

32

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

 H1 H2 H3

Constructing a 3D Fractal Model with Two Typical
Space Filling Curves

Ningping Sun and Shoji Kugizaki

Abstract— We have devised and implemented a tessellation

algorithm with two typical space filling curves, Hilbert curve
and Sierpinski curve, and applied the tessellation algorithm
into the construction of 3D fractal models. In this paper we
shall describe our tessellation algorithm with Hilbert curve and
Sierpinski curve, and provide the method how to map the two
tiled planes on the surface of models. Some result of
verification experiments will be provided also.

Keywords—Hilbert curve, Sierpinski curve, recursion,
tessellation, modeling and rendering, primitive models.

I. Introduction
Currently, 3DCG is widely known and used in various

scenarios. In order to create a 3D model modeling is
necessary, that is, it is necessary to specify polygons by
specifying vertices and faces. For modeling, you can employ
methods such as assigning coordinates directly in the
program, drafting with CAD, processing images taken from
scanners or photographs, and more. Creating a complex
model is very difficult, and the model patterns that can be
done manually are limited. However, by using the concept
of fractal geometry, we can use computational formulas to
create complex models that are difficult to build by humans
[1] [2].

We have devised and implemented a tessellation
algorithm with two typical space filling curves, Hilbert
curve and Sierpinski curve [3][4]. The effect of further
filling the space is improved by overlapping the curves of
different recursive times in the same space. When
superimposing curves with different recursive times, the
necessary adjustments need to be made.

We focused on constructing a 3D fractal model by
applying the above tessellation algorithm, have developed a
rendering technique to apply fractal patterns to the surface
of primitive models such as Riemann sphere, cylinder, cube,
cone, and torus, in which the ordinary modeling are not
needed any more.

In this paper we shall describe our tessellation algorithm
with Hilbert curve and Sierpinski curve, and provide the
method how to map the two tiled planes on the surface of
models. Some result of verification experiments will be
provided also.

Ningping Sun Ph.D

National Institute of Technology, Kumamoto College
Japan

Shoji Kugizaki

National Institute of Technology, Kumamoto College
Japan

II. Tessellation Algorithm with
Two Typical Space Filling Curves

Hilbert curve and Sierpinski curve are well known as
famous recursive curves and space filling curves. We use
these two curves to further fill space and construct fractal
models. Here we explain recursive algorithm of these two
curves and provide the tessellation methods individually.

A. Superimposed Hilbert Curves
Hilbert curve is a famous space filling curve after its

inventor, the mathematician D. Hilbert (1891). Hilbert curve
of order i, Hi, can be plotted by compositing four patters of
Hi-1 of half size and appropriate rotation shown in Figure 1,
in which H0 is defined as empty and H1 is represented by
three connecting straight lines. Figure 2 gives three Hilbert
curves of order 1, 2 and 3 [3].

Figure 1. Four patterns of Hilbert curve

Figure 2. Hilbert curves of order 1, 2, and 3

We can see from Figure 2 that the space is divided
into squares for order k. The Hilbert curve passes through
all squares from the starting point at the center of the most
right upper corner. According to the four patterns, the curve
plots traces while walking, and ends at the end point at the
center of the bottom right corner. For example, H1 goes from
the upper right center, the upper left center, the lower left
center, passes through four squares, and ends at the lower
right center.

Because different k-order curves pass through the center
of squares, when these curves are drawn on the same
plane, they may intersect vertically, but they are not drawn
on each other in the parallel direction under the condition
that fill rate is less or equal to 100 percent.

 We use a superposition of Hilbert curves of different
orders to further fill the space, which is called tessellation or

33

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

 H1,2 H1,3

H1,4 H1,5

We suggest that you use a text box to insert a graphic
(which is ideally a 300 dpi TIFF or EPS file, with all fonts
embedded) because, in an MSW document, this method is
somewhat more stable than directly inserting a picture.

To have non-visible rules on your frame, use the
MSWord “Format” pull-down menu, select Text Box >
Colors and Lines to choose No Fill and No Line.

