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Abstract— We have devised and implemented a tessellation 

algorithm with two typical space filling curves, Hilbert curve 
and Sierpinski curve, and applied the tessellation algorithm 
into the construction of 3D fractal models. In this paper we 
shall describe our tessellation algorithm with Hilbert curve and 
Sierpinski curve, and provide the method how to map the two 
tiled planes on the surface of models. Some result of 
verification experiments will be provided also. 
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I.  Introduction 
Currently, 3DCG is widely known and used in various 

scenarios. In order to create a 3D model modeling is 
necessary, that is, it is necessary to specify polygons by 
specifying vertices and faces. For modeling, you can employ 
methods such as assigning coordinates directly in the 
program, drafting with CAD, processing images taken from 
scanners or photographs, and more. Creating a complex 
model is very difficult, and the model patterns that can be 
done manually are limited. However, by using the concept 
of fractal geometry, we can use computational formulas to 
create complex models that are difficult to build by humans 
[1] [2]. 

We have devised and implemented a tessellation 
algorithm with two typical space filling curves, Hilbert 
curve and Sierpinski curve [3][4]. The effect of further 
filling the space is improved by overlapping the curves of 
different recursive times in the same space. When 
superimposing curves with different recursive times, the 
necessary adjustments need to be made. 

We focused on constructing a 3D fractal model by 
applying the above tessellation algorithm, have developed a 
rendering technique to apply fractal patterns to the surface 
of primitive models such as Riemann sphere, cylinder, cube, 
cone, and torus, in which the ordinary modeling are not 
needed any more. 

In this paper we shall describe our tessellation algorithm 
with Hilbert curve and Sierpinski curve, and provide the 
method how to map the two tiled planes on the surface of 
models. Some result of verification experiments will be 
provided also. 
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II. Tessellation Algorithm with 
Two Typical Space Filling Curves 

Hilbert curve and Sierpinski curve are well known as 
famous recursive curves and space filling curves. We use 
these two curves to further fill space and construct fractal 
models. Here we explain recursive algorithm of these two 
curves and provide the tessellation methods individually. 

A. Superimposed Hilbert Curves  
Hilbert curve is a famous space filling curve after its 

inventor, the mathematician D. Hilbert (1891). Hilbert curve 
of order i, Hi, can be plotted by compositing four patters of 
Hi-1 of half size and appropriate rotation shown in Figure 1, 
in which H0 is defined as empty and H1 is represented by 
three connecting straight lines. Figure 2 gives three Hilbert 
curves of order 1, 2 and 3 [3].  

 

Figure 1.  Four patterns of Hilbert curve 

Figure 2.  Hilbert curves of order 1, 2, and 3 

We can see from Figure 2 that the space is divided 
into squares for order k. The Hilbert curve passes through 
all squares from the starting point at the center of the most 
right upper corner. According to the four patterns, the curve 
plots traces while walking, and ends at the end point at the 
center of the bottom right corner. For example, H1 goes from 
the upper right center, the upper left center, the lower left 
center, passes through four squares, and ends at the lower 
right center.  

Because different k-order curves pass through the center 
of squares, when these curves are drawn on the same 
plane, they may intersect vertically, but they are not drawn 
on each other in the parallel direction under  the condition 
that fill rate is less or equal to 100 percent. 

 We use a superposition of Hilbert curves of different 
orders to further fill the space, which is called tessellation or 
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We suggest that you use a text box to insert a graphic 
(which is ideally a 300 dpi TIFF or EPS file, with all fonts 
embedded) because, in an MSW document, this method is 
somewhat more stable than directly inserting a picture. 

To have non-visible rules on your frame, use the 
MSWord “Format” pull-down menu, select Text Box > 
Colors and Lines to choose No Fill and No Line. 
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tilling. Assuming ( , ) is the coordinate of the starting 
point of Hk as shown in Figure 2, we plot Hilbert curves of 
different orders from order 1 to order n denoted as H1,n  in 
the plane of (-1,1).  

