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Abstract—Assuming that future connected cars with auto- 
mated driving functions will require even more computing power 
and communication bandwidth, the current network infrastruc- 
ture as well as  the  existing  individualized  control  units  are  
not a profitable option for such vehicles. In addition, changing 
user expectations demand flexible architectural patterns and 
upgradeability of software components without the need to visit 
the workshop. However, the current statically developed and 
configured ECU architecture does not offer any practicable 
possibilities for this. For these reasons, the research for a new 
dynamic and flexible architecture is necessary. This new type of 
system architecture is expected to meet future requirements in 
terms of space, cost, performance, energy efficiency and number 
of required computing units in the vehicle, which will arise as a 
result of the implementation/inclusion of new automated driving 
functionalities, and due to the changes in user expectations. 
Solutions to this issue can be found in the field of enterprise       
IT (cluster computing), in which technologies such as Ethernet, 
container-based virtualization and flexible software architec- 
tures have proven themselves to be very efficient for years. 
Relevant infrastructures, for example from cloud computing 
providers, have commonly been used in high-performance or 
high-availability applications. Thus, in the research project A3F 
has been investigated which of these concepts and methods can  
be applied to modern vehicle system architectures. One of the 
main goals is to assess the synergy potential of the two sectors, 
information technology and automotive industry, which to date 
have very different orientations. However, this synergy is expected 
to grow strongly in the course of the developments mentioned 
above. 

In the following pages, the necessary changes related to 
hardware and software will be discussed briefly und will be 
compared to concepts and possible solutions from the IT world. 

 
I. INTRODUCTION 

Nowadays, there’s a computer – in the broadest sense of   
the word – almost everywhere, in every gadget that automates 
some aspect of daily life. Cars and other vehicles are no 
exception to this. Since the 1970s, the amount of existing 
connections in vehicles has steadily increased until a decade 
later the first field-buses were introduced, which allowed for   
a decrease in the number  of  cables  needed  and  a  rise  in  
the number of control units [1]. As the number of electronic 
components for driver assistance functions increased, so did 
the complexity of the architecture, which has since become 
increasingly difficult to control. 

In addition, the latest technological developments and trends 
are challenging the current system architectures of vehicles: 

 
Over-The-Air updates (OTA-Updates), self-driving cars and 
the so-called connected car [2]. 

Concerning OTA-Updates, one first needs the ability to 
deploy updates to the existing software by means of a backend 
that provides the updates and a network connection that can 
load these updates, but even more importantly, the control units 
themselves must be upgradeable, i.e., they must provide a way 
to install new software in an automated manner. Subsequently, 
it is necessary to consider the granularity with which the 
software is to be updated and how modular and dependent   
the individual systems are on each other. 

Self-driving cars require massive computing power whilst 
combining a large number of input signals from sensors all 
over the vehicle. To  achieve this, control units and sensors   
are typically connected via a bus. However, the bandwidth of 
current vehicles will presumably be insufficient to process the 
necessary amount of sensor signals. 

Connected cars (V2V, V2X, ...), on the other hand, require  
a high network bandwidth both on the internal network and to 
the outside world. Again, this requires increasing the network 
bandwidth of current vehicles. 

As the demands on the hardware side continue to increase, 
the software side should also be reconsidered. 

A good way to illustrate the escalation of the amount of 
software present in vehicles is to observe the increase in the 
percentage of production costs derived from software, from 
20% in 2000 to 37% in 2010. Thus, as Doherty et al. [3]    
point out, cars became more dependent on software, which 
lead to the implementation of methodologies characteristic of 
the IT world. 

This has produced an increase in the complexity of the 
systems and thus an increment in the possibility of software- 
related errors. Therefore new solutions should be focused in 
providing a fail-safe stability. 

One way to address this problem and meet the requirements 
of future vehicles is through exploring the IT sector: modu- 
larity, scalability, and fail-safety are key approaches to service 
delivery. 

Precisely this is the goal of the project Fail-Safe Archi- 
tecture for Self-Driving vehicles (A3F): to test the suitability 
of these technologies from the IT branch to solve some of    
the most impelling pitfalls in the development of a fail-safe  
software platform for autonomous-driving vehicles. 
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The A3F Project is a collaboration between Continental AG 
and the University of Applied Sciences of Regensburg (OTH 
Regensburg). Whereas the former does research and executes 
analysis on hardware and network communication, the latter 
focuses on software architechtures and finding solutions on  
an application level. The present paper has been written in   
the framework of the OTH Regensburg and thus deals mainly 
with issues pertaining software. 

II. THE CHALLENGES OF THE UPCOMING VEHICLE 

ARCHITECTURE 

As discussed above, the main design considerations of an 
architectural change amount to the following: 

1) Significantly more data must be exchanged between 
control units and sensors, hence the network bandwidth 
must be increased. 

2) It must be possible to reinstall or update the software   
on the individual control units during operation. 

3) The software on the control units must be fail-safe. 
To increase the network bandwidth between the control units 
and sensors, one could simply install more cables. However, 

this also increases the weight of the vehicle, which is likewise 
undesirable. Thus, this type of architecture does not scale well. 

Another approach is to group the control units more closely 
together and integrate them on a few high-performance units. 
This means that a large amount of the signals that would oth- 
erwise be sent over the network are already processed within 
the control unit. This approach is already being practiced and 

the trend has become visible in recent years, for example in 
the so-called domain controllers or domain architecture. 

