

71

Proc. of the Sixth International Conference on Advances in Computing, Electronics and Communication - ACEC 2017.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-138-2 doi: 10.15224/ 978-1-63248-138-2-15

An Extensible Real-Time Capable Server

Architecture for Edge Computing
Volkan Gezer and Martin Ruskowski

Innovative Factory Systems (IFS)

German Research Center for Artificial Intelligence (DFKI)

Abstract—Internet changed how the people live and access the

information that they need. Thanks to the accessibility and the

benefits that it brings into the lives, new research areas are

emerging. One of the areas is Internet of Things (IoT) which

connects countless of devices to the Internet. Increasing usage in

IoT tremendously increases the count of connected devices to the

Internet as well as the data generated and transferred through

the Internet. However, this increase brings several issues which

could degrade the Quality of Service (QoS) with such as delays or

even failed requests. Edge Computing is a new paradigm which is

believed to solve the problems that the current IoT and Cloud

solutions have. This paper introduces a new architecture for

Edge Servers which is expected to reduce the latency and solve

the resource problems of the end-devices. The proposed Edge

Server architecture has an ability to decide whether the task

should be offloaded to the Cloud or another Edge Server by

considering the several parameters such as available resources

and network delays. The server is also real-time capable and

extensible with optional modules such as artificial intelligence,

storage, wireless communication, etc.

Keywords—Edge computing, fog computing, edge server, real-

time computing

I. Introduction
Internet of Things (IoT) gave new possibilities and

changed how people live their lives. Tendency towards Cloud
Computing and IoT devices leveraged the research in this
domain and created new ones. Cloud Computing or the Cloud,
allows its users to store data, perform tasks using data centres
through the Internet. The available resources in the Cloud let
low-powered or resource limited end-devices perform
complex tasks in the Cloud, saving exceptional computational
time [1]. Thanks to ubiquitousness of the Cloud, the data can
be accessed from anywhere and anytime as long as an active
Internet connection is available. With usage of the Cloud in
daily tasks and used devices in the area, it is expected to have
50 billion devices to the network [2][3]. This growth in the
count of connected devices also boosts the generated data,
tremendously stressing the infrastructure. The physical
distance to the Cloud and the available resources within the
infrastructure increase the latency and reduce the Quality of
Service (QoS). One of the recent paradigms in this area to
solve issues of Cloud Computing is Edge Computing.
Although there are several naming for Edge Computing such
as Fog Computing or Cloudlets, within this paper, only the
term Edge Computing will be used. Fig. 1 shows the
difference between Cloud and Edge Computing. In Cloud
Computing, the end-devices are connected to the Cloud
directly, without an intermediate computing component. In

Edge Computing, however, an intermediate component
performs the initial computation.

Edge Computing combines multiple technologies such as
Cloud Computing, Grid Computing, and IoT. It adds an
additional tier between the Cloud and the end-devices and
moves computational power to the end-device as close as
possible. This means that, in the need of more computational
resource by the end-device or a system, the task can be
offloaded to an Edge Server instead of the Cloud. Edge Comp-

Figure 1. A simplified example showing the major

difference between Cloud and Edge Computing. Cloud

Computing (a) connects end-devices to the Cloud directly

whereas Edge Computing (b) has an additional computing

power in-between.

uting is expected to reduce the latency and increase the QoS

for tasks which cannot be handled by these devices. These

72

Proc. of the Sixth International Conference on Advances in Computing, Electronics and Communication - ACEC 2017.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-138-2 doi: 10.15224/ 978-1-63248-138-2-15

tasks are usually computationally heavy such as big data

processing, video processing, artificial intelligence or time-

sensitive. If the computation must be done in real-time,

utilization of Cloud is out of the question since Cloud and

Internet offers only best-effort service and delivery. A system

is a real-time system only if it reacts to its environment by

performing the correct predefined actions within the specified

time intervals.

Real-time computing can be divided into three categories.

In Hard Real-Time, failure in the system is mostly fatal. For

example, if an airbag in a car deflates before or after the

specified timeframe (between 100 ms and 300 ms, within 10

ms), it loses its protective impact [4]. Firm Real-Time is a

real-time category between hard and soft real-time. It tolerates

some deadline misses, but increase in the misses degrades the

service, in the end causing unacceptable results [5]. For

example, miss-sorting colors of the parts are acceptable up to

some point [6]. Soft Real-Time groups the real-time

applications, which are less critical and have wider deadline

interval for their acceptance. For example, voice calls or video

streams are tolerated in case some data packages are lost.