 S1 S2 S3

e suggest that you use a text box to insert a graphic (which
is ideally a 300 dpi TIFF or EPS file, with all fonts
embedded) because, in an MSW document, this method is
somewhat more stable than directly inserting a picture.

To have non-visible rules on your frame, use the
MSWord “Format” pull-down menu, select Text Box >
Colors and Lines to choose No Fill and No Line.

S1,2 S1,3

S1,4 S1,5

tilling. Assuming (,) is the coordinate of the starting
point of Hk as shown in Figure 2, we plot Hilbert curves of
different orders from order 1 to order n denoted as H1,n in
the plane of (-1,1).

For order k, 1 ≤ k ≤ n, the length of a curve segment to be

drawn is , and

      (1)

In Figure 3, we use different color to represent different k.
As expected, H1,n tiled up the 2D plane.

Figure 3. Tessellation with Hilbert curves of different orders

B. Superimposed Sierpinski Curves
Sierpinski curve named after mathematician Wacław

Franciszek Sierpiński, is also a well-known recursive
curve and space filling curve. Different to Hilbert curve,
Sierpinski curve is a closed curve designed by four basic
patterns such as pattern A, B, C, and D, and a recursive
schema called pattern S shown in Figure 4. Four straight
lines of pattern S connect the other four patterns that are
needed to be rotated for 90 degree. Si denotes Sierpinski
curve of order i. Figure 5 gives Sierpinski curve of order 1, 2,
and 3. S1 looks like a leaf block. When the order i is
increased, S1 of different sizes are drawn on the outer
corners of the order i, and the curve becomes more
complicated and beautiful [3].

We also use a superimposition of Sierpinski curves of
different orders to further fill the space of (-1,1). S1,n denotes
Sierpinski curves of different orders from order 1 to order n.
For order k, 1 ≤ k ≤ n, the length of a curve segment to be

drawn is , and (,) is the coordinate of the starting

point of Sk as shown in Figure 5. The tessellation created
with S1,n is shown in Figure 6.

    (2)

Figure 4. Patterns of Sierpinski curve

Figure 5. Sierpinski curve of order 1, 2, and 3

Figure 6. Tessellaton with Sierpinski curves of different orders

34

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

H1,5 (w=0.02) H1,5 (w=0.04)

S1,5 (w=0.02) S1,5 (w=0.04)

c. Discussions about Fill Rate
The fill rate denotes the proportion of the area filled with

the superimposed curves in the plane of (- 1, 1). It is obvious
the higher the order, the larger the filled area, which is
proved with our validation experiment data shown in Figure
7, where the width of line is 0.02. From Figure 7 we can see
that the superimposed Hilbert curves and Sierpinski curves
has better fill rate than their single curve. In particular, S1,n

has superior exponential filling properties. The approximate
functions of filling rate of the two superimposed curves are
given as follows (3) and (4). For example, when n = 6, the
fill rate of H1,6 is 158% and the fill rate of S1,6 is 185%. In
fact, when the fill rate of a curve is 100%, the plane of (-1,
1) will be filled without any gap at all. Theoretically, the
recursive curve is infinite, so if you exceed the filling rate of
100% you can imagine that the line segments collapse and
overlap each other and the filled plane does not change
visually. In our work, we concern the curves with fill rate
below 100% and pay attention to choosing an appropriate
order n.

.

 (3)

 (4)

Figure 7. Comparison of fill rate of four kind of tessellations (w=0.02)

Figure 8. Comparison of fill rate of w=0.02 and w=0.04

On the other hand, the line width used to draw the curve
also plays an important role in the calculation of the fill rate.
Our results of experiments in Figure 8 tell us that doubling
the width of the line segment will double the filling rate.
Figure 9 presents a comparison of the relationship between
the line width and rendering effect for a same pattern. We
say designs can change as line widths and fill rates change,
so the possibility of selecting patterns based on personal
preferences can be extended.

Figure 9. Comparison of line width and rendering effct

As the order increases, the number of lines drawn
increases exponentially, the time required also increases
exponentially. The time required for filling was measured in
the experimental environment of TABLE I. The results are
shown in the Figure 10. Rendering H1,n and S1,n takes time
(5) and (6).

