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Abstract 
 

 We revisit the standard procedure for analyzing the static light intensity curves I(q) measured 

in scattering from chemical/biological samples as done in the literature. By utilizing some algebraic 

properties of Fourier integrals we show that; i)  the theoretical forward intensity I(0) extracted via the 

Glatter/Moore algorithm must be consistently higher than all peaks occurring in the input I(q) curve ; 

ii)  the attenuated oscillations of input I(q) data at intermediate q may be a direct consequence of the 

presence of a bump in the output distance distribution profile P(r) ; iii)  if the input intensity is 

modified by the Gaussian damping factor exp (-Kq2) then extrapolation of the output results down to 

K = 0 is liable to become numerically unstable ; and iv)  due to the exp (-Kq2) artifact the output 

distance distribution function profile may exhibit a bump having the correct location but wrong width 

if K is nonzero. 

 
Keywords: Bump, morphology, Fourier integrals, truncation etc. 

I.   INTRODUCTION 

       Static scattering of light or X-rays from chemical/biological systems1-16 is known to provide very 

valuable information concerning the static structure/morphology of the system. If the scattered 

intensity I(q) is measured as a function of the transfer wave number q then a Guinier plot17 estimates  
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the gyration radius Rg, the Porod slope18 α tells about the relative roughness/fractality of the target 

surface, and the Kratky graph19,20 of q2 I(q) describes the comparative rigidity of polymer chains. 

Especially important in this context is the distance distribution function P(r)21 extracted from the 

measured I(q) curve via Fourier inversion. Such a procedure of data analysis is supposed to be 

standard and its few relevant features are summarized in Sec II for convenience. Still there are several 

issues of practical/theoretical nature which require further attention, and the aim of the present paper 

is to gain useful insight into these issues. 

 Sections III, IV, V and VI below address the following new questions : i) How can the symbol 

I(0) (which is the radial integral of P(r)) place an important consistency check on the      

Glatter/Moore22,23 inversion algorithm ? ii) Can the attenuated oscillations often observed in 

experimental I(q) curve at medium q be attributed to the presence of a bump in the underlying P(r) 

profile ? iii) Can an artificial Gaussian damping factor exp(-Kq2) in the modified intensity lead to 

extrapolation uncertainty in the resulting P(r) shape ? iv) Can the exp(-Kq2) artifact cause rather large 

variations in the spread of the predicted P(r) around its bump ? 

 While answering these questions we shall use some nice properties of Fourier integrals24. 

Also, the graphs/expressions of Ref.25 will be frequently quoted since that reference serves as a 

typical prototype. However, our final conclusions mentioned in italics in Secs. III-VI shall be seen to 

be of quite general validity. 

 

 II.   STANDARD METHOD OF ANALYSING I(q) DATA 

          The method essentially proceeds via the following six steps: 

 1st Step.   The experimentalist measures his raw scattered intensities Iraw(q) in a photon 

counter over a truncated region qL   q   qH  of the transfer wave number. The termination at the 
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lower end qL and higher end qH is necessitated by the angular limitation of the spectrometer and 

wavelength restriction of the radiation source. 

 2nd Step.   By employing a multiplicative factor A the raw intensities are renormalized 

according to 

 I(q) = A Iraw (q)         ; qL   q   qH         (1) 

These I(q)’s are now suitable for plotting on a graph and feeding into the computer for further 

treatment. Obviously the role of A in (1) is only cosmetic. Fig. 1 shows a typical normalized I(q) 

curve obtained by Hirai et al25 who employed small angle X-ray scattering to study the thermal 

conformational change of lysozyme depending on protein concentration and pH. The lower and 

higher truncation points in this graph are qL ~ 0.02 Å-1 and qH ~ 0.35 Å-1. 

                          
 3rd Step.   Suppose in the domain of very small q the I(q) curve drops as q increases. Then a 

least-square fit of the unknown forward intensity I(0) and gyration radius Rg can be carried out based 

on the Gunier formula 

   1;...3/1)0()( 22  gg qRRqIqI        (2) 

Unfortunately, (2) often suffers from many difficulties such as availability of few data points, 

instability of extrapolation, appearance of nearby peaks in I(q), occurrence of aggregation26, etc. 

Indeed, (2) cannot be applied to Fig. 1 which exhibits a small-angle peak at qp ~ 0.08 Å-1 on account 

of a weak intermolecular repulsion between the proteins. 

 4th Step.    In order to reduce the effect of truncation at the higher wave number end qH, the 

I(q) curve of (1) is replaced by25 

 0;)()(
2

  KeqIqI Kq         (3) 

where K is an artificial damping parameter which is extrapolated to zero at the end of the analysis. 