Some systems produce gigabytes of data per second.

Devices with limited computing capacity may offload the

tasks to an Edge Server using the same constraints and can be

accomplished at this level.

This paper presents an ongoing work to implement an

Edge Server architecture which is capable of performing real-

time tasks and take the necessary actions to provide a high

QoS. The architecture will not simply be another architecture,

but will compare the existing architectures and consider real-

world requirements from the industrial use cases. The aim is to

build a vendor-independent an extensible architecture while

meeting the industrial requirements.

The rest of the paper is structured as follows: Section II

introduces some of the existing work done and simulators in

the area of Edge Computing. Section III describes the scenario

and the approach. Section IV defines the architecture to be

implemented as Edge Computing solution in Edge Server in

two sub-sections and finally Section V concludes the paper

and presents the future work.

II. Background
There are several work done for computation and control

in the Cloud and below some of the related work is explained.

A research project called "pICASSO" focuses on the

control of a robot using a Cloud-based control platform. The

project implemented a platform and a Cloud controller which

can perform motion planning and control for industrial robots

[9].

A recent work done by Givehchi, Imtiaz, Trsek, and

Jasperneite [8] studies industrial use cases for using virtual

control service in a private Cloud. Instead of using hardware

programmable logic controllers (PLC) on site, they use a

computer with multi-core processor and set each core as a

virtual PLC to control sensors and actuators. The solution

suggests a low-cost, but a slightly lower performance software

PLC, compared to the hardware PLCs.

Another study on Cloud-based control is done by

Goldschmidt et. al [6]. The work introduces a new architecture

for scalable and multi-tenant Cloud-based control, virtualized

PLCs. It also considers and evaluates the architecture with

respect to its scheduling policies and time-sensitiveness. The

Cloud architecture is located in a different physical location

than the industrial site where the actual control is done and the

communication is performed through Internet. The results

showed over 99% success rate for tasks requiring response

within one second. They suggest that the architecture is

feasible for soft or firm real-time applications.

Realizing an unproven concept in real environments

without testing and validating requires good investment of

engineering time and money. However, using virtual

environments, which can simulate several hours of real

environment tasks in couple of minutes save a lot of time.

CloudSim is a framework to model and simulate Cloud

Computing infrastructures and their services. It supports

modelling and simulation of large scale Cloud data centers,

their application containers, costs as well as power

consumption [9]. One simulation tool to evaluate the

reliability of the system is called iFogSim and implemented by

Gupta, Dastjerdi, Ghosh, and Buyya [10]. It is based on

CloudSim and allows addition of fog or edge devices, creation

of topologies and evaluation of resource management policies

focusing on latencies. Sonmez, Ozgovde, and Ersoy

introduced another simulator called EdgeCloudSim [11]. It

adds a mobility model and non-fixed delays into the network

which is fixed in iFogSim. The simulator also gives detailed

information on resource usage as well as the percentage of

tasks statuses. In both simulators, the data is passed to the

Cloud in case there are no resources available in the Edge/Fog

Server. However, in our scenario, the Edge Servers can also

offload the tasks to other Edge Servers by considering the

available resources, network and computation delays.

Additionally, the end-devices do not have mobility, only the

data does. We believe that there are neither available

simulators in the literature which can offload the tasks of

immobile end-devices between the Edge Servers nor a

standard Edge Server architecture which is capable of

performing real-time calculations. This ongoing work will

build a novel architecture comparing the existing architectures,

initially simulating in a virtual platform.

III. Concept
Although Cloud Computing reduces costs of computation

by saving hardware and giving flexibility, the physical

distance to the device reduces the QoS. Additionally, if the

resources of a Cloud infrastructure are shared, scheduling the

tasks is a difficult task. Moreover, transmitting too much data

to the Cloud more than a network can handle is unnecessary

and causes network congestion [12]. If the task execution is

critical and time-constrained, then an in-time correct reaction

is necessary.

73

Proc. of the Sixth International Conference on Advances in Computing, Electronics and Communication - ACEC 2017.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-138-2 doi: 10.15224/ 978-1-63248-138-2-15

Figure 2. Overview of the modular testbed architecture to

be used for validation and evaluation.