For order k, 1 ≤ k ≤ n, the length of a curve segment to be 

drawn is , and 
 

                                 (1)    
 

In Figure 3, we use different color to represent different k. 
As expected, H1,n   tiled up the 2D plane.  

 

Figure 3.  Tessellation with Hilbert curves of different orders 

B. Superimposed Sierpinski Curves 
Sierpinski curve named after mathematician Wacław 

Franciszek Sierpiński, is also a well-known recursive 
curve and space filling curve. Different to Hilbert curve, 
Sierpinski curve is a closed curve designed by four basic 
patterns such as pattern A, B, C, and D, and a recursive 
schema called pattern S shown in Figure 4. Four straight 
lines of pattern S connect the other four patterns that are 
needed to be rotated for 90 degree. Si denotes Sierpinski 
curve of order i. Figure 5 gives Sierpinski curve of order 1, 2, 
and 3. S1 looks like a leaf block. When the order i is 
increased, S1 of different sizes are drawn on the outer 
corners of the order i, and the curve becomes more 
complicated  and beautiful [3]. 

We also use a superimposition of Sierpinski curves of 
different orders to further fill the space of (-1,1). S1,n denotes 
Sierpinski curves of different orders from order 1 to order n.  
For order k,  1 ≤ k ≤ n,   the length of a curve segment to be 

drawn is  , and ( , ) is the coordinate of the starting 

point of Sk as shown in Figure 5. The tessellation created 
with S1,n is shown in Figure 6. 

                 (2) 

 

Figure 4.  Patterns of Sierpinski curve  

Figure 5.  Sierpinski curve of order 1, 2, and 3 

 

Figure 6.  Tessellaton with Sierpinski curves of different orders 



 

34 

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-165-8  DOI : 10.15224/978-1-63248-165-8-06 

 

    
H1,5 (w=0.02)                                         H1,5 (w=0.04)      
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c. Discussions about Fill Rate 
The fill rate denotes the proportion of the area filled with 

the superimposed curves in the plane of (- 1, 1). It is obvious 
the higher the order, the larger the filled area, which is 
proved with our validation experiment data shown in Figure 
7, where the width of line is 0.02. From Figure 7 we can see 
that the superimposed Hilbert curves and Sierpinski curves 
has better fill rate than their single curve. In particular, S1,n 

has superior exponential filling properties. The approximate 
functions of filling rate of the two superimposed curves are 
given as follows (3) and (4). For example, when n = 6, the 
fill rate of  H1,6  is 158% and the fill rate of S1,6 is 185%. In 
fact, when the fill rate of a curve is 100%, the plane of (-1, 
1) will be filled without any gap at all. Theoretically, the 
recursive curve is infinite, so if you exceed the filling rate of 
100% you can imagine that the line segments collapse and 
overlap each other and the filled plane does not change 
visually. In our work, we concern the curves with fill rate 
below 100% and pay attention to choosing an appropriate 
order n. 

.  

                        (3) 

 

                          (4) 

 

Figure 7.  Comparison  of fill rate of four kind of tessellations (w=0.02) 

 

Figure 8.  Comparison  of fill rate of  w=0.02 and w=0.04 

On the other hand, the line width used to draw the curve 
also plays an important role in the calculation of the fill rate. 
Our results of experiments in Figure 8 tell us that doubling 
the width of the line segment will double the filling rate. 
Figure 9 presents a comparison of the relationship between 
the line width and rendering effect for a same pattern. We 
say designs can change as line widths and fill rates change, 
so the possibility of selecting patterns based on personal 
preferences can be extended. 

 

Figure 9.  Comparison of line width and rendering effct  

As the order increases, the number of lines drawn 
increases exponentially, the time required also increases 
exponentially. The time required for filling was measured in 
the experimental environment of TABLE I. The results are 
shown in the Figure 10. Rendering H1,n  and S1,n  takes time 
(5) and (6).  

