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Abstract—Internet changed how the people live and access the 

information that they need. Thanks to the accessibility and the 

benefits that it brings into the lives, new research areas are 

emerging. One of the areas is Internet of Things (IoT) which 

connects countless of devices to the Internet. Increasing usage in 

IoT tremendously increases the count of connected devices to the 

Internet as well as the data generated and transferred through 

the Internet. However, this increase brings several issues which 

could degrade the Quality of Service (QoS) with such as delays or 

even failed requests. Edge Computing is a new paradigm which is 

believed to solve the problems that the current IoT and Cloud 

solutions have. This paper introduces a new architecture for 

Edge Servers which is expected to reduce the latency and solve 

the resource problems of the end-devices. The proposed Edge 

Server architecture has an ability to decide whether the task 

should be offloaded to the Cloud or another Edge Server by 

considering the several parameters such as available resources 

and network delays. The server is also real-time capable and 

extensible with optional modules such as artificial intelligence, 

storage, wireless communication, etc. 

Keywords—Edge computing, fog computing, edge server, real-

time computing 

I.  Introduction 
Internet of Things (IoT) gave new possibilities and 

changed how people live their lives. Tendency towards Cloud 
Computing and IoT devices leveraged the research in this 
domain and created new ones. Cloud Computing or the Cloud, 
allows its users to store data, perform tasks using data centres 
through the Internet. The available resources in the Cloud let 
low-powered or resource limited end-devices perform 
complex tasks in the Cloud, saving exceptional computational 
time [1]. Thanks to ubiquitousness of the Cloud, the data can 
be accessed from anywhere and anytime as long as an active 
Internet connection is available. With usage of the Cloud in 
daily tasks and used devices in the area, it is expected to have 
50 billion devices to the network [2][3]. This growth in the 
count of connected devices also boosts the generated data, 
tremendously stressing the infrastructure. The physical 
distance to the Cloud and the available resources within the 
infrastructure increase the latency and reduce the Quality of 
Service (QoS). One of the recent paradigms in this area to 
solve issues of Cloud Computing is Edge Computing. 
Although there are several naming for Edge Computing such 
as Fog Computing or Cloudlets, within this paper, only the 
term Edge Computing will be used. Fig. 1 shows the 
difference between Cloud and Edge Computing. In Cloud 
Computing, the end-devices are connected to the Cloud 
directly, without an intermediate computing component. In 

Edge Computing, however, an intermediate component 
performs the initial computation. 

Edge Computing combines multiple technologies such as 
Cloud Computing, Grid Computing, and IoT. It adds an 
additional tier between the Cloud and the end-devices and 
moves computational power to the end-device as close as 
possible. This means that, in the need of more computational 
resource by the end-device or a system, the task can be 
offloaded to an Edge Server instead of the Cloud. Edge Comp- 

 

Figure 1. A simplified example showing the major 

difference between Cloud and Edge Computing. Cloud 

Computing (a) connects end-devices to the Cloud directly 

whereas Edge Computing (b) has an additional computing 

power in-between. 

 

uting is expected to reduce the latency and increase the QoS 

for tasks which cannot be handled by these devices. These 
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tasks are usually computationally heavy such as big data 

processing, video processing, artificial intelligence or time-

sensitive. If the computation must be done in real-time, 

utilization of Cloud is out of the question since Cloud and 

Internet offers only best-effort service and delivery. A system 

is a real-time system only if it reacts to its environment by 

performing the correct predefined actions within the specified 

time intervals. 

Real-time computing can be divided into three categories. 

In Hard Real-Time, failure in the system is mostly fatal. For 

example, if an airbag in a car deflates before or after the 

specified timeframe (between 100 ms and 300 ms, within 10 

ms), it loses its protective impact [4]. Firm Real-Time is a 

real-time category between hard and soft real-time. It tolerates 

some deadline misses, but increase in the misses degrades the 

service, in the end causing unacceptable results [5]. For 

example, miss-sorting colors of the parts are acceptable up to 

some point [6]. Soft Real-Time groups the real-time 

applications, which are less critical and have wider deadline 

interval for their acceptance. For example, voice calls or video 

streams are tolerated in case some data packages are lost. 

Some systems produce gigabytes of data per second. 

Devices with limited computing capacity may offload the 

tasks to an Edge Server using the same constraints and can be 

accomplished at this level. 

This paper presents an ongoing work to implement an 

Edge Server architecture which is capable of performing real-

time tasks and take the necessary actions to provide a high 

QoS. The architecture will not simply be another architecture, 

but will compare the existing architectures and consider real-

world requirements from the industrial use cases. The aim is to 

build a vendor-independent an extensible architecture while 

meeting the industrial requirements. 