Unlike the work done in [11], in this paper, the end-

devices are not mobile. The scenario in our research involves a

multi-vendor modular testbed for research purposes by

SmartFactory
KL

 [13]. These modules are plug-and-produce

modules and each of them performs one step of the production

independent of other modules. As Fig. 2 illustrates, the

modules in the testbed are not directly communicating with

each other, but through the infrastructure boxes. Each

infrastructure box is connected with each other serially and

provides pressured air, network connection, safety bus, and

power to the modules. The communication to the Internet is

performed through the central infrastructure server. The aim of

the research is to add computing power into the infrastructure

boxes to analyse, monitor the modules and react to the

expected or unexpected situations, including real-time

behaviour.

In our approach, we propose an extensible Edge Server

model for Edge Computing to be integrated inside

Infrastructure Boxes. If there are multiple Edge Servers in the

same network, they are able to communicate with each other.

Each server is orchestrated by itself, which means that they are

distributed and aware of the neighboring server capabilities in

the same network. If a task cannot be guaranteed/performed by

a server, the receiving server knows which other servers are

capable of performing the same task. Fig. 3 shows a simplified

topology of a three-tier Edge Computing.

As seen from the Fig. 3, an Edge Server is not a complete

replacement of the Cloud with respect to its functionalities.

Instead, highly repeated tasks, or tasks that require in-time

response are preferred to be executed in an Edge Server. In

automation domain, Edge Tier can be seen as an edge or

borderline between the Information Technology (IT) and

Operational Technology (OT). In IT, the speed considerations

are not critical whereas in OT, the communication or

computing, or both must be real-time. Edge Tier isolates the

network between IT and OT. Assume that A and B are features

that could be serviced by the Cloud. For example, if a device

in location X or Y needs the feature B to perform a task, the

request will be orchestrated by the Edge Servers #1 or #2 and

be sent to and performed by the Cloud. However, if, for

example, the feature A is requested by an end-device in

location X, first the Edge Server #1 will evaluate its own

available resources. Depending on the urgency of the request,

resource utilization, and calculated delays, it will either

complete the request by itself or offload to the server #2 or to

the Cloud.

Figure 3. Simplified topology of the Edge Computing

network.

Different tasks may have different priorities even though they

are real-time. If there are multiple task requests, the server

should pause the lower priority tasks while keeping track of

the paused tasks or offloading them. To decide where to

execute the task, each server has an orchestrator of which

details will be explained in Section IV.

IV. Architecture
An Edge Server must be capable of gathering, aggregating

the data, computing and transferring it back to the end-device.

However, in the meantime, the servers must be able to

communicate with the other Edge Servers within the network

in case their resources are not enough to perform the task or

offload the data to the Cloud. In other words, the Edge Servers

must have a reliable and communicable network between each

other and the Cloud.

For a seamless task handling and communication, the

servers must follow some standards compatible with each

other. This is not a simple task, since this technology contains

so many aspects to consider such as: resource allocation,

scheduling, scaling, storage, etc. The architecture must also be

able to handle time-critical or real-time tasks. The software

must also be designed or modified to work with the real-time

capable system [14]. Last but not least, the server must be

extensible with plug-and-play modules to advance or add new

functionalities via hardware or software modules. Such

architecture design is divided into Hardware Modules and

Software Components which are explained in the next

subsections.

A. Hardware Modules
Edge Computing should be able to reduce the latency and

the load in the Cloud while keeping the QoS as high as

possible. Edge Nodes, or Edge Servers need to have more

computing power than the end-devices. However, the

hardware in the Edge Tier is also limited compared to the

Cloud. Therefore, to keep the costs low, first, the use cases for

the Edge Servers must be defined, then, the resource must be

considered to handle these defined use cases in-time. Each

server in our proposal has a Core Node of which

functionalities can be extended by plugging additional

optional modules in. Fig. 4 shows an overview of possible

74

Proc. of the Sixth International Conference on Advances in Computing, Electronics and Communication - ACEC 2017.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-138-2 doi: 10.15224/ 978-1-63248-138-2-15

Figure 4. An extensible Edge Server concept showing its

modules and devices which add functionalities.

modules or devices that could be attached to the core node.

Hardware modules can also have their computing power, or

simply improve the available functionality of the core node.

For example, to capture big data and store, a storage module

can be attached. On the other hand, the core node can still

have enough storage perform small tasks.

Core Node should support multiple communication

interfaces. Therefore, time and speed considerations are quite

important for choosing the best hardware. The Edge Server is

also expected to perform real-time computing and control.

Therefore, reliability and stability of the hardware is also

mandatory.

