
International conference on Advanced Computing, Communication and Networks’11

728

 An Elegant Load Balancing Scheme in Grid Computing Using Grid Gain

 Buddhadeb Pradhan Ajay Nayak

 Department of Computer Science & Engineering Department of Computer Science & Engineering

 National Institute of Science and Technology National Institute of Science and Technology

 Palur Hills, Berhampur,India. 761008 Palur Hills, Berhampur, India. 761008

 buddhadebpradhan@gmail.com ajay.nist@gmail.com

 Diptendu Sinha Roy

 Department of Computer Science & Engineering

 National Institute of Science and Technology

 Palur Hills, Berhampur, India 761008

 diptendu.sr@gmail.com

Abstract— Grid Computing is a form of distributed

Computing that has emerged as a viable solution to meet the

ever increasing needs for computational power and data

management capability. Designing solutions in such grid

computing framework entails addressing much more

complicated issues compared to chore software development,

namely concurrency, heterogeneity, scalability and so forth;

just to name a few. In order to simplify the task of

programming in grid environment a software layer is

employed to mask off the massive underlying heterogeneity in

network, hardware, operating system and programming

languages, known a middleware. Moreover, load scenario in a

grid is dynamic and thus incorporating appropriate load

balancing mechanism becomes a challenging proposition.

This paper addresses two major issues in context of load

balancing in compute grids: namely, average CPU load and

heap memory in a grid scenario. For experimentation purposes,

Grid Gain has been incorporated as middleware. Experiments

have been conducted and subsequent results presented herein

demonstrate the efficacy of Grid Gain as a platform of

implementation of grid computing for catering to future

generation computational needs, including load balancing.

Keywords— Grid Computing, Load Balancing, Grid Gain

I INTRODUCTION

Due to its increasing popularity over the last decade, the term

grid computing has lost its distinction, particularly with

related technologies, like cluster computing, cloud computing,

scientific computing, and volunteer computing etc. Also the

varieties of grid at present range from compute grids, data

grids, science grids, access grids, knowledge grids, bio grids,

sensor grids, cluster grids, campus grids, tera grids, and

commodity grids[1].

In an effort to resolve the essence of the varigatedness in

definition, [2] presented a three point checklist that includes:

i) Coordinates resources that are not subject to

centralized control.

ii) Using standard, open, general-purpose protocols and

interfaces.

iii) To deliver nontrivial qualities of service.

Despite their wide variety, grids come in two major types;

namely computational grids and data grids.

A compute grid is a hardware and software infrastructure that

provides dependable, consistent, pervasive, and inexpensive

access to high-end computational capabilities. [3] Data grids,

on the other hand, allow an integrating infrastructure for

distributed computing. Data Grids allows for splitting data

onto multiple computers. Much like computational grids

splitting computations, data grids allow placing data onto

multiple computers or storage resources and treat them

virtually like one. [4].

Middleware is the software layer that provides programming

abstraction as well as masks off the heterogeneity of the

underlying networks, hardware, operating systems and

programming languages. The Internet communication

protocols mask the difference in networks, and middleware

can deal with the other differences. To solve the problems of

heterogeneity, middleware provides a uniform computational

model for use by the programmers of grid and distributed

applications.

In order to fulfill the user expectations in terms of

performance and efficiency, the Grid system needs efficient

load balancing algorithms for the distribution of tasks. A load

balancing algorithm attempts to improve the response time of

user’s submitted applications by ensuring maximal utilization

of available resources.

In this paper, the focus is on the efficacy of grid computing as

a programming paradigm for solving large scale problem

using Grid Gain as a middleware. Experiments have been

conducted on a Grid Gain set up to run a computation

intensive task, namely as matrix multiplication problem.

Details pertaining to the experiments are corroborated in

section IV. The subsequent results presented herein

demonstrate the efficacy of Grid Gain as a platform for

mailto:buddhadebpradhan@gmail.com
mailto:ajay.nist@gmail.com
mailto:diptendu.sr@gmail.com

International conference on Advanced Computing, Communication and Networks’11

729

implementation grid computing that can cater to future

generation problems, including easy load balancing provision

that can be employed at API level.

II Load Balancing Strategy

In this paper we present an adaptive, distributed and

correspondent originator load balancing algorithm in a grid

environment. Our algorithm takes into account the processing

capacity of the nodes and the communication cost during the

load balancing operation. The category of problem we address

is: computation-intensive and totally independent tasks with

no communication between them. [5]

All programs need some CPU and memory resources, to have

a good efficacy of execution of a program. These two

parameters are very crucial .If we define Eη as execution

efficiency then we can say , Eη is inversely proportional to

average CPU load as more CPU is loaded , more context

switch it would do to execute a program and less would be

efficiency .

So, Eη 1/Average CPU load

Similarly we can state that more heap memory available to a

machine at a time less memory management it would and

more easily it can allocate memory from available pool of

memory. So efficiency is directly proportional to ratio of

Available Heap Memory to Maximum Heap Memory.

