
International conference on Advanced Computing, Communication and Networks’11

758

FPGA IMPLEMENTATION OF USB 2.0

RECEIVER PROTOCOL
Mr.N.S.Panchbudhe

1
, Prof.S.S.Shriramwar

2
, Mrs.G.A.Jichkar3

 1Lecturer, Dept of E.C.E, S.V.S.S. College of Engineering, Nagpur, India

nilesh.panchbudhe@ gmail.com, 9325552026

 2 Assi.Professor, Dept of E.C.E, Priydarshani College of Engineering, Nagpur, India

sshriramwar@yahoo.com
 3 Lecturers, Dept of E.C.E. S.R.P.College of Engineering, Nagpur, India

geeta_0275@yahoo.com
Abstract: - The Universal Serial Bus (USB2.0) is support data

exchange between a host computer and a wide range of

simultaneously accessible peripheral like Mouse, keyboard, Digital

camera, Printer, scanner etc..The USB2.0 supported three types of

data transmission rates, those are operated Low speed (1.5MHZ),

High speed (12MHZ) & Full speed (480MHZ). In this paper our

coverage is up to implementation of USB 2.0 Receiver protocol on

FPGA kit [SPARTAN-II XC2S200]. The FPGA design of USB 2.0

Receiver protocol provides an interface for ‘system on chip

‘designer to connect UBS bus. This will save the design time and

the time required for debugging and testing a USB controller. The

USB 2.0 Receiver protocol has been developed in VHDL which is a

widely used hardware description language and is supported by the

major FPGA designer such as Xilinx and Altera. The VHDL code

for the USB 2.0 Receiver protocol is synthesizable onto a Xilinx

Spartan II FPGA and is synthesizable onto other types of FPGAs

with minimal modification.

Key words – FPGA, USB Protocol, Transreceiver, PID, SOF, CRC,

Bit Stuffer etc.

I. INTRODUCTION

The trend in electronics is to make devices as small as possible

and to get them to market quickly. This trend has caused

designers to focus on FPGAs rather than the traditional PCBs.

This trend to make devices smaller and cheaper combined

with the rising costs of labor to solder components onto PCBs

is resulting in developments of “Systems on a Chip” such as

FPGAs. The USB standard was developed to overcome the

shortcomings of older interfaces to peripheral devices for PCs.

The standard makes interfacing to the PC extremely easy for

the end user and life more complicated for the peripheral

designer. The USB 2.0 understands the USB protocol and is

capable of carrying out transactions on behalf of the device.

The Universal Serial Bus (USB) solves the inadequacies of

traditional interfaces for peripheral devices to PCs. Some of

the problems it is trying to solve are:

 The limited number of ports on PCs. Before USB

most computers came with one printer port and two

serial ports.

 Several modern peripherals require high-speed

connections to the PC.

 Attaching new peripheral for the first time involved

manual configuring.

The Universal Serial Bus gives a single, standardized, easy-to-

use way to connect up to 127 devices to a computer. Each

device can consume up to a maximum of 6 Mb per second of

bandwidth, which is fast enough for the vast majority of

peripheral devices that most people want to connect to their

machines.

The USB supports the three speeds of operation.

a. Low speed =>1.5 Mbps=>Keyboard, mouse

b. Full speed=>12Mbps=> pots broadband, audio

c. High speed=>480Mbps=>video,storage,image

Fig.1 block diagram of USB 2.0

II. USB PROTOCOL

There are five types of packet & they are completely

responsible for communication between Host & device, they

are

 A.TOKEN PACKETS

Figure 2 shows the field formats for a token packet. A token

consists of a PID, specifying either IN, OUT, or SETUP

packet type; and ADDR and ENDP fields. For OUT and

SETUP transactions, the address and endpoint fields uniquely

identify the endpoint that will receive the subsequent Data

packet. For IN transactions, these fields uniquely identify

which endpoint should transmit a Data packet. Only the host

can issue token packets. IN PIDs define a Data transaction

from a function to the host. OUT and SETUP PIDs define

Data transactions from the host to a function.

Fig. 2 Token packets

Token packets have a five-bit CRC that covers the address and

endpoint fields as shown above. The CRC does not cover the

PID, which has its own check field. Token and SOF packets

are delimited by an EOP after three bytes of packet field data.

mailto:sshriramwar@yahoo.com
mailto:geeta_0275@yahoo.com

International conference on Advanced Computing, Communication and Networks’11

759

If a packet decodes as an otherwise valid token or SOF but

does not terminate with an EOP after three bytes, it must be

considered invalid and ignored by the receiver.