The rest of the paper is structured as follows: Section II 

introduces some of the existing work done and simulators in 

the area of Edge Computing. Section III describes the scenario 

and the approach. Section IV defines the architecture to be 

implemented as Edge Computing solution in Edge Server in 

two sub-sections and finally Section V concludes the paper 

and presents the future work. 

II. Background 
There are several work done for computation and control 

in the Cloud and below some of the related work is explained. 

A research project called "pICASSO" focuses on the 

control of a robot using a Cloud-based control platform. The 

project implemented a platform and a Cloud controller which 

can perform motion planning and control for industrial robots 

[9]. 

A recent work done by Givehchi, Imtiaz, Trsek, and 

Jasperneite [8] studies industrial use cases for using virtual 

control service in a private Cloud. Instead of using hardware 

programmable logic controllers (PLC) on site, they use a 

computer with multi-core processor and set each core as a 

virtual PLC to control sensors and actuators. The solution 

suggests a low-cost, but a slightly lower performance software 

PLC, compared to the hardware PLCs. 

Another study on Cloud-based control is done by 

Goldschmidt et. al [6]. The work introduces a new architecture 

for scalable and multi-tenant Cloud-based control, virtualized 

PLCs. It also considers and evaluates the architecture with 

respect to its scheduling policies and time-sensitiveness. The 

Cloud architecture is located in a different physical location 

than the industrial site where the actual control is done and the 

communication is performed through Internet. The results 

showed over 99% success rate for tasks requiring response 

within one second. They suggest that the architecture is 

feasible for soft or firm real-time applications. 

Realizing an unproven concept in real environments 

without testing and validating requires good investment of 

engineering time and money. However, using virtual 

environments, which can simulate several hours of real 

environment tasks in couple of minutes save a lot of time. 

CloudSim is a framework to model and simulate Cloud 

Computing infrastructures and their services. It supports 

modelling and simulation of large scale Cloud data centers, 

their application containers, costs as well as power 

consumption [9]. One simulation tool to evaluate the 

reliability of the system is called iFogSim and implemented by 

Gupta, Dastjerdi, Ghosh, and Buyya [10]. It is based on 

CloudSim and allows addition of fog or edge devices, creation 

of topologies and evaluation of resource management policies 

focusing on latencies. Sonmez, Ozgovde, and Ersoy 

introduced another simulator called EdgeCloudSim [11]. It 

adds a mobility model and non-fixed delays into the network 

which is fixed in iFogSim. The simulator also gives detailed 

information on resource usage as well as the percentage of 

tasks statuses. In both simulators, the data is passed to the 

Cloud in case there are no resources available in the Edge/Fog 

Server. However, in our scenario, the Edge Servers can also 

offload the tasks to other Edge Servers by considering the 

available resources, network and computation delays. 

Additionally, the end-devices do not have mobility, only the 

data does. We believe that there are neither available 

simulators in the literature which can offload the tasks of 

immobile end-devices between the Edge Servers nor a 

standard Edge Server architecture which is capable of 

performing real-time calculations. This ongoing work will 

build a novel architecture comparing the existing architectures, 

initially simulating in a virtual platform. 

III. Concept 
Although Cloud Computing reduces costs of computation 

by saving hardware and giving flexibility, the physical 

distance to the device reduces the QoS. Additionally, if the 

resources of a Cloud infrastructure are shared, scheduling the 

tasks is a difficult task. Moreover, transmitting too much data 

to the Cloud more than a network can handle is unnecessary 

and causes network congestion [12]. If the task execution is 

critical and time-constrained, then an in-time correct reaction 

is necessary. 
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Figure 2. Overview of the modular testbed architecture to 

be used for validation and evaluation. 

 

Unlike the work done in [11], in this paper, the end-

devices are not mobile. The scenario in our research involves a 

multi-vendor modular testbed for research purposes by 

SmartFactory
KL

 [13]. These modules are plug-and-produce 

modules and each of them performs one step of the production 

independent of other modules. As Fig. 2 illustrates, the 

modules in the testbed are not directly communicating with 

each other, but through the infrastructure boxes. Each 

infrastructure box is connected with each other serially and 

provides pressured air, network connection, safety bus, and 

power to the modules. The communication to the Internet is 

performed through the central infrastructure server. The aim of 

the research is to add computing power into the infrastructure 

boxes to analyse, monitor the modules and react to the 

expected or unexpected situations, including real-time 

behaviour. 

In our approach, we propose an extensible Edge Server 

model for Edge Computing to be integrated inside 

Infrastructure Boxes. If there are multiple Edge Servers in the 

same network, they are able to communicate with each other. 