So, Eη Available Heap Memory/Maximum Heap

Memory.

Combining above two equations we can infer that

Eη = (a × 1/Average CPU load) + (b × Available Heap

Memory/Maximum Heap Memory) +c

Where a is a constant which is the measurement of how much

computational intensive the program is ,b is the dimension of

how much memory intensive program is and c is a parameter

which concerns the other issues like bandwidth , or to decide

if the possibility of execution of task at first place etc . [6]

Here

0 < a < 1,

0 < b < 1 and

0 < c <∞.

So more the Eη parameter of a grid node is more good is its

efficiency.

III. Grid Gain as a platform for implementing Grid

Computing:

Grid Gain is a grid computing platform for Java. It is

developed in Java for Java developers and is a natural

extension of the latest Java development methodologies. Grid

Gain is an open source product released under the terms of

GNU General Public License (GPL) from Grid Gain Systems

Inc. Grid Gain with its modern design is based on Java

programming language, and is adequate for networking

systems and applications. Grid Gain provides developers with

powerful and elegant technology to develop and run

applications on private or public grids. It enables developers

to write any custom grid-enabled applications or grid enable

the existing one and seamlessly deploy it on the grid taking a

full advantage of concepts like map-reduce, affinity load

balancing, and peer-to-peer class loading etc.[7]

During the process of solving problems using Grid Gain,

several work nodes are created on different machines over a

network. A job submitted to any grid gain node can be

processed on the node or the job can be divided among the

several nodes over the grid using map-reduce paradigm. Grid

Gain allows very simple way of achieving the same by

employing annotation based ‘brokering’- the gridify. This

allows the user to devise a scheme for processing a

parallelized method via distributing its tasks among other grid

work nodes from a control node. This constitutes the ‘map’

part. After finishing their tasks, the work nodes return the

results to the control node which finally passes such results

(i.e., updated states) to clients. This phase constitutes the

‘reduce’ part. A schematic diagram is shown in Figure -1.

Figure-1: Communication between specific nodes using Grid

Gain

The developer friendly environment of Grid Gain is one of the

key reasons behind Grid Gain increasing popularity. In this

paper, the focus is to demonstrate two very crucial

requirements of a grid environment; namely performance and

International conference on Advanced Computing, Communication and Networks’11

730

scalability of a grid setup, deployed using Grid Gain. To

measure these two requirements quantitatively two

experiments have been conducted on a grid environment

deployed via Grid Gain and subsequent results and analysis

have been presented in the following section.

Proposed Load Balancing Algorithm:

In load balancing algorithm, it has been calculated the

coefficient of a and coefficient of b value by finding out the

time complexity of the program and the space complexity of

the program respectively.

Then Eη parameter for each node in grid has been originated

and sorted them. After that the big job has been assigned to

more Eη valued node.

Algorithm to find Eη set

BEGIN
-Scan the task to run in the grid.

-Estimate the time complexity of program T(n).

-Find Maximum n value possible that be n0 and then calculate

T (n0).

-Find a coefficient by dividing T (n0) by T(nb),where T(nb) is

a standard program time complexity with maximum input as

nb which represent the time complexity of biggest program

allowed in the grid.

-Find heap memory that can be used by the program Mm.

-Find b coefficient by dividing Mm by Maximum Average

Heap Memory available on each node.

For every node i do

If Mmi < Available Heap Memoryi

 then

Eηi → (a × 1/Average CPU loadi) + (b ×Available Heap

Memoryi / Maximum Heap Memoryi)

else

Eηi →0

end if

end for

END

Assign Task According To Eη Set

BEGIN
-Sort all sub jobs according to input.

-Sort the Eη set descending order.

For each sub job i do

-Map subjobi to node (i mod j)
th

 best node.

end for

END

IV. Case Study

This section details the experimental setup, the methodology

and assumptions involved and subsequently analyses the

results. In order to leverage the computation-intensive job is

employed. A simple java program to multiply two square

matrices is chosen. The complexity of the program is

obviously a factor of the order of the matrix; as with

increasing order, the number of calculations required also

increased. Two square matrices A and B each of order [m x m]

and all elements as 10 is taken, i.e., A [i, j] = B[i, j] = 10 and 1

≤ i ≤ m and 1≤ j ≤ m. Two experiments have been

conducted with the matrices A and B varying in their

respective orders. The parameter ‘n’ can be passed by the user

such that n is always a multiple of 100; i.e., n≥100 and can

assume values 100, 200, 300 ... and so on.

The grid set up deployed using Grid Gain 2.0.0 as middleware

and it incorporated 10 nodes. Though grid deployments are on

top of heterogeneous infrastructure, the above mentioned

problem was experimented on a set of homogeneous machines

having the following hardware configuration:

Processor- Intel (R) Core(TM) 2 Duo CPU E7400@2.80GHz.

