
International conference on Advanced Computing, Communication and Networks’11

723

VARIABLE LENGTH DECODER FOR

STATIC HUFFMAN CODE

Mrs. T.G.Panse

Department of Electronics Engg.

Yeshwantrao Chavan College of Engg.

Nagpur, India

tejaswini.deshmukh@gmail.com

Abstract— The proposed work is aimed at designing

Variable-Length Decoder for Huffman code. Using the

decoder we can obtain the original data from the

compressed data .The system is designed using VHDL and

the source code can be targeted to any FPGA for several

applications. sound, voice, image compressions are

frequently used in a real time application such as the

broadcasting, the Variable-Length Decoder can be

designed for a real time application. Emphasis has been

given to design a simple working solution with minimum

possible circuitry.

Keywords—Huffman encoder, Variable length decoder,

 VHDL

I. INTRODUCTION

In coding theory a variable-length code is a code which

maps source symbols to a variable number of

bits.Variable-length codes can allow sources to be

compressed and decompressed with zero error and still be

read back symbol by symbol. With the right coding

strategy an i.i.d. source may be compressed almost

arbitrarily close to its entropy. This is in contrast to fixed

length coding methods, for which data compression is

only possible for large blocks of data, and any

compression beyond the logarithm of the total number of

possibilities comes with a finite probability of failure.

Some examples of well-known variable-length coding

strategies are Huffman coding, Lempel–Ziv coding and

arithmetic coding

CLASSES OF VARIABLE LENGTH DECODER

Variable-length codes can be strictly nested in order of

decreasing generality as non-singular codes, uniquely

decodable codes and prefix codes. Prefix codes are always

uniquely decodable, and these in turn are always non-

singular.

II INTRODUCTION TO HUFFMAN ENCODER

In computer science and information theory, Huffman

coding is an entropy encoding algorithm used for lossless

data compression. The term refers to the use of a variable-

length code table for encoding a source symbol where the

variable-length code table has been derived in a particular

way based on the estimated probability of occurrence for

each possible value of the source symbol. Huffman

coding uses a specific method for choosing the

representation for each symbol, resulting in a prefix code

that expresses the most common characters using shorter

strings of bits than are used for less common source

symbols. Huffman was able to design the most efficient

compression method of this type: no other mapping of

individual source symbols to unique strings of bits will

produce a smaller average output size when the actual

symbol frequencies agree with those used to create the

code. Huffman coding is equivalent to simple binary

block encoding, e.g., ASCII coding. Huffman coding is

such a widespread method for creating prefix codes that

the term "Huffman code" is widely used as a synonym for

"prefix code" even when such a code is not produced by

Huffman's algorithm. Although Huffman coding is

optimal for a symbol-by-symbol coding with a known

input probability distribution, its optimality can

sometimes accidentally be over-stated. For example,

arithmetic coding and LZW coding often have better

compression capability. Both these methods can combine

an arbitrary number of symbols for more efficient coding,

and generally adapt to the actual input statistics, the latter

of which is useful when input probabilities are not

precisely known or vary significantly within the stream.

Our design target is for decoding an image Figure 1

shows a one example of the black and White image data.

Each pixel is organized by 3 bits. Then there are 8 levels

of the pixel intensity.

http://en.wikipedia.org/wiki/Coding_theory
http://en.wikipedia.org/wiki/Code
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Independent_and_identically-distributed_random_variables
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv
http://en.wikipedia.org/wiki/Arithmetic_coding
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Entropy_encoding
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Variable-length_code
http://en.wikipedia.org/wiki/Variable-length_code
http://en.wikipedia.org/wiki/Prefix_code
http://en.wikipedia.org/wiki/Block_code
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Arithmetic_coding
http://en.wikipedia.org/wiki/LZW

International conference on Advanced Computing, Communication and Networks’11

724

Figure 1. Black and White Image

The left figure in the figure 1 is 8 kinds of pixel intensities.

The center number is the level. The most bright pixel is 0. The

larger the number increases, the darker the pixel gets. Since

there are 8 levels, 3 bits can express the levels. For decoding

coloured images we can convert various types of images into

grayscale images by using MATLAB software .

HUFFMAN CODING OF IMAGE DATA

The table 4 shows a example to apply the Huffman code to

this image. Most frequently appeared pixel number of 0

corresponds to the code '1'. In total, the cross mark image can

be expressed in 168 bits. Then the compression ratio is

168/192=87.5%.

Pixel

Number
Frequency

Huffman

Code

Code

length

Total

bits

0 (white) 24 1 1 24

1 16 011 3 48

2 8 0101 4 32

3 2 0100 4 8

4 2 0011 4 8

5 4 0010 4 16

6 4 0001 4 16

7 (black) 4 0000 4 16

Total

168bit

Table 1. Huffman Coded Cross Image

Table 2. Pixel Number and Huffman Code of Crossmark

VARIABLE LENGTH DECODER ALGORITHM

Pixel Number Huffman Code

7 0 0 0 0 0 0 7 0000 1 1 1 1 1 1 0000

0 6 1 1 1 1 6 0 1 0001 011 011 011 011 0001 1

0 1 5 2 2 5 1 0 1 011 0010 0101 0101 0010 011 1

0 1 2 3 4 2 1 0 1 011 0101 0100 0011 0101 011 1

0 1 2 4 3 2 1 0 1 011 0101 0011 0100 0101 011 1

0 1 5 2 2 5 1 0 1 011 0010 0101 0101 0010 011 1

0 6 1 1 1 1 6 0 1 0001 011 011 011 011 0001 1

7 0 0 0 0 0 0 7 0000 1 1 1 1 1 1 0000

International conference on Advanced Computing, Communication and Networks’11

725

STEP 1: In the algorithm, 4 bit-wide sliding window is used.