Each server is orchestrated by itself, which means that they are 

distributed and aware of the neighboring server capabilities in 

the same network. If a task cannot be guaranteed/performed by 

a server, the receiving server knows which other servers are 

capable of performing the same task. Fig. 3 shows a simplified 

topology of a three-tier Edge Computing. 

As seen from the Fig. 3, an Edge Server is not a complete 

replacement of the Cloud with respect to its functionalities. 

Instead, highly repeated tasks, or tasks that require in-time 

response are preferred to be executed in an Edge Server. In 

automation domain, Edge Tier can be seen as an edge or 

borderline between the Information Technology (IT) and 

Operational Technology (OT). In IT, the speed considerations 

are not critical whereas in OT, the communication or 

computing, or both must be real-time. Edge Tier isolates the 

network between IT and OT. Assume that A and B are features 

that could be serviced by the Cloud. For example, if a device 

in location X or Y needs the feature B to perform a task, the 

request will be orchestrated by the Edge Servers #1 or #2 and 

be sent to and performed by the Cloud. However, if, for 

example, the feature A is requested by an end-device in 

location X, first the Edge Server #1 will evaluate its own 

available resources. Depending on the urgency of the request, 

resource utilization, and calculated delays, it will either 

complete the request by itself or offload to the server #2 or to 

the Cloud. 

 
Figure 3. Simplified topology of the Edge Computing 

network. 

Different tasks may have different priorities even though they 

are real-time. If there are multiple task requests, the server 

should pause the lower priority tasks while keeping track of 

the paused tasks or offloading them. To decide where to 

execute the task, each server has an orchestrator of which 

details will be explained in Section IV. 

IV. Architecture 
An Edge Server must be capable of gathering, aggregating 

the data, computing and transferring it back to the end-device. 

However, in the meantime, the servers must be able to 

communicate with the other Edge Servers within the network 

in case their resources are not enough to perform the task or 

offload the data to the Cloud. In other words, the Edge Servers 

must have a reliable and communicable network between each 

other and the Cloud.  

For a seamless task handling and communication, the 

servers must follow some standards compatible with each 

other. This is not a simple task, since this technology contains 

so many aspects to consider such as: resource allocation, 

scheduling, scaling, storage, etc. The architecture must also be 

able to handle time-critical or real-time tasks. The software 

must also be designed or modified to work with the real-time 

capable system [14]. Last but not least, the server must be 

extensible with plug-and-play modules to advance or add new 

functionalities via hardware or software modules. Such 

architecture design is divided into Hardware Modules and 

Software Components which are explained in the next 

subsections. 

A. Hardware Modules 
Edge Computing should be able to reduce the latency and 

the load in the Cloud while keeping the QoS as high as 

possible. Edge Nodes, or Edge Servers need to have more 

computing power than the end-devices. However, the 

hardware in the Edge Tier is also limited compared to the 

Cloud. Therefore, to keep the costs low, first, the use cases for 

the Edge Servers must be defined, then, the resource must be 

considered to handle these defined use cases in-time. Each 

server in our proposal has a Core Node of which 

functionalities can be extended by plugging additional 

optional modules in. Fig. 4 shows an overview of possible 
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Figure 4. An extensible Edge Server concept showing its 

modules and devices which add functionalities. 

 

modules or devices that could be attached to the core node. 

Hardware modules can also have their computing power, or 

simply improve the available functionality of the core node. 

For example, to capture big data and store, a storage module 

can be attached. On the other hand, the core node can still 

have enough storage perform small tasks. 

Core Node should support multiple communication 

interfaces. Therefore, time and speed considerations are quite 

important for choosing the best hardware. The Edge Server is 

also expected to perform real-time computing and control. 

Therefore, reliability and stability of the hardware is also 

mandatory. 

B. Software Components 
As mentioned in Section IV-A, the server has a Core Node 
which is capable of performing real-time tasks. Before 
implementing the software architecture of such system, it is 
important to define the roles of software, clarify, and assign 
separate roles to the components. All components defined here 
can be implemented in any language as long as they satisfy the 
requirements. Time-sensitiveness requires implementation of 
several components which are compatible with each other. 
These components should enable a reliable, stable in-time 
response and take correct actions. Fig. 5 shows the required 
software components inside the Core Node to fulfil the 
requirements. Below, these components are explained: 

Real-Time Capable Operating System (RTOS): To 

implement software components, the operating system (OS) in 

the hardware must also be real-time capable. Having a real-

time capable kernel does not mean that the system will work 

in real-time. Applications, application programming interfaces 

(APIs), and the system must be designed properly to benefit 

from real-time functionality [15]. 