B. START-OF-FRAME PACKETS

Start-of-Frame (SOF) packets are issued by the host at a

nominal rate of once every 1.00ms _ 005ms.SOF packets

consist of a PID indicating packet type followed by an 11-bit

frame number field as illustrated in fig..3

Fig.3Start-of-Frame (SOF) packets

The SOF token comprises the token-only transaction that

distributes an SOF marker and accompanying frame number at

precisely timed intervals corresponding to the start of each

frame. All full-speed functions, including hubs, receive the

SOF packet. The SOF token does not cause any receiving

function to generate a return packet; therefore, SOF delivery

to any given function cannot be guaranteed. The SOF packet

delivers two pieces of timing information. A function is

informed that an SOF has occurred when it detects the SOF

PID. Frame timing sensitive functions, which do not need to

keep track of frame number (e.g., a hub), need only decode the

SOF PID; they can ignore the frame number and its CRC. If a

function needs to track frame number, it must comprehend

both the PID and the time stamp. Full-speed devices that have

no particular need for bus timing information may ignore the

SOF packet.

 C. DATA PACKETS

A data packet consists of a PID, a data field containing zero or

more bytes of data, and a CRC as shown in Figure 4. There are

two types of data packets, identified by differing PIDs:

DATA0 and DATA1. Two data packet PIDs are defined to

support data toggle synchronization.

Fig. 4 Data packet

Data must always be sent in integral numbers of bytes. The

data CRC is computed over only the data field in the packet

and does not include the PID, which has its own check field.

 D. HANDSHAKE PACKETS

Handshake packets, as shown in Figure 5, consist of only a

PID. Handshake packets are used to report the status of a data

transaction and can return values indicating successful

reception of data, command acceptance or rejection, flow

control, and halt conditions. Only transaction types that

support flow control can return handshakes. Handshakes are

always returned in the handshake phase of a transaction and

may be returned, instead of data, in the data phase. Handshake

packets are delimited by an EOP after one byte of packet field.

If a packet decodes as an otherwise valid handshake but does

not terminate with an EOP after one byte, it must be

considered invalid and ignored by the receiver.

Fig.5 Handshake packet

There are three types of handshake packets:

I. . ACK indicates that the data packet was received

without bit stuff or CRC errors over the data field and

that the data PID was received correctly. ACK may

be issued either when sequence bits match and the

receiver can accept data or when sequence bits

mismatch and the sender and receiver must

resynchronize only in transactions in which data has

been transmitted and where a handshake is expected.

ACK can be returned by the host for IN transactions

and by a function for OUT or SETUP transactions.

II. NAK indicates that a function was unable to accept

data from the host (OUT) or that a function has no

data to transmit to the host (IN). NAK can only be

returned by functions in the data phase of IN

transactions or the handshake phase of OUT

transactions. The host can never issue NAK. NAK is

used for flow control purposes to indicate that a

function is temporarily unable to transmit or receive

data, but will eventually be able to do so without

need of host intervention.

III. STALL is returned by a function in response to an

IN token or after the data phase of an OUT

transaction. STALL indicates that a function is

unable to transmit or receive data, or that a control

pipe request is not supported. The host is not

permitted to return a STALL under any condition.

IV. DESIGN ASPECTS

 The present USB 2.0 has been designed by using

embedded system and it is on mother board of computer,

In this project our aim is to design USB 2.0 using FPGA

kit .

A.RECEIVER

The Bloch diagram of the USB 2.0 Receivers is shown in

Figure 6.The Receiver module has been implemented by

considering the following specifications.

 Enable the Receiver when start of packet (sync)

sequence” 01010100‟ is received.

 The data should be decoded using NON Return to

Zero Inverted decoding technique.

 Stuffed bit is removed after checking the six

consecutive „1‟s occur in the data stream then a zero

to be removed.

 Serial to Parallel conversion.

 By checking the correct PID controller will decide

the type of data is received.

 Receiver checks the 7-bit address of device.

International conference on Advanced Computing, Communication and Networks’11

760

 Receiver check the 4-bit end point address of

host controller

 By checking 5-bit CRC & 16-bit CRC of packet, host

can do error checking.

 Allowing controller to decide what type of byte to

received

Fig 6 Receiver block diagram of USB 2.0

. IV. SIMULATED RESULTS OF RECEIVER

The Fig.7 shows the simulation result of USB 2.0 Receiver,

which is designed using VHDL as stated above and simulated

within the Xlink 9.1 environment. At the start of data transfer

the rst signal is goes to high and it will reset the Receiver.

After resetting the Receiver the controller give enable signal

to Receiver to enable ,then it start normal operation by sending

SYNC, PID, ,ENDP,DATA,CRC.