                                                        (5)
 
                               

                                                        (6)
 
 

TABLE I.  EXPERIMENTAL ENVIRONMENT 

Operating 
System 

Windows 10 Home 64-bit 

Processor 
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz (8 
CPUs), ~3.6GHz 

Memory 8192MB RAM 

GPU NVIDIA GeForce GTX 1060 6GB 

Display 
Memory 

10122 MB 
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Figure 10.  Time for tessellations 

III. Construct 3D Fractal Models 
In order to construct 3D fractal models by applying the 

above tessellation algorithm, we have developed a rendering 
technique to apply tessellated H1,n and S1,n to the surface of 
primitive models such as Riemann sphere, cylinder, cube, 
cone, and torus. Here we explain our approaches and 
methods. 

A. Rendering  3D Curves on Model 
In the previous examples, the curve was drawn by 

connecting multiple line segments to the curve, but to draw 
the curve on the surface of the 3D model, we would prefer 
to connect the coordinates through a slender cylindrical 
object instead of a straight line, we call it “joint yarn”.  

Polygons are typically used to render 3D objects on 
3DCG. Curved surfaces of objects such as spheres can also 
be drawn using subdivided triangles or quadrilateral 
polygons. Although the elongated cylinder, joint yarn, we 
created here also has curved sides, it is also possible to 
create the necessary polygons by specifying the coordinates 
of multiple vertices on the circumference of the cylinder, 
and to simulate the surface by vertical segmentation. 

When the height of the cylinder is h, the radius of the 
bottom and top of the cylinder is r, and the number of 
divisions of the circumference is T, the vertex coordinates of 
the bottom of the cylinder are   

  


  

and the vertex coordinates of the top of the cylinder are  

 


 

 where 0 ≤ t ≤ T. 

Operations such as scaling, rotation, translation, etc. are 
performed to concatenate the coordinates of two 

points,  and on the recursive 
curve.  

First, scaling, to change the height of the cylinder to 
match the height of the cylinder to the distance between the 
two points on the curve. OpenGL's glScaled function has 
three magnification parameters in the x-axis, y-axis, and z-
axis directions. Since the cylinder is mounted in the positive 
direction from the origin along the z-axis, the magnification 
in the z-axis direction must be set. The distance d between 
the two points can be expressed as (7). The enlargement 
ratio of the z axis can be obtained as d / h obtained by 
dividing the distance between two points by the height of the 
cylinder. 

 

              (7) 

 

Second, rotation, since the cylinder is installed in the 
positive direction along the z axis from the origin, it is 
necessary to rotate the central axis of the cylinder and make 
it parallel to the vector of the line segment connecting the 
two points. We find the angle to rotate with the rotation axis 
and use OpenGL’s glRotated  function to do rotation. The 
central axis of the cylinder is parallel to the z axis, hence the 
unit vector of the cylinder is a = (0，0，1) and the unit 
vector of the line segment vector is 

 

  .                             (8) 

 

Angle to rotate θcan be obtained by (9). 

 

                      (9) 

 

Finally, translation, we use OpenGL’s glTranslated 
function to move the cylinder and connects the two points. 
glTranslated function has three arguments of movement 
amount in x axis, y axis, z axis direction. Scaling and 
rotation of the joint yarn are completed in the above steps 1 

and 2, if the movement amount in the x axis direction is , 

the movement amount in the y axis direction is , and the 

movement amount in the z axis direction is ,  the two point 
can be connected by a joint yarn. 

B. Mapping Algorithm 
We designed an algorithm to create a new three-

dimensional fractal model by constructing the above-
mentioned fractal plane on the surface of a three-
dimensional model with a specified shape. 

 
 Obtain the appropriate point coordinates belonging 

to the either Hilbert curve or Sirerpinski curve 
according to the recursive algorithm of the Hilbert 
curve or the Sherpinski curve. Adjust the acquired 
coordinates in order to superimpose curves of 
different orders. 

