
International conference on Advanced Computing, Communication and Networks’11 

800 

 

A New Hybrid Method for Image Approximation 

Using the Easy Path Wavelet Transform 
 

1
Sunil Ahirwar,                                                           

2
Deepika Dubey  

M Tech (Computer Science & Engg.)                         M Tech (Computer Science & Engg.) 

LNCT Bhopal, Madhya Pradesh, India                       LNCT Bhopal, Madhya Pradesh, India 

Lakecity85@gmail.com                                              deepika1087@yahoo.in 

 

 

Abstract—The easy path wavelet 

transform (EPWT) has recently been 

proposed by one of the authors as a tool 

for sparse representations of bivariate 

functions from discrete data, in particular 

from image data. The EPWT is a locally 

adaptive wavelet transform. It works 

along pathways through the array of 

function values and exploits the local 

correlations of the given data in a simple 

appropriate manner. However, the 

EPWT suffers from its adaptivity costs 

that arise from the storage of path 

vectors. In this paper, we propose a new 

hybrid method for image approximation 

that exploits the advantages of the usual 

tensor product wavelet transform for the 

representation of smooth images and uses 

the EPWT for an efficient representation 

of edges and texture. Numerical results 

show the efficiency of this procedure.  

 

Index Terms—Adaptive wavelet bases, 

easy path wavelet transform (EPWT), 

linear smoothing filters, -term 

approximation, sparse data 

representation, tensor product wavelet 

transform. 

 

I. INTRODUCTION 

 

OVER the last years, wavelets have had a 

growing impact on signal and image 

processing. In the 1-D case, wavelets 

provide optimal representations of piecewise 

smooth functions. Unfortunately, in 2-D, 

tensor product wavelet bases are suboptimal 

for representing geometric structures as 

edges and texture, since their support is not 

adapted to directional geometric properties. 

Only in case of globally smooth images, 

they provide optimally sparse 

representations. Many different approaches 

have been developed to design 

approximation schemes that aim at a more 

efficient representation of 2-D data. 

However, while theoretical results show 

their good performance for sparse 

representation of piecewise smooth images 

with discontinuities along smooth curves 

these frames cannot be applied for image 

compression. On the one hand, the known 

curvelet/shearlet algorithms do not get 

completely rid of the redundancy of the 

underlying function systems, has so far only 

been proven for images with edges along 

C
2
-curves.Instead of choosing a priori a 

basis or a frame to approximate an image u, 

one can rather adapt the approximation 

scheme to the image geometry. Different 

approaches have been developed in this 

direction. In this, we will exploit the 

advantages of the well known tensor-

product wavelet transform for representation 

of smooth images and the ability of the 
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adaptive EPWT to represent edges and 

texture in images. For that purpose, we 

propose a new hybrid method for image 

approximation that (roughly) consists of the 

following steps. 

For a given digital image u
0
=(u

0
(i,j))i=1,j=1 

N1,N2
, we first try to find a suitable separation 

u
0
=(u

sm
+u

r
), where u

sm
 is globally smooth, 

and the difference image contains the 

remaining part of the image (i.e., edges and 

texture). The separation will be done by a 

simple smoothing of u
0 

based upon local 

smoothing filters. Then the usual tensor 

product wavelet transform is applied  to the 

smooth image u
sm

. Here we exploit the fact 

that smooth functions can be optimally 

represented by an M–term wavelet 

expansion uM
sm

. In the next step, the EPWT 

is applied to the (shrunken) difference image 

u
0
- uM

sm
 . Assuming that the original image 

u
0 

is piecewise smooth, the difference image 

u
0
- uM

sm
 contains a high number of 

components with very small absolute value. 

Therefore, we consider a shrunken version  

ữ
r
=S(u

0
- uM

sm
) possessing a smaller number 

of nonzero values. In our numerical 

experiments, we shrink the difference, such 

that ữ
r
 contains only N1N2/4 nonzero values. 

The EPWT is now applied only to the 

nonzero values of ữ
r
, and the adaptivity 

costs can be strongly reduced compared with 

the EPWT for a full image. 

Finally, we obtain a very good image 

approximation as a sum of the M-term 

wavelet expansion uM
sm

 of the smooth 

image part and the N-term EPWT wavelet 

expansion u
r
N of the difference image.  