B. Software Components
As mentioned in Section IV-A, the server has a Core Node
which is capable of performing real-time tasks. Before
implementing the software architecture of such system, it is
important to define the roles of software, clarify, and assign
separate roles to the components. All components defined here
can be implemented in any language as long as they satisfy the
requirements. Time-sensitiveness requires implementation of
several components which are compatible with each other.
These components should enable a reliable, stable in-time
response and take correct actions. Fig. 5 shows the required
software components inside the Core Node to fulfil the
requirements. Below, these components are explained:

Real-Time Capable Operating System (RTOS): To

implement software components, the operating system (OS) in

the hardware must also be real-time capable. Having a real-

time capable kernel does not mean that the system will work

in real-time. Applications, application programming interfaces

(APIs), and the system must be designed properly to benefit

from real-time functionality [15].

Inputs/Outputs (I/Os): I/Os are the interfaces which

connect the hardware with the software. These are also used to

connect other physical modules with the core node such as

Edge Gateway for real-time communication.

API: APIs will be used for all communication with the

I/Os, the end-devices, or the Cloud. An API is necessary to

abstract the functionalities of other components. It allows

internal modifications in case a new software component

added without requiring complete change in the system. It also

guarantees that the requests cannot interfere with the internal

Figure 5. Proposed Software Architecture of Core Node.

components since direct access to the individual modules or

components is not allowed.

Message Router: As soon as the task or data arrives, this

component retrieves and routes it to the location where task

should be handled by communicating with Resource Manager

component. In case there are no resources available in this

server, the task will either be transferred to another Edge

Server or to the Cloud.

Configurator: The server and their modules are

automatically configured as soon as they are attached.

Nevertheless, their manual configuration or tweaks are

performed via this component. It provides a Web-based and

shell-based administrator panel to modify server properties,

monitor the status, perform low-level resource allocations, and

adjust orchestrator parameters, etc.

Storage/Database: This component is used to store

temporary data for the active or waiting tasks.

Servers: Standalone servers which are used out-of-the-box

with only configuration changes are encapsulated in this

component. The servers enable API communication as well as

internal communication among the components.

Security Protocols: One of the most important

requirements for the Edge Computing is keeping the data

secure and private. Security itself is a vast aspect to consider.

Therefore, a dedicated component to handle all security-

related issues is necessary. This component monitors all

incoming connections and takes the necessary actions in case

the request is unexpected or unauthorized.

Resource Manager (RM): The computing power in the

Edge Server hardware is limited. RM or Observer actively

monitors all available resources of Edge Servers in the

network. It is also aware of all the other connected Edge

Servers and their attached modules. RM directly interacts with

the Message Router and decides whether the task received

must be processed in this server or offloaded to another

location.

Cache: A temporary storage component to serve the data

75

Proc. of the Sixth International Conference on Advances in Computing, Electronics and Communication - ACEC 2017.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

 ISBN: 978-1-63248-138-2 doi: 10.15224/ 978-1-63248-138-2-15

faster for the future requests. It is especially used when

Resource Manager decides that the task is not going to be

executed in the current server.

Virtual Processors: For performance and power reasons,

it is typical to have multi-core hardware. In multi-core

hardware, one thread is generally executed on a single core. If

software is not optimized for multi-core, it cannot benefit from

multi-core hardware. On the other hand, multi-threaded

software execution is distributed among the cores. However,

in either case, it is possible to set central processing unit

(CPU) affinity of a process, which is a running instance of the

software or program. Low-level programming makes

configuration of the kernel possible to add virtual processors,

limit or specify the available resources, and assign specific

processes to these virtual processors.

Orchestrator: If RM allows execution of the task in this

server, this component becomes active. Determined by the

availability of the resource, task can be handled in different

ways using the sub-components. This component has three

different sub-components, namely: Scheduler, Scaler, and

Queue Manager.

Scheduler: If a task is chosen to be executed in this server,

it must be carefully scheduled to avoid deadline misses,

especially for real-time tasks. This component is responsible

to set CPU affinities for the running tasks taking their

priorities into consideration.

Scaler: Scheduler sorts the execution times of the tasks. In

the proposed architecture, some of the cores are dedicated for

real-time tasks. Tasks not optimized for multi-core systems are

by default assigned to run on a single core. If Scheduler is not

able to meet the deadlines of the critical tasks, this component

can increase the available core count for the real-time tasks to

have them run on multiple cores.