Further implications of the recipe (3) will be discussed later in Secs V and V1. 
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 5th Step.   One now turns to the question of extracting the distance distribution function       

P(r) ≡ 4 π r
2 G(r) with G(r) being the density-density correlation function27 of the target system. For 

this purpose powerful numerical algorithms have been discussed by Glatter22, Moore23 and Hansen & 

Pedersen28
. Here P(r) is sharply cutoff at distance D i.e. P(r) = 0 for r ≥ D and it is expanded in a 

basis set for 0 ≤ r ≤ D. Next, the defining Fourier integral 

 
D

rP
qr

qr
drqI

0

)(.
sin

)(          (4) 

is set-up at the data points and the unknown expansion coefficients of P(r) are determined via a least-

square fit to I(q). 

 6th Step.   Finally, the complete theoretical profiles of P(r) and I(q) in the ranges 0 ≤ r ≤ D,     

0 ≤ q ≤ ∞ are plotted leading also to the determination of the quantities 

 
D

rPdrI
0

)()0(           (5) 

 
D

g IrPrdrR
0

22 )0(2)(          (6) 

through numerical quadrature. We are now ready to address the new questions raised in the 

Introduction. 

 

III.   CONSISTENCY CHECK ON I(0) 

         The first new insight  is concerned with normalization of the input and output 

intensities. In sharp contrast to the ad hoc multiplicative factor A of (1) the symbol I(0) of (5) has a 

deep theoretical significance viz. it represents the normalized scattered intensity at zero angle. Of 

course, this quantity was experimentally inaccessible due to termination at qL in Fig. 1 but now it is 

known from the Glatter quadrature. The integrals (5, 4) obey the inequality 

0;)()(
sin

)0(   qqIrP
qr

qr
drI

D

       (7) 
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due to the property qrqr /sin1   for q > 0. We stress that (7) is not to be regarded as a 

trivial property of Fourier integrals. Its implication is highly nontrivial because I(0) on the left-hand-

side is extracted from Glatter’s algorithm while I(q) on the right-hand-side is read-off directly from 

experimental data.  In particular, we have I(0) > I(qp) where qp ~ 0.08 Å-1 is the location of the peak 

in Fig. 1. Stated in words, (7) tells that the theoretical I(0) of (5) must be consistently higher than all 

peaks occurring in the input I(q) curve. Such a check on the numerical procedure was not always 

adopted in Ref.25. 

 

IV.   OSCILLATIONS OF INTENSITY 

The second new insight deals with the reason why the I(q) curve in Fig. 1 shows attenuated 

oscillations, i.e., appearance of  crest and trough with steadily decreasing amplitude. For this purpose, 

we reproduce in Fig. 2 the output P(r) profile obtained in25 using the Glatter method. Clearly P(r) in 

Fig. 2 has an almost bell-shaped bump at rb ~ 20 Å which is expected to have a marked influence on 

the behaviour of I(q) at intermediate q values of order rb
-1. Assuming that the bump at rb dominates 

the Fourier integrals (4) we get a crude estimate  

1~;...
sin

)0()(  b
b

b rq
qr

qr
IqI        (8) 

where the dots … stand for some nonleading background terms. Now, the sin qrb factor in (8) 

has maxima and minima at  

1-Å...,24.0,08.0~

....,23,2~ bb rrq 
         (9) 

which almost coincide with the positions of the crest and trough in Fig. 1 if rb   20 Å. Also, 

the magnitude of the estimate (8) decreases steadily as q increases due to the 1/q rb factor. Of course, 

features in the direct P(r) space and reciprocal I(q) space ought to be mutually related as happens in 

the case of diffraction patterns produced by crystal lattices/simple liquids whose radial distribution 
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function G(r) is periodic/quasi periodic. However, the standard literature [26-27] does not report clear 

formulas like (8,9) applicable to the biological systems whose P(r) may possess a bump at finite rb. 

Hence we infer that the damped oscillations of input I(q) curve at intermediate q may be a direct 

consequence of the presence of a bump in the output P(r) profile. This fact has not been emphasized 

in25. 

   

V.   EXTRAPOLATION IN K PARAMETER 

        The third new insight focuses attention on the modified factor e-K q2 of (3). One may 

argue that it is more preferable to employ the pure Glatter method which fits via least squares the 

directly measured I(q) curve without introducing artificial damping or fictitious data points. 