The 4 bit data corresponding the sliding window is compared

with the righthand side table. The top of the table is '1'. The

MSB of the input 4 bits is '1' then match the top of the table in

spite of the other 3 bits and outputs the pixel number of '0' and

the code length of 1.

STEP 2 :In the STEP1, the code length is 1. Then shift the

sliding window by 1 bit then get the 4 bit inputs corresponding

the new sliding window and proceed the same procedure as

STEP1. In the example, the new 4 bits is '0110' then the MSB

3bits will match '011'. As a result, pixel number of 1 and the

code length of 3 will be obtained.

STEP 3

In the STEP2, the code length was 3. Then shift the sliding

window by 3 bits then get the next 4 bits inputs. And repeat

the same operation.

 ARCHITECTURE OF VARIABLE LENGTH DECODER

In this architecture, two sets of 4 bit registers are included.

The 4 bit width sliding window will be inside of this 8 bit

width. Then the 4 bit inputs corresponding the sliding window

has to be compared with the Look-up table.The look-up table

outputs both the pixel number and the code length. According

to the code length, sliding window has to be shifted. This shift

operation is realized by the accumulator and Barrel

Shifter.The timing critical path will be Barrel Shifter -> Look-

up Table -> Accumulator -> Barrel Shifter. In order to achieve

the higher clock rate, circuit optimization such as pipelining

will be necessary.We have used the paper titled

Block Diagram of Variable Length Decoder

The Variable Length Decoder consists of 4-Bit Registers ,

Barrel Shifter , Seven Segment Display ,3 Bit Register and

Multiplexer.

The Huffman coded image consisting of a bit stream is fed to

the two 4-Bit registers .The registers stores the code and the

output of both the registers is given to the Barrel Shifter. The

Barrel Shifter is used to shift the bit stream as per our

requirement. Since the output of both the

4-Bit registers is the same the first four bits and the last four

bits of the Barrel Shifter are identical. The first four bits are

used to identify the pixel no and the last four bits are used to

detect the length of pixel. There are three seven segment

displays i.e SSD 1 , SSD 2 , SSD 3.
SSD 1 detects all pixels having bit length 1 and displays the

pixel no. Similarly SSD 2 and SSD 3 detect pixels having bit

length 3 and 4 respectively. The Length 3 block detects 1 bit

length, Length 2 block detects 3 bit length and Length 1 block

detects 4 bit length . This length is stored in the 3- Bit

Register. The output of each of the 3 Bit registers is given to

the Multiplexer. The Multiplexer will select the length and

gives the output to the select lines of the Barrel Shifter .

The Barrel Shifter detects the length and shifts the bit stream

by that length. The process continues till the entire bit stream

has been decoded and each pixel has been identified. Thus

once all the pixels have been identified we get the entire

image.

International conference on Advanced Computing, Communication and Networks’11

726

VHDL Simulation Result for Barrel shifter

=
A[2..0]

B[2..0]

EQUAL

=
A[2..0]

B[2..0]

EQUAL

=
A[2..0]

B[2..0]

EQUAL

0

11

SEL

DATAA

DATAB

OUT0

MUX21

Equal0

3' h1 --

Equal1

3' h3 --

Equal2

3' h4 --

oo~0

ww1[2..0]

ww2[2..0]

ww3[2..0]

oo[2..0]

oo~[2..1]

2' h0 --

Figure 2 RTL View of Barrel Shifter

VHDL Simulation result for Variable length decoder

CONCLUSION

Thus the variable length decoder has been designed

successfully by VHDL .The main advantage of using Variable

length decoder is that data can be transmitted by using lesser

number of bits. This in turn results in less utilization of

hardware and quicker and more efficient transmission of data.

Although this is a simple form of a decoder it can be suitably

modified to decode different types of images. To generalize

the above designed decoder we can decode different types of

images by converting them into grayscale images using

MATLAB software. Future scope of this Variable Length

Decoder is we can decode images having higher no of pixel

intensities by suitably modifying the design.

Also the variable length decoder can be designed so as to be

able to decode large amount of information and can be used in

motion picture technology.

REFERENCES

[1] C.-Y. Chang and K. Yao, ―Systolic array processing of the

Viterbi algorithm,‖ IEEE Trans. Inf. Theory, vol. 35, no. 1, pp.

76–86, Jan. 1989.

International conference on Advanced Computing, Communication and Networks’11

727

[2] C. G. Caraiscos and K. Z. Pekmestzi, ―Low-latency bit-

parallel systolic VLSI implementation of FIR digital filters,‖

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,

vol. 43, no. 7, pp. 529–537, Jul. 1996.

[3] V. Boriakoff, ―FFT computation with systolic arrays, a

new architecture,‖ IEEE Trans. Circuits Syst. II, Analog Digit.

Signal Process., vol. 44, no. 4, pp. 278–284, Apr. 1994.

[4] I. K. Proudler, J. G. McWhirter, M. Mooner, and G.

Hekstra, ―Formal derivation of a systolic array for recursive

least squares estimation,‖

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,

vol. 43, no.

3, pp. 247–254, Mar. 1996.

[5] S. Swaminathan, R. Tessier, D. Goeckel, and W. Burleson,

―A dynamically reconfigurable adaptive Viterbi decoder,‖ in

Proc. FPGA’02, Monterey, CA, Feb. 24–26, 2002.