 (5)

 (6)

TABLE I. EXPERIMENTAL ENVIRONMENT

Operating
System

Windows 10 Home 64-bit

Processor
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz (8
CPUs), ~3.6GHz

Memory 8192MB RAM

GPU NVIDIA GeForce GTX 1060 6GB

Display
Memory

10122 MB

35

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

Figure 10. Time for tessellations

III. Construct 3D Fractal Models
In order to construct 3D fractal models by applying the

above tessellation algorithm, we have developed a rendering
technique to apply tessellated H1,n and S1,n to the surface of
primitive models such as Riemann sphere, cylinder, cube,
cone, and torus. Here we explain our approaches and
methods.

A. Rendering 3D Curves on Model
In the previous examples, the curve was drawn by

connecting multiple line segments to the curve, but to draw
the curve on the surface of the 3D model, we would prefer
to connect the coordinates through a slender cylindrical
object instead of a straight line, we call it “joint yarn”.

Polygons are typically used to render 3D objects on
3DCG. Curved surfaces of objects such as spheres can also
be drawn using subdivided triangles or quadrilateral
polygons. Although the elongated cylinder, joint yarn, we
created here also has curved sides, it is also possible to
create the necessary polygons by specifying the coordinates
of multiple vertices on the circumference of the cylinder,
and to simulate the surface by vertical segmentation.

When the height of the cylinder is h, the radius of the
bottom and top of the cylinder is r, and the number of
divisions of the circumference is T, the vertex coordinates of
the bottom of the cylinder are



and the vertex coordinates of the top of the cylinder are



 where 0 ≤ t ≤ T.

Operations such as scaling, rotation, translation, etc. are
performed to concatenate the coordinates of two

points, and on the recursive
curve.

First, scaling, to change the height of the cylinder to
match the height of the cylinder to the distance between the
two points on the curve. OpenGL's glScaled function has
three magnification parameters in the x-axis, y-axis, and z-
axis directions. Since the cylinder is mounted in the positive
direction from the origin along the z-axis, the magnification
in the z-axis direction must be set. The distance d between
the two points can be expressed as (7). The enlargement
ratio of the z axis can be obtained as d / h obtained by
dividing the distance between two points by the height of the
cylinder.

 (7)

Second, rotation, since the cylinder is installed in the
positive direction along the z axis from the origin, it is
necessary to rotate the central axis of the cylinder and make
it parallel to the vector of the line segment connecting the
two points. We find the angle to rotate with the rotation axis
and use OpenGL’s glRotated function to do rotation. The
central axis of the cylinder is parallel to the z axis, hence the
unit vector of the cylinder is a = (0，0，1) and the unit
vector of the line segment vector is

 . (8)

Angle to rotate θcan be obtained by (9).

 (9)

Finally, translation, we use OpenGL’s glTranslated
function to move the cylinder and connects the two points.
glTranslated function has three arguments of movement
amount in x axis, y axis, z axis direction. Scaling and
rotation of the joint yarn are completed in the above steps 1

and 2, if the movement amount in the x axis direction is ,

the movement amount in the y axis direction is , and the

movement amount in the z axis direction is , the two point
can be connected by a joint yarn.

B. Mapping Algorithm
We designed an algorithm to create a new three-

dimensional fractal model by constructing the above-
mentioned fractal plane on the surface of a three-
dimensional model with a specified shape.

 Obtain the appropriate point coordinates belonging

to the either Hilbert curve or Sirerpinski curve
according to the recursive algorithm of the Hilbert
curve or the Sherpinski curve. Adjust the acquired
coordinates in order to superimpose curves of
different orders.

 Map the coordinates of the recursive curve to the
mathematical formula of the surface of the 3D

36

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

H1,5 (r = 0.015)

S1,5 (r = 0.013)

model and convert them to 3D coordinates.
Interpolate coordinates when the distance between
two points on the 3D model is expanded to a large
extent.

 Render between the coordinates with the joint yarn.

 Perform above operations on the recursive curves
from order 1 to order n.