Inputs/Outputs (I/Os): I/Os are the interfaces which 

connect the hardware with the software. These are also used to 

connect other physical modules with the core node such as 

Edge Gateway for real-time communication. 

API: APIs will be used for all communication with the 

I/Os, the end-devices, or the Cloud. An API is necessary to 

abstract the functionalities of other components. It allows 

internal modifications in case a new software component 

added without requiring complete change in the system. It also 

guarantees that the requests cannot interfere with the internal  

 

Figure 5. Proposed Software Architecture of Core Node. 

 

components since direct access to the individual modules or 

components is not allowed. 

Message Router: As soon as the task or data arrives, this 

component retrieves and routes it to the location where task 

should be handled by communicating with Resource Manager 

component. In case there are no resources available in this 

server, the task will either be transferred to another Edge 

Server or to the Cloud. 

Configurator: The server and their modules are 

automatically configured as soon as they are attached. 

Nevertheless, their manual configuration or tweaks are 

performed via this component. It provides a Web-based and 

shell-based administrator panel to modify server properties, 

monitor the status, perform low-level resource allocations, and 

adjust orchestrator parameters, etc. 

Storage/Database: This component is used to store 

temporary data for the active or waiting tasks. 

Servers: Standalone servers which are used out-of-the-box 

with only configuration changes are encapsulated in this 

component. The servers enable API communication as well as 

internal communication among the components. 

Security Protocols: One of the most important 

requirements for the Edge Computing is keeping the data 

secure and private. Security itself is a vast aspect to consider. 

Therefore, a dedicated component to handle all security-

related issues is necessary. This component monitors all 

incoming connections and takes the necessary actions in case 

the request is unexpected or unauthorized. 

Resource Manager (RM): The computing power in the 

Edge Server hardware is limited. RM or Observer actively 

monitors all available resources of Edge Servers in the 

network. It is also aware of all the other connected Edge 

Servers and their attached modules. RM directly interacts with 

the Message Router and decides whether the task received 

must be processed in this server or offloaded to another 

location. 

Cache: A temporary storage component to serve the data  
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faster for the future requests. It is especially used when 

Resource Manager decides that the task is not going to be 

executed in the current server. 

Virtual Processors: For performance and power reasons, 

it is typical to have multi-core hardware. In multi-core 

hardware, one thread is generally executed on a single core. If 

software is not optimized for multi-core, it cannot benefit from 

multi-core hardware. On the other hand, multi-threaded 

software execution is distributed among the cores. However, 

in either case, it is possible to set central processing unit 

(CPU) affinity of a process, which is a running instance of the 

software or program. Low-level programming makes 

configuration of the kernel possible to add virtual processors, 

limit or specify the available resources, and assign specific 

processes to these virtual processors. 

Orchestrator: If RM allows execution of the task in this 

server, this component becomes active. Determined by the 

availability of the resource, task can be handled in different 

ways using the sub-components. This component has three 

different sub-components, namely: Scheduler, Scaler, and 

Queue Manager. 

 

Scheduler: If a task is chosen to be executed in this server, 

it must be carefully scheduled to avoid deadline misses, 

especially for real-time tasks. This component is responsible 

to set CPU affinities for the running tasks taking their 

priorities into consideration. 

Scaler: Scheduler sorts the execution times of the tasks. In 

the proposed architecture, some of the cores are dedicated for 

real-time tasks. Tasks not optimized for multi-core systems are 

by default assigned to run on a single core. If Scheduler is not 

able to meet the deadlines of the critical tasks, this component 

can increase the available core count for the real-time tasks to 

have them run on multiple cores. 

Queue Manager: If a task cannot be executed immediately, 

one other possibility is to queue it. The queue contains both 

real-time (RT) and non-real-time (NRT) tasks. This 

component is responsible for queuing the tasks and resuming 

them. 

V. Conclusion and Future Work 
Edge Computing is a recent technology and open for new 

innovations. It is believed that Edge Computing will solve the 
issues that the high usage of IoT and the Cloud solutions have. 
In this paper, we proposed an ongoing work for Edge Server 
architecture which is capable of performing real-time 
computations. The architecture is able to orchestrate the tasks 
and find the best host to offload the requested task by an end-
device. The offloading can be done between other Edge 
Servers in the network, or the Cloud. One future task is 
implementation of a simulator based on CloudSim framework, 
including all components explained in Section IV. This will 
help us find out the optimal parameters for the hardware 
modules and the software components. Later, the architecture 
will be implemented, validated and evaluated on an optimal 
hardware chosen for the work. Another future work is to 
divide these tasks into multiple machines to exploit the 
resource utilization of the available resources. This work could 

further be extended by using artificial intelligence instead of 
mathematical calculation for optimizations. 
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