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Abstract—Orthogonal matching pursuit (OMP) is a 
commonly   used  algorithm  in   compressed  sensing   (CS)  for 

estimating a    sparse    vector/signal x from    linear 

given a measurement y, there exists only one K-sparse 

vector x such that  y = x . With the knowledge of sparsity 

measurements y m  
, where m n . There are two generally inherent in the signal x, one can thus uniquely find the 

stopping criteria adopted in the iterative OMP. One, assuming 
the number of nonzero entries of the sparse vector x is known, 

stop the algorithm after exactly K iterations. The other halt the 

pursuit if the strength of the residual is smaller than some 
threshold. These two criteria respectively rely on certain 
knowledge about the signal and the environment/noise. We 
propose a normalized residual strength based stopping 
criterion, which can be employed without the information 
mentioned  above.  Numerical  results  show   that  under  some 

correct sparse signal x. To be more realistic, the 

measurement is considered with some contamination 

(1.3) 
 

where w represents the noise term. The orthogonal  
matching pursuit (OMP) [2]–[6] is a greedy algorithm, 
which is able to stably recover the sparse signal x from the 

circumstances, the proposed criterion leads to a smaller set of incomplete linear measurements y in a noisy 
normalized signal reconstruction error as compared to that 

achieved by OMP with exact K iterations and the conventional 

residual strength based stopping criterion. 

Keywords—orthogonal matching prusuit (OMP), compressed 
sensing (CS), stopping criterion. 

 

I. Introduction 
In compressed sensing (CS), we consider the following 

linear measurements model 
 

(1.1) 

environment. In particular, the OMP estimates an element of 
supp(x) in one iteration. The stopping criterion of OMP 
typically relies on either the knowledge of the support size 

K or the strength of the residual. If the knowledge of K is 

available,  one  can  straightforwardly  apply  OMP  with   K 

iterations. In this case,  we  have satisfactory performance of 
the signal reconstruction via OMP especially when the 
signal to noise ratio (SNR) is high. However, such an oracle- 
like assumption is obviously too ideal. Therefore, one  
resorts   to   a   residual   based   stopping   criterion.   More 

specifically, after the jth iteration, i) OMP have detected j 

elements   of   supp(x) ,   and   as   well   have   estimated the 
where x is  the  sparse signal, and is the 

sensing matrix with m . Denote the support of x by 
corresponding j-sparse vector x̂j 

which achieves 

supp(x) . The number of measurements is selected such that min || y 
j 

, and thus ii) the residual reads 

the cardinality K | supp(x)| of supp(x) satisfies K 
j . In the literature [4]–[6], we generally 

The recovery of x based on only m 
 

in general non-unique. However, if 

measurements y is 
 

satisfies the 
employ || r

j 
|| as the stopping criterion. That is, the 

restricted isometry property (RIP), the perfect recovery of y 
OMP estimates one support element iteratively until the 
strength of the residual is sufficiently small as compared to 

based on x can be guaranteed [1]. is said to the threshold 1 . Indeed, the performance of the lies largely 

satisfy RIP of order 2K if there exists a constant on the value of 
1 . To determine a proper , one natural 

0 2K 
1 , we have 

way is to first obtain the characteristic of the noise term w 

(1 ) || x ||2  || x ||2   (1 ) || x ||2 . (1.2) such as 
2K 2 2 2K 2 

The smallest constant such that the inequality (1.2) 
|| w ||2 . (1.4) 

holds is called the restricted isometry constant (RIC). Thus Then we can set [4]–[6]. Nevertheless, in reality it is 

     not guaranteed that the noise strength is always bounded. 
Instead,  the   noise  term   is   generally  assumed   to  has  a 
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Gaussian distribution; thus, with an arbitrary but fixed  , 

the noise strength is bounded by (i.e., || w ||2 ) with 
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Table I. The OMP Algorithm. In Step 3.4, the entries of q  j are 

those of the updated  q corresponding to the index set j . 