C. Developed Models
We have developed some new approaches to construct

the tessellating Hilbert curves and Sierpinski curves on the
surface of primitive models such as Riemann sphere,
cylinder, cube, cone, and torus. These three-dimensional
fractal models show their unique style and good shape.
Some 3D printed models are also presented here.

 Riemann sphere provides a method to project a
plane to a half-sphere by (10), where (X, Y) is the
coordinate of the space filling curves, −1 ≤ 𝑋 ≤ 1
and −1 ≤ 𝑌 ≤ 1，and (x, y, z) is the coordinate on
the sphere. The developed Riemann sphere models
are shown in Figure 11 and 12, a 3D printed model
is shown in Figure 13.

  ， 



Figure 11. Fractal Riemann spheres

Figure 12. Fractal Riemann sphere whth S1,3 (r = 0.05)

Figure 13. 3D printed model of Figure 13

 The coordinates (x, y, z) on the surface of a cylinder
can be obtained by (11) where (X,Y) indicates the
coordinate on the recursive curve, −1 ≤ 𝑋 ≤ 1 and
−1 ≤ 𝑌 ≤ 1. We provide some cylinder models with
different r and orders in Figure 14 and 15.

 (11)

Figure 14. Fractal cylinders with S1,6 (r = 0.005)

37

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

Figure 15. Fractal cylinder with H1,4 (r = 0.014) and S1,5(r = 0.014)

 For a fractal torus model, we can map (X, Y) to the
surface of a 3D torus by (12), −1 ≤ 𝑋 ≤ 1 and −1 ≤
𝑌 ≤ 1. A 3D printed S1,3 torus is shown in Figure 16.

Figure 16. 3D printed fractal torus with S1,3 (r=0.05).

D. Discussions about 3D Filling Effect
We have mapped a tessellated H1,n or S1,n to the surface

of a 3D model, in other words, we have knitted a fractal
plane onto the surface of a three-dimensional object.

Generally, in many cases, the area of the plane (-1, 1) is
not equal to the surface area of the object to be mapped. For
convenient, we give an example of the cylinder model.
When the side length of a square is 2R, its area is .
However, when the radius of a cylinder is R and its height is
2R, the surface area of the cylinder is that isπtimes
larger than the square. The area that will be created on the
surface of the 3D model is larger than the area we prepared
beforehand, therefore, in this case, mapping the tessellated
plane to the 3D model requires some adjustments, including
the use of higher order curves as we have done in the
instances of Figure 14 and 15. We investigated the fill rate
of the three-dimensional surface again, Figure 17 gives the
results of our tests.

Figure 17. Comparison of fill rate of 3D fractal cylinder with H1,n

In Figure 18 we provide some results of verification
experiment for rendering time. We can see that for the same
pattern the shape of the 3D model does not affect the
drawing time. Even if we use an order that achieves a fill
rate of 100%, the rendering time can be within an acceptable
range.

Figure 18. Time for rendering of 3D fractal models

(12)

38

Proc. of the Eighth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-165-8 DOI : 10.15224/978-1-63248-165-8-06

IV. Conclusion
The proposed algorithm and method for creating a fractal

3D model using a tessellation patterns of superimposed
Hilbert curves and Sierpinski curves provides a means to
extend the potential of 3D design. Tessellating fractal
mapping onto the surface of primitive models gave us
significant hints to expand and apply our methods to models
having arbitrary shapes in our future work.

References

[1] Ningping Sun, Fuko Nakagami, Complex Mapping of 3DCG Models

with Julia Set and Mandelbrot Set, International Journal of
Advancements in Electronics and Electrical Engineering, IRED, USA,
Volume 6, issue 1, pp.37 - 41, Apr. 2017.

[2] Ningping Sun, Ryo Miyazaki, Naoki Yoshida, Complex Mapping
with the Interpolated Julia Set and Mandelbrot Set, Technical
Sketches and Poster, ISBN 978-1-4503-0439-9/10/0012, SIGGRAPH
Asia 2010, Korea, Dec. 2010.

[3] Niklaus Wirth, Algorithms and Data Structures, pp.90-94, Prentice-
Hall, 1986.

[4] Sagan, H., Space Filling Curves, Springer-Verlag, New York, 1994.