II. HYBRID-MODEL FOR IMAGE 

APPROXIMATION 

 

As already mentioned in the introduction, 

the basic idea of the new hybrid model is to 

find a suitable partition of a given image 

into a smooth part and a remainder and to 

apply different wavelet transforms to these 

two image parts. While the smooth image is 

known to be optimally representable by a 

suitable tensor product wavelet transform, 

we will use the new EPWT for 

representation of the remainder that contains 

textures and edges. A. Separation of Images 

We are interested in a segmentation of our 

image into a “smooth” part and a remainder 

that contains information about edges and 

textures. Note that this separation issue is 

different from image separation problems 

usually considered for image denoising, 

where one aims to separate an image into a 

cartoon part, i.e., a piecewise smooth 

function (smooth part together with edges of 

finite length), and a texture part.  

 

B. Tensor-Product Wavelet Transform 

 

Tensor-product wavelet bases are 

particularly efficient to approximate smooth 

images. For given 1-D biorthogonal wavelet 

bases of generated by the dual pairs , and , 

of scaling functions andwavelets, we 

consider the 2-D wavelets and the dual 

wavelets , , 2, 3, being defined analogously. 

We use the notation and analogously for . 

Then and are biorthogonal Riesz bases of 

(e.g., [17]). The fast wavelet transform is 

based upon filter bank algorithms. Let a 

function be Hölder-smooth of order in and 

let the -term separable wavelet 

approximation be obtained by keeping only 

the wavelet coefficients with the  largest 

absolute value in a wavelet basis 

representation of  Then for a sufficiently 

smooth wavelet basis we have where 
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denotes the -norm, see [17]. The decay 

exponent is optimal, i.e., tensor product 

wavelet bases are optimal for sparse 

representation of smooth images. Therefore, 

we apply the tensor product wavelet 

transform to the obtained smoothed digital 

image (or to a slightly different image , see 

Section II-D). Using only a fixed number of 

most significant wavelet coefficients in the 

wavelet representation, we obtain an 

approximation of after wavelet 

reconstruction. In our numerical 

experiments, we use the well-known 9/7 

biorthogonal filter bank and orthonormal 

Daubechies wavelets. As usual, the image is 

then obtained by a decomposition algorithm, 

a shrinkage procedure and a wavelet 

reconstruction. 

 

C. EPWT for Sparse Edge Representation 

 

Let be the original digital image and the –

term wavelet approximation of the smoothed 

image obtained by a linear smoothing 

process (and a slight modification based 

upon shrinkage, see Section II-D). Now we 

consider the difference image that mostly 

contains edges and texture. We want to 

apply a new locally adaptive wavelet 

transform to this difference image, the 

EPWT. While the EPWT has been shown to 

be very efficient for sparse image 

representation we have to keep in mind its 

adaptivity costs for the storage of path 

vectors. In order to exploit the ability of the 

EPWT to sparsely represent edges and 

texture and, at the same time, to keep 

adaptivity costs small, we suggest to apply 

the EPWT not to the complete image , but 

only to the part with essential image 

information. Supposing that the original 

image mainly contains piecewise regular 

regions, which will be hardly changed by the 

smoothing process, the difference image 

possesses many very small image values. 

Therefore, we apply first a shrinkage 

procedure to and obtain with , where if if (1) 

The shrinkage parameter should be chosen 

dependently upon the image at hand in such 

a way that contains exactly nonzero image 

values, where . In our numerical 

experiments, we have taken such that has 

only nonzero values; these values are 

situated along the edges/texture  of . Now 

we apply the EPWT only along the nonzero 

values of while the vanishing values remain 

untouched. More precisely, we only 

consider the partial image containing the 

image values corresponding to the index set 

 

D. Algorithm 

 

Let us summarize the procedure of the new 

hybrid algorithm for image approximation. 

For illustration of the previous algorithm, 

we present an example, where the partial 

results after each step of the algorithm are 

displayed. The original image in Fig. 1(a) 

shows a 256 256-part of the image “sails.” 

After the first step of our algorithm, we get a 

smoothed version , see Fig. 1(b). In this 

example, we have used the smoothing filter 

in Section II-A with and . Now we apply the 

second step, i.e., we calculate a difference 

image, keep the 16384 components with 

largest absolute values, and add the other 

values to . In this way we obtain a slightly 

changed smooth image , see Fig. 1(c). 

Compared with , it contains slightly more 

details; the numbers on the sails are a bit 

less blurry now. According to step 3 of the 

algorithm, we apply a wavelet shrinkage 

procedure with a hard threshold to , and 

keep only 1200 coefficients; here we use 

five levels of the biorthogonal 9/7-wavelet 

filter bank. We obtain , see Fig. 1(d). The 

difference image is presented in Fig. 1(e). 