 Map the coordinates of the recursive curve to the 
mathematical formula of the surface of the 3D 
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H1,5 (r = 0.015) 

 
S1,5 (r = 0.013) 

model and convert them to 3D coordinates. 
Interpolate coordinates when the distance between 
two points on the 3D model is expanded to a large 
extent. 

 Render between the coordinates with the joint yarn. 

 Perform above operations on the  recursive curves 
from order 1 to order n. 

C. Developed Models 
We have developed some new approaches to construct 

the tessellating Hilbert curves and Sierpinski curves on the 
surface of primitive models such as Riemann sphere, 
cylinder, cube, cone, and torus. These three-dimensional 
fractal models show their unique style and good shape. 
Some 3D printed models are also presented here. 

 Riemann sphere provides a method to project a 
plane to a half-sphere by (10), where (X, Y) is the 
coordinate of the space filling curves, −1 ≤ 𝑋 ≤ 1 
and  −1 ≤ 𝑌 ≤ 1，and (x, y, z) is the coordinate on 
the sphere. The developed Riemann sphere models 
are shown in Figure 11 and 12, a 3D printed model 
is shown in Figure 13. 

 

  ， 



 

Figure 11.  Fractal Riemann spheres  

 

 

 

 

 

 

 

Figure 12.  Fractal Riemann sphere  whth S1,3 (r = 0.05) 

 

Figure 13.  3D printed model of Figure 13 

 The coordinates (x, y, z) on the surface of a cylinder 
can be obtained by (11) where (X,Y) indicates the 
coordinate on the recursive curve, −1 ≤ 𝑋 ≤ 1 and  
−1 ≤ 𝑌 ≤ 1. We provide some cylinder models with 
different r and orders in Figure 14 and 15. 

 

                      (11) 

 

Figure 14.  Fractal cylinders with S1,6 (r = 0.005) 
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Figure 15.  Fractal cylinder with H1,4 (r = 0.014) and S1,5(r = 0.014) 

 For a fractal torus model, we can map (X, Y) to the 
surface of a 3D torus by (12), −1 ≤ 𝑋 ≤ 1 and  −1 ≤ 
𝑌 ≤ 1. A 3D printed S1,3 torus is shown in Figure 16. 

   

    

 

Figure 16.  3D printed fractal torus with S1,3 (r=0.05). 

 

D. Discussions about 3D Filling Effect  
We have mapped a tessellated H1,n or S1,n to the surface 

of a 3D model, in other words, we have knitted a fractal 
plane onto the surface of a three-dimensional object.  

Generally, in many cases, the area of the plane (-1, 1) is 
not equal to the surface area of the object to be mapped. For 
convenient, we give an example of the cylinder model. 
When the side length of a square is 2R, its area is . 
However, when the radius of a cylinder is R and its height is 
2R, the surface area of the cylinder is  that isπtimes 
larger than the square. The area that will be created on the 
surface of the 3D model is larger than the area we prepared 
beforehand, therefore, in this case, mapping the tessellated 
plane to the 3D model requires some adjustments, including 
the use of higher order curves as we have done in the 
instances of Figure 14 and 15. We investigated the fill rate 
of the three-dimensional surface again, Figure 17 gives the 
results of our tests. 

Figure 17.   Comparison of fill rate of 3D fractal cylinder with H1,n 

In Figure 18 we provide some results of verification 
experiment for rendering time. We can see that for the same 
pattern the shape of the 3D model does not affect the 
drawing time.  Even if we use an order that achieves a fill 
rate of 100%, the rendering time can be within an acceptable 
range. 

 

Figure 18.  Time for rendering of 3D fractal models 

 

(12) 
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IV. Conclusion 
The proposed algorithm and method for creating a fractal 

3D model using a tessellation patterns of superimposed 
Hilbert curves and Sierpinski curves provides a means to 
extend the potential of 3D design. Tessellating fractal 
mapping onto the surface of primitive models gave us 
significant hints to expand and apply our methods to models 
having arbitrary shapes in our future work. 
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