Memory- 2048MB

CPU Core Count- 2

Memory Bus Speed- 800MHz

Hard Drive- 320GB

D-Link Wireless GDWA- 510 Desktop Adapters

All the machines were connected through wireless ad-hoc

network IEEE 802.11b protocol without encryption with a

maximum network speed 54.0 Mbps.

Regarding the software set up, each node had Grid Gain 2.0.0

installed and running on it with JDK- 6u-10 and Java Runtime

Environment and Eclipse 3.2 on them. Different constituent

machine had operating system- Microsoft’s Window XP

Professional service Pack 2.

In order to study the effect of the different parameters, namely

CPU load and heap memory on load balancing criteria, in this

paper four different sets of Eη values are considered, namely

Eη1 where CPU load is the only criterion to do load balancing,

Eη2 where only heap memory is considered. Eη3 where both

CPU load and heap memory are the criterion and finally Eη4

where the only random nodes are considered.

First

Eη1 = (a × 1/Average CPU load) + (b × Available Heap

Memory/Maximum Heap Memory) +c, where a=1, b = 0 and

c = 0.

That is only pertaining to the Average CPU load.

Second

Eη2 = (a × 1/Average CPU load) + (b × Available Heap

Memory/Maximum Heap Memory) +c, where a = 0, b = 1 and

c = 0.

That is only concerning the ratio of Available Heap Memory

to the Maximum Heap Memory.

Third

Eη3 = (a × 1/Average CPU load) + (b × Available Heap

Memory/Maximum Heap Memory) +c, where a , b and c are

calculated from the program.

International conference on Advanced Computing, Communication and Networks’11

731

That is only relating to the both Average CPU load and ratio

of Available Heap Memory to the Maximum Heap Memory

and considering them equally important.

Fourth

Eη4 = (a × 1/Average CPU load) + (b × Available Heap

Memory/Maximum Heap Memory) +c, where a = 0, b = 0 and

c = 0.

That is taking random nodes.

All the four conditions putting on grid scenario, the resultant

graph can be drawn.

Figure-2: Effect of different load balancing criteria on

execution time(as a function of order parameter)

 IV. Results and Discussion

Figure 2 delves that execution time for Eη in third case is

overwhelming least time among other execution by means of

different Eη values. For the fourth case, execution time is

much higher in comparison to other cases. Considering third

case, our postulate is to find a and b parameter according to

task and using them to find load balancing criteria, which is

giving better efficacy. The real difference can be analysed

when order of task is high, which is similar to program which

are executed on actual grid.

V. Conclusion:

Load balancing in a dynamic grid environment is a

challenging proposition, considering the variegated nature of

grid, the variety problems that may run on the grid and so

forth. It is obvious that there exists no universal algorithm that

balances load for all different grid configurations and load

scenarios. In this paper, two common parameters, namely

CPU utilization and heap memory are employed for load

balancing and a computation intensive job is executed on a

grid test bed deployed using Grid gain. The outcomes of these

parameters have been studied. Thereafter a new criterion for

load balancing that includes the effect of both has been

employed and the same experiments are repeated.

Experiments show encouraging results of our proposed

algorithm. Although the strategy works for the problem,

nonetheless grid gain allows us to set load balancing criteria at

application level. This provides great opportunity to have a

load balancing criteria based on the needs of the nature of

application.

References:

1. What is the Grid? A Three Point Checklist. I. Foster,

GRID Today, July 20, 2002.

2. The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. I. Foster, C. Kesselman, S. Tuecke.

International Journal Supercomputer Applications, 15(3),

2001.

3. Computational Grids, I. Foster, C. Kesselman. Chapter 2

of "The Grid: Blueprint for a New Computing Infrastructure",

Morgan-Kaufman, 1999.

4. The Data Grid: Towards Architecture for the

Distributed Management and Analysis of Large Scientific

Datasets. A. Chervenak, I. Foster, C. Kesselman, C.

Salisbury, S. Tuecke. Journal of Network and Computer

Applications, 23:187-200, 2001 (based on conference

publication from Proceedings of NetStore Conference 1999).

5. A Survey of Load Balancing in Grid Computing.

Yawei Li , Zhiling Lan. Lecture Notes in Computer Science,
2005, Volume 3314/2005, 280-285, DOI: 10.1007/978-3-540-

30497-5_44.

6. Performance Evaluation of Load Balancing in

Hierarchical Architecture for Grid Computing Service

Middleware. Abderezak Touzene, Sultan Al-Yahai, Hussien

AlMuqbali, Abdelmadjid Bouabdallah, Yacine Challal. IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 2, March 2011 ISSN (Online): 1694-0814

7. Grid Gain. http://www.gridgain.com last access 22-04-

2011.

http://www.springerlink.com/content/?Author=Yawei+Li