(The image shown here contains the 

absolute values of the difference and is 

inverted, i.e., white stands for 0 and black 
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for 255). We apply again a shrinkage to this 

difference image keeping only nonzero 

coefficients according to step 4 of the 

algorithm. Fig. 1(f) shows an inverted 

version of the obtained difference . We 

apply the EPWT, and a hard threshold to 

keep only 800 EPWT wavelet coefficients of 

. The reconstruction is shown in Fig. 1(g), 

again we present here the absolute values of 

its components, where white stands for zero 

and black for 255. Finally, we add the 

results of wavelet shrinkage in Fig. 1(d) and 

the result of the EPWT shrinkage in Fig. 

1(g) and obtain the result in Fig. 1(h). For 

comparison, we show in Fig. 1(i) the 

wavelet approximation of the original image 

by the 9/7-transform using 2000 nonzero-

coefficients. 

 

NEW HYBRID ALGORITHM 

Input : digital image u
0
=(u

0
(I,j)

N1,N2
i=1,j=1). 

1) Aplly an iterative local smoothing 

filter for image separation:  

Fix τ > 0 and K Є N. 

For k=1,….,K do 

U
k
(I,j):=u

k-1
(i,j)+τ(u

k-1
(i+1,j)+u

k-1
(i-

1,j)+u
k-1

(I,j-1)+u
k-1

(I,j+1)-4u
k-1

(I,j))                     

Using Neumann boundry conditions. 

            End 

           Put u
sm

 :=(u
k
(I,j))i=1,j=1

N1,N2
. 

2) Apply a shrinkage procedure to the 

difference image d=u
0
-u

sm
 by a hard 

threshold procedure. Choose a θ such 

that d(i,j):=S θ d(i,j) possesses 

exactly 2
J 

nonzero image values, 

where 2
J
< N1N2. Now compute 

a(slightly changed) smooth part of 

the original image u
0
, namely 

ũ
sm

:=u
0
-d=u

0
-S θd. 

 

3) Apply a usual wavelet shrinkage 

procedure to the smoothed image ũ
sm 

using an orthogonal or biorthogonal two 

dimension wavelet transform. Let 

ũ
sm

M be the approximation of ũ
sm 

that 

is reconstructed using only the M 

most significant wavelet coefficient.  

4) Consider the difference image u
r
 

:=u
0
- ũ

sm
M that contain edges and texture. 

Apply again a shrinkage procedure 

to u
r
 obtaining ũ

r
=S θ-u

r
, where ũ

r
 

possesses exactly 2
J
 nonzero image 

values. 

5) Apply the EPWT with shrinkage to 

the detail image ũ
r
, where only the 

nonzero coefficient of ũ
r 

are used. 

Let ũ
r
N be the approximation of ũ

r 

using only the N most significance 

EPWT wavelet coefficients. 

 

Output: Then ũ
0
:= - ũ

sm
M+ ũ

r
N is an 

approximate of u
0 

where we have 

used only M+N wavelet coefficients. 
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Fig. 2. (a) Original image 16*16. (b) Smoothed image. (c) Illustration of the shrunken difference 
with 64 nonzero values and of the first path of the EPWT. 
  

Fig. 3. (a) Numbered pixels belong to the shrunken difference image that we consider, the first 
path is indicated. (b) Index sets after applying the EPWT once. (c) Second path. (d) New index 
sets. 
 

V. CONCLUSION 

 

In this paper, we have introduced a first 

hybrid method that uses the tensor-product 

wavelet transform for smooth images on the 

one hand and the EPWT for a sparse 

representation of the edges and textures of 

the image on the other hand. Similarly as 

most known adaptive transforms for image 

approximation, the EPWT provides very 

good approximation results but produces a 

non negligible amount of extra costs due to 

the adaptivity of the method. Incorporating 

these “adaptivity costs,” adaptive methods 

only slightly outperform the non adaptive 

methods but with essentially higher 

computational costs. One way to obtain a 

real improvement for image approximation 

may be to study hybrid methods as we did in 

the paper. Also here, the remaining 

adaptivity costs are not negligible but 

considerably smaller than for the “pure” 

EPWT for image approximation. In 

particular, a further improvement of 

pathway determination and path encoding 

may lead to a compression algorithm that is 

truly interesting for practical purposes. 
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