Queue Manager: If a task cannot be executed immediately,

one other possibility is to queue it. The queue contains both

real-time (RT) and non-real-time (NRT) tasks. This

component is responsible for queuing the tasks and resuming

them.

V. Conclusion and Future Work
Edge Computing is a recent technology and open for new

innovations. It is believed that Edge Computing will solve the
issues that the high usage of IoT and the Cloud solutions have.
In this paper, we proposed an ongoing work for Edge Server
architecture which is capable of performing real-time
computations. The architecture is able to orchestrate the tasks
and find the best host to offload the requested task by an end-
device. The offloading can be done between other Edge
Servers in the network, or the Cloud. One future task is
implementation of a simulator based on CloudSim framework,
including all components explained in Section IV. This will
help us find out the optimal parameters for the hardware
modules and the software components. Later, the architecture
will be implemented, validated and evaluated on an optimal
hardware chosen for the work. Another future work is to
divide these tasks into multiple machines to exploit the
resource utilization of the available resources. This work could

further be extended by using artificial intelligence instead of
mathematical calculation for optimizations.

Acknowledgements
This research was funded in part by the H2020 program of

European Union, project number (project FAR-EDGE). The
responsibility for this publication lies with the authors. The
project details can be found under project website at:
http://www.far-edge.eu

References

[1] H. H. Holm, J. M. Hjelmervik, and V. Gezer, “CloudFlow - an

infrastructure for engineering workflows in the cloud,” in UBICOMM
2016: The Tenth International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies. IARIA, October 2016,
pp. 158–165.

[2] NCTA, “THE GROWTH OF THE INTERNET OF THINGS,”
Infographic, May 2014, [retrieved: Sep 2017]. [Online]. Available:
https://www.ncta.com/platform/

[3] D. Evans, “The Internet of Things - Cisco,” Cisco, White Paper, April
2011, [retrieved: Sep 2017]. [Online]. Available:
https://www.cisco.com/c/dam/en us/about/ac79/docs/innov/IoT IBSG
0411FINAL.pdf

[4] E. Olderog and H. Dierks, Real-Time Systems: Formal Specification and
Automatic Verification. Cambridge University Press, 2008.

[5] T. Kaldewey, C. Lin, and S. Brandt, “Firm real-time processing inan
integrated real-time system,” REPORT-UNIVERSITY OF YORK
DEPARTMENT OF COMPUTER SCIENCE YCS, vol. 398, p. 5, 2006.

[6] T. Goldschmidt, M. K. Murugaiah, and C. Sonntag, “Cloud-Based
Control: A Multi-Tenant, Horizontally Scalable Soft-PLC,” in IEEE 8th
International Conference on Cloud Computing, 2015.

[7] “pICASSO Project,” Website (German), [retrieved: Sep 2017].
[Online]. Available: https://www.projekt-picasso.de/projekt/

[8] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-aservice
from the cloud: A case study for using virtualized plcs,” in 2014 10th
IEEE Workshop on Factory Communication Systems (WFCS 2014),
May 2014, pp. 1–4.

[9] “The Internet of Things - Cisco,” CloudSim Website, [retrieved: Sep
2017]. [Online]. Available: http://www.cloudbus.org/cloudsim/

[10] G. H., A. V. Dastjerdi, S. K. Ghost, and R. Buyya, “iFogSim: A Toolkit
for Modeling and Simulation of Resource Management Techniques in
Internet of Things, Edge and Fog Computing Environments,” in
Software Practive and Experience, June 2016.

[11] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
May 2017, pp. 39–44.

[12] H. Al-Bahadili, Simulation in Computer Network Design and Modeling:
Use and Analysis: Use and Analysis, ser. Premier reference source.
Information Science Reference, 2012.

[13] D. Zuehlke, “Smartfactorytowards a factory-of-things,” Annual Reviews
in Control, vol. 34, no. 1, pp. 129 – 138, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1367578810000143

[14] S. Rostedt, “Intro to Real-Time Linux for Embedded Developers,” Linux
Foundation Blog, 2013, [retrieved: Sep 2017]. [Online]. Available:
https://www.linuxfoundation.org/blog/intro- to- real-time-linux-for-
embedded-developers/

[15] J. Huang, “RTMux: A Thin Multiplexer to Provide Hard Realtime
Applications for Linux,” Embedded Linux Conference Europe, October
2014, [retrieved: Sep 2017]. [Online]. Available:
https://events.linuxfoundation.org/sites/events/files/slides/rtmux 1.pdf