Fig.7 USB 2.0 Receiver module

V. FPGA IMPLEMENTATION

The top order module of USB 2.0 Receiver is synthesized

within the Xilinx 9.1 ISE software tool and it is programmed

to the targeted SPARTAN 2 family of FPGA Device. The

various levels Implementation such as Synthesis report, RTL

View, Place and Route Report and Device Programming has

been explained and visualized in the following sub sections.

A. SYNTHESIS REPORT

The Table 1 shows the synthesis Summary of top order

module of USB 2.0 Receiver. It is observed from the Table 1

that the total equivalent gate count required for this design is

848 gates. From the same table we can get the information

about the target FPGA device utilization.

Table 1 Synthesis Summery

B. RTL VIEW

This section gives the visualization of Resister Transistor

Logic (RTL) views in the form of schematic and

Net list diagrams which are shown in Figure 8 and Figure 9

respectively. Figure 8 which gives RTL schematic diagram

reveals the pin diagram of Top order module with the required

specified notes whereas Figure 9 reveals the Gate level logic

diagram of Top order module with the required

Input and output ports (Net list view).

International conference on Advanced Computing, Communication and Networks’11

761

Fig.8 RTL schematic diagram

Figure 9: RTL netlist view

C. PLACE ROUT REPORT

This section concentrates on target FPGA device utilization

summary which reveals the information required for proper

layout at the level of manufacturing in the form of Place and

Route report. Further it gives the timing synchronization of

CPU with the REAL time environment.

Device utilization summary:

Selected Device: 2s15cs144-6

 Number of Slices: 154 out of 192 80%

 Number of Slice Flip Flops: 128 out of 384 33%

 Number of 4 input LUTs: 284 out of 384 73%

 Number of IOs: 36

 Number of bonded IOBs: 36 out of 86 41%

 IOB Flip Flops: 25

 Number of GCLKs: 2 out of 4 50%.

DEVICE PROGRAMMING

After successful process of synthesis the Target device xc2s15

of Spartan2 is connected to the system

through printer port. The pin assignment is specified in the

User Constraint File (UCF). The functional

Verification is carried out by using a pattern generator.

VI. CONCLUSION

The goal of the project is FPGA Implementation of USB 2.0

Receiver Protocol is achieved & the target device used for

this project is SPARTAN II, where our Receiver has required

only 192Slices, 128Slice Flip-Flop, 284 input LUTs, 36 IOs,

36 bounded IOs & 2 GCLKs. The resulting system works in

simulation.

VII. FUTURE SCOPE

The USB 2.0 Receiver has been implemented for 8-bit, but it

can also be extended to 16- bit USB 2.0 Receiver.

VIII. APPLICATIONS

The USB2.0 has been developed into a common code which

can be used for developing the complete USB device stack.

Some of the Low speed and High speed USB devices, which

are presently available in the market, are:

1. Optical Mouse

2. Key Board

3. Printer

4. Scanner

5. Joy Stick

6. Memory Stick

7. Flash Memory

8. Mobiles

9. Video cameras.

IX. REFERENCES

[1]Universal serial bus specification-2000 Compaq,hewlett-

packard,intel,Lucent,microsoft, nec, Philips

[2] FPGA Implementation of USB Transceiver Macrocell

Interface with USB2.0 Specifications.Babulu, K. Rajan, K.S.

Coll. of Eng., Dept. of E.C.E, Jawaharlal Nehru Technol.

Univ., Kakinada;Emerging Trends in Engineering and

Technology, 2008. ICETET'08. First International Conference

[3] Design of reusable software for USB host driver in

embedded system

2010 International Conference on Computing, Control and

Industrial Engineering

Gaohua Liao, Quanguo Lu, Weizhong Zhang Nanchang

Institute of Technology Nanchang, China

 [4] Zainalabedin Navabi “Vhdl Analysis and Modeling of

Digital Systems” 2nd edition, McGraw- Hill,

Hardcover,Published January 1998

[5] William Stallings, “Data and Computer

Communications” ,McGraw-Hill Publications.

[6]Andrew S.Tannenbaum,“Computer Networks”, Pearson

publications.

[7] Charles H Roth “Digital system using VHDL”.2
nd

 edition,

Thomson publication

International conference on Advanced Computing, Communication and Networks’11

762

 [8] Stephen Brown, Zvonko Vranesic “Fundamentals Digital

logic with VHDL design”. 2
nd

 edition, McGraw-Hill,

Hardcover, Published July 2004

[9] [www.usb.org/developers]

http://www.faculty.iu-bremen.de/birk/lectures/PC101-2003/14usb/FINAL%20VERSION/www.usb.org/developers/