 

   
 
 

 

We note that the first condition relies on the knowledge of 

the sparsity of x, which is quite an ideal information of the 

signal. Namely, criterion i) can be only applied under a 
rather strong assumption with rich information. Thus it can 
be regarded as the benchmark of the performance using the 
OMP. On the other hand, the determination of the threshold 

in  the   second   condition   is   the   core   to   the signal 

reconstruction performance. An appropriate threshold can be 
selected on the basis of the statistical property of the noise 

term w [4]–[6]. In this paper, we propose to employ the 

following criterion instead: 

|| r j || 
3)  2 . 

|| y || 
 

 
 

chosen  to  be  relatively small, P is less than one. Then, 

2 

We can note that neither the knowledge of the sparsity K of 

the signal x nor the information about the noise is needed in 

the proposed criterion 3). According to criterion 3), we kind 

the  threshold 1 is improper when || w ||2 1 (with of compare the strengths of r
j
 and y without considering 

probability 1 P  
1   

).  On  the  other  hand,  if 1 is large the noise term w. In particular, if the residual strength || r
j 
|| 

enough, P is near one. It in turn implies that || w || is 
2 

is smaller  than the measurement strength || y || times , 

generally smaller than , leading to an early halt due to the we stop the OMP and output the estimated sparse signal  x̂ . 
1 The threshold determines “how much smaller” is 

stopping  criterion || w ||2 1 . As a result, determining  a 

proper threshold is a crucial, and can be a daunting,  task 

in OMP. In this paper, we propose a stopping criterion based 
on   the   normalized   strength   of   the   residual.   Namely, 
|| r  ||   / || y || . Notably, we do not need the statistical 

j      2 2 

property of w. Let  x̂  denotes the reconstructed sparse signal 

based on the OMP. It is shown from our numerical 

required in the stopping criterion. We have some numerical 
simulations showing that the proposed stopping criterion 
outperforms than criterion 1) an criterion 2) in some 
circumstances. The ambient dimension is set to be n=512. 
The sensing matrix   is randomly generated with every 
independent entry drawn from a common Gaussian 
distribution. From Fig. 1-(a), and Fig. 1-(b), we can see that 

if    2        0.1 ,  the  average  normalized  signal reconstruction 

simulations  that  when 2 0.1 , the normalized signal error  || x̂ x ||  / || x || 
2 2 

induced by the proposed criterion 

reconstruction error || x̂ x || / || x || 
2 2 

converges to the one converges to the one corresponding to the criterion 1) as the 
|| y || 

achieved by applying the OMP with exactly K iterations as 
the signal to noise ratio (SNR) increases to infinity either 

signal to noise ratio (SNR), defined as 20 log  2 , 
|| w || 

2 

when or when . The numerical 
increases  to   20dB   when  the   measurement dimension  is 
either  m=70 or  m=154. From the basics of CS,  it is known 

simulations also show that the proposed stopping criterion 
results in smaller normalized signal reconstruction error as 
compared to the conventional residual based stopping 

criterion. When  2  0.3 , the performance using the OMP  

with the proposed stopping criterion outperforms the OMP 
with K iterations when SNR is low in the sense that a 
smaller normalized signal reconstruction error is induced. 

 

II. The Proposed Stopping 
Criterion and Discussions 

The OMP algorithm is presented in Table 1. The 
generally employed stopping criteria are shown below: 

1) j K . 

2) || r
j  

||2 1 . 

that there is a tradeoff between the reduction of the 
measurements size and the signal reconstruction 
performance. Thus we can see that  when the  measurements 

size is m=70, the resultant normalized signal reconstruction 

error with respect to any one stopping criterion is no smaller 
than   that   achieved   by   the   same   criterion   when   the 

measurements size is m=154. If 2  0.3 , the simulation  

results (see Fig. 2-(a) and Fig. 2-(b)) show that the proposed 
criterion  yields  smaller  average  signal reconstruction error 
than the benchmark reconstruction error with respect to the 

OMP with K iterations (criterion 1)) when SNR is less than 

14dB. This is not surprising because when SNR is low, the 
measurements are severely contaminated by the noise, and 
thus the rather weak components of the signal is almost 
irrecoverable. The proposed criterion suggests us that when 

  

 
 

 
 

1. Input: y ,  

2. Initialize: r0 y , 0 [  ] , and  j 0 

3. While stopping criterion is not satisfied 
3.0  

3.1  
 

 

3.2 j [ j 1 p j ] 

3.3 q 0 0 0 N 

 
3.4 q arg min b    y ( ) 1 y 
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end while 

4. output:    
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(a) (b) 
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Fig. 1. The normalized reconstruction error of the OMP with respect to stopping criterions i) j , ii) || r ||2 , and iii) || r || / || y || 
2 2 2 

70  512 154 512 

with    2 0.1    under different SNR. (a) The sensing matrix is of dimension (b) The sensing matrix is of dimension 
 

(a) (b) 
j j 

Fig. 2. The normalized reconstruction error of the OMP with respect to stopping criterions i) j , ii) || r ||2 , and iii) || r || / || y || 
2 2 2 

70  512 154 512 

with    2 0.3    under different SNR. (a) The sensing matrix is of dimension (b) The sensing matrix is of dimension 
 

the normalized residual strength satisfies || r
j 
||

2
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