However, the pure Glatter method applied over the truncated domain HL qqq   sacrifices some 

accuracy because degrees of freedom are reduced and the unmeasured/excluded data points lie on the 

possibly rising portion of the I(q) curve in Fig.1. The dual objectives of the Japnese group [25] in 

using the recipe (3) was to increase the degrees of freedom and also to lessen the effect of the 

unmeasured portion.  For minimizing the effects of truncation at the higher end Hq  ~ 0.35 Å-1 it is 

essential to choose 

 22 Å10;1  KqK H          (10) 

which implies that numerical analysis based on the modified intensity (3) involves rather large 

starting K values. Hence extrapolation of the output results to K = 0 is liable to become inaccurate 

since the domain 0 ≤ K ≤ 10 Å
2 is  very wide. The P(r) profile of Fig. 2 borrowed from25 is silent 

about this possible difficulty. 

 

 VI.   EFFECT OF K-DEPENDENT WIDTH 

           The fourth new insight brings out another peculiarity of the artifact (3) if written as  
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2

)(;)()()( Kq
M eqqqIqI          (11) 

where IM is the modified intensity, I the actual intensity, and η the artificial damping factor. Clearly, 

since IM of (11) is a direct product in the wave number space its inverse Fourier transform must be a 

convolution integral in the position space (see the Appendix for details). More explicitly, for 

distances comparable to rb we have 

  
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Here s is an integration variable, PM(r) is the distance distribution function of the modified intensity, 

and ξC(t) is the cosine Fourier transform of η(q) defined by (11). Although the expression (12) looks 

complicated yet its behaviour may be easily understood by remembering that P(s) of Fig. 2 has a 

bump at s = rb with spread Δb (say) and ξC(t) of (13) has a peak at t = 0 with width K4 . Two 

limiting cases now become relevant. 

 Case (i). Suppose K is so small that K4  < < Δb. Then the function P(s)varies very slowly 

compared to the factor ξC(t) in (12). This yields a desirable result viz. 

  

D

bcM KrPtdsrPrP
0

4;)()()()(         (14) 

 Case (ii).   Next, let K be so large that  K4   > > Δb. Then the factor ξC(t) varies much 

slowly compared to the function P(s) in (12). This leads to a peculiar result namely 
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Eqs. (14,15) imply that if the Glatter/Moore algorithms are applied to the modified IM(q) of (11) then 

the resulting PM(r), though peaked at rb, will have correct spread if K is small but wrong width if K is 

large. This feature has not been brought out in Ref.25.  

 Towards the end it may be remarked that our review of the standard procedure for data 

analysis in Sec. II is systematic, properties of the Fourier integrals used in Secs III-VI are sound, 

physical arguments presented therein are logical, and the Appendix on the convolution formula is 

neat. The main conclusions of the present work have already been mentioned in the Abstarct.   

Conclusion:  

 The work gives the so many new insight are related to the works. In first new insight is 

concerned with normalization of the input of the input and output intensities. In particular when I (0) 

> IC (qp) when qp 0.08A-1 is the location of the peak in fig2. stated in words (7) tells that the 

theoretical I(0) of (5) must be consistently higher than all peaks occurring in the input I(9) curve. 

 The second new insight deals with reason why the I(q) curve in fig2, shows alternated 

oscillate i.e. appearance of crest and through with steadily decreasing amplitude amenity to the fig (2) 

thou tout profile obtained in 25 carry the Glatter method clearly in fig (2) has an almost bell shaped 

bump at B 20A0 but in our work damped oscillation of input I(q) curve at intermediate q may be a 

direct consequence of the presence of a bump in the output P(0) profit. 

 The third new insight focuses attention on the modified factor e-k q2 of (3). One may argue 

that it is more preferable to employ the pure Glatter. Method which fits via least squane the directly 

measured. I(q) curve without introducing artificial damping and fictitious data points. But have 

extrapolation of the output result to k = o is liable to become. Inaccurate since the domain 0 < k < 

10A2 is very wide. The pits profile of fit (2) borrowed from 25 is silent about this possible difficulty. 

 The forth and lost work is here that if the Glatter/moore algonithms are applied to the modyl 

Im(q) of (11) rgen the resulting pimo though peaked at rb will have corrected. Spread of k is small but 

wrong width if k is large. This feature has not been brought out in t-r-y-25. 
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Figure Captions: 

 

Figure 1.    Prototype experimental X-ray scattering curves I(q) of the hen egg-white lysozyme in    

                   hepes buffer at various temperatures for pH 7.0 and protein concentration 5% w/v as   

                   measured by Hirai et al25. 

 

Figure 2.   Distance distribution function P(r) obtained by Hirai et al25 using Glatter algorithm  

                  depending on temperature for pH 7.0 and protein  concentration 5%w/v. 
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