 

Stock Market prediction 
 Credit Worthiness 
 Credit rating 
 Bankruptcy Prediction 
 Property Appraisal 
 Fraud Detection 
 Price Forecasts  
 Economic Indicator Forecasts 

2. Medical 

Medical Diagnosis 
 Detection And Evaluation of Medical Phenomena 
 Patient’s length of Stay Forecasts 
 Treatment Cost Estimation 

3. Industrial 

Process Control 
 Quality Control 
 Temperature and Force Prediction 

4. Science 

Pattern Recognition 
Recipes and Chemical Formulation Optimisation 
Chemical Compound Identification 
Physical System Modelling 
Ecosystem Evaluation 
Polymer Identification 
Recognising Genes 
Botanical Classification 
Signal Processing: Neural Filtering 
Biological Systems Analysis 
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Ground Level Ozone Prognosis 
Odour Analysis and Identification 

5. Data Mining 

Prediction 
 Classification 
 Change and Deviation Detection 
 Knowledge Discovery 
 Response Modelling 
 Time series Analysis 

6. Sales and Marketing 

Sales forecasting 
 targeted Marketing 
 Service Usage faorecasts 
 Retail Margins Forecasting 

7. Operational Analysis 

Retail Inventories optimisation 
 Scheduling Optimisation 
 Managerial Decision Making 
 Cash Flow Forecasting 

8. HR Management 

Employee Selection and Hiring 
 Employee Retention 
 Staff Scheduling 
 Personnel Profiling 

9. Energy 

Electrical Load Forecasting 
Energy Demand Forecasting 
Short and Long-Term Load Estimation 
Predicting Gas/Coal Index Prices 
Power Control Systems 
Hydro Dam Monitoring 

10. Others 

Sports Betting 
Making Horse and Dog Racing Picks 
Quantitative Weather Forecasting 
Games Development 
Optimisation Problems, Routing 
Agricultural Production Estimates 

VII.   Discussions 

Among the challenges neural network hardware faces today 
the competition with  purpose hardware is probably the 
toughest one: computer architecture is a highly competitive 
domain that advances at an incredible pace. Neural networks 
in software have become well-established money making tools 
in a diverse range of pattern recognition and AI applications. 
The area of ANN hardware on the other hand is not yet as 
commercialized as general-purpose hardware. Also neural 
networks hardware tends to be more algorithm-specific. This 
requires a good knowledge about algorithms as well as system 
design and leads to a high time-to-market. Therefore, general-
purpose computers can profit more often from advances in 
technology and architectural revisions. Also, in many other 
respects general-purpose hardware seems to be more user-
friendly: it is not bound to algorithmic a-priori-assumptions 
and therefore offers high flexibility. Uniform programming 
interfaces exist for general-purpose hardware. This can be 
important not only to get a better start when programming a 

system, but also to allow reusability when moving on to the 
next hardware generation. On the other hand, there are ANN 
problems, exceeding the computational capabilities of 
workstations or PCs such as real-time applications, the 
simulation of large networks or networks employing very 
complex neuron models. For these applications neurohardware 
is attractive. Other niche areas for neural hardware are 
embedded applications of simple, hardwired networks, for 
example, voice recognition chips, and neuromorphic systems 
that directly implement a desired function, such as touchpad 
and silicon retinas. Neurohardware might provide a much 
better cost-to-performance ratio, lower power consumption 
and smaller size. The field of neural network hardware has 
become maturer since it's ``gold rush'' period in late 1980s and 
early 1990s. Clearly an algorithmic success in artificial neural 
networks would revive the area of neurohardware. As long as 
conventional hardware can not provide sufficient performance, 
there is a need for neural network hardware. 

VIII.    Conclusions 

As per the study and investigations, the information collected 
indicates that few  neurochips are  available commercially. 
The appearance of new solutions indicates that this field is still 
active, but the removal of the market of other solutions does 
not seem to be good news. As (Heemskerk) indicates,
neurocomputer building is expensive in terms of development 
time and resources, and little is known about the real 
commercial prospects for working implementations. 
Moreover, there is no clear consensus on how to exploit the 
currently available VLSI and even ultra large-scale integration 
(ULSI) technological capabilities for massively parallel neural 
network hardware implementations. Another reason for not 
actually building neurocomputers might lie in the fact that the 
number and variety of (novel) neural network paradigms is 
still increasing rapidly. For many paradigms the capabilities 
are hardly known yet. Paradoxically, these capabilities can 
only be tested in full when dedicated hardware is available. 
These might be the reasons for the slow development of the 
ANN hardware market in the last years, but the authors 
believe that this situation will change in the near future with 
the appearance of new hardware solutions. In the user 
perspective, taking into account the information given here 
about the existing market, it should be noted that there is no 
“best” solution for every case but the most suitable solution 
should be found for each case. This is the reason why the 
authors decided not to make a performance comparison.
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