The next item appears to be more challenging, since previ- 
ous systems are configured in a very static fashion. There are 
not yet any suitable ways of deploying updates “over the air”; 

instead, direct physical access to the control units is required. 
In addition, the interaction of the individual control units – 
although each unit has its own software – is developed as an 
overall system and as such is either updateable as a whole     
or not at all. For example, introducing a new feature to the 
vehicle and thus a new software component requires revising 
the configuration of the entire system in terms of resource 
consumption, performance and safety. This makes it extremely 
impractical to not only deploy updates over the air, but even 
install them in the first place. 

On top of that, the software must also be fail-safe, which    
is the biggest constraint  on  the  flexibility  of  the  system.  
As already mentioned, the system as a whole is tested for 
safety before it is rolled out, so it is impossible to replace      
or update individual components without performing the test 
on the whole system again. However, this  does  not  mean  
that the software should not be developed in a modular 
fashion. It would be conceivable, for example, to test various 
combinations of software components already at the OEM, 
and if these are successful, to roll them out to the vehicles  
over the air. Each update would therefore need to be tested  
beforehand in the overall system at the OEM. Once this is the 
case, however, safety is also guaranteed for the end customer. 

III. SOFTWARE ARCHITECTURE 

 
Software architectures provide the structure for the devel- 

opment of software and allow both abstract and concrete 
definition of modularization, dependencies, and interfaces. 
They also have great influence on scalability and extensibility 
of software. 

Both the IT industry and the automotive industry anticipate 
the need to divide software into defined modules and subsys- 
tems in order to properly manage complex systems. In this 
spirit, it is very likely that the current OEM-supplier model  
will evolve in such a way that componies previously knows as 
hardware vendors will supply software modules in the future. 
This means that the OEM must provide a platform that allows 
the integration of such modules. The software architecture of 
this platform must in turn be suitable for this. This approach 
shows similarities to the service-oriented architecture that has 
been established in IT for years. In more recent years, another 
interesting trend has emerged, namely microservices. 

1) Service-Oriented Architecture (SOA): SOA is a concept 
that allows for a  great  flexibility  and  interpretation.  For  
this reason, there are many definitions that include different 
components and different views. For instance, Josuttis [4] 
defines SOA as a paradigm that diminishes the complexity of  
a company by dividing its technical structure. Driven by the 
use of distributed systems based on the fact that in a company 
exist a great amount of areas, each with their own systems.    
In addition, these systems can be distinguished by their own 
specifications and by the differences in hardware and software. 

Erl [5] on his behalf considers SOA as an “open, agile, 

expandable, unified, componentized architecture  consisting  
in autonomous, [...] capable of quality-of-service, possibly 
reusable services [...]. SOA can be considered an abstraction 
of the business logic and technology that leads to a loose    
link between the domains.” For Erl, SOA depends on the 
companies that implement it. In A3F we have worked with Erls 
interpretation of SOA, as it is the more productive perspective. 

A detailed look at the definition allows us to list a number 
of characteristics: 

Main concepts of SOA: 

• Modularity 
One of the central concepts of SOA. The systems have   
to be build with a modular structure, in order to be as 
independent as possible and thus make the deployment 
and testing easier. The modularity is achieved through  
the implementation of services. 

• Loose coupling 
A requisite that allows the integration of both individual 
and standard software acquired from different manufac- 
turers. The goal is to improve the flexibility, the error 
tolerance and the scalability. By reducing the interdepen- 
dency of the different parts of the system or between the 
services, chain failures in the system can be avoided. 

• High interoperation 
A quality that makes it possible to combine a number 
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of heterogeneous systems. Some examples of this are 
interfaces and the Enterprise Service Bus (ESB). 

Another important part are the services. Richter defines 
them as “clearly defined services that can be employed as 

elements of a bigger or multiple processing sequences.” 
 

Figure 1. New architecture based on a computer cluster with redundant 
network connection, investigated within the project A3F. 

 
Components: 

• Basic services 
Represent the minimal service unit. A basic service 
cannot be divided in smaller ones. 

• Composed services 
Composed by the arrangement of a number of basic 
services. The build a higher level of abstraction and can 
carry out more task in the scheduled order. 

• Process services 
A combination of composed services. They depict a 

whole business process or long-term workflow that main- 
tains its state after many calls. 

• Interfaces and contracts 
Interfaces guarantee the possibility to build independent 
services and systems. Through the definition of interfaces 
it is possible to communicate the function of the service 
without disclosing the details of the implementation. 
A contract irs a detailed specification of a service between 
an specific provider and an specific user (Josuttis, 2008). 
It contains the already defined interface plus details about 
the resources that need to be submitted. 

• Infrastructure 
Also referred to as ESB, the infrastructure describes a 
backbone that carries out task along the whole system.   
In order to fulfill this role, it offers a series of methods 
and technologies, such as the connection among other  
services and components, conversion of data, routing, 
security, fail-safety, management of services, monitoring 
and logging. 

The implementation of the SOA highly depends on the char- 
acteristics, the individuality of the company and the goals set 
for the architecture. For this reason, SOA provides descriptions 
of a series of criteria that need to be taken into account in order 
to achieve the desired flexible and expandable structure. 

2) Microservices: Microservices can also be conceived 
manifold. As Fowler [6] explains, they represent an approach 
to the development of single applications as a  set  of  ser- 
vices that run in single processes, and communicate through 
lightweight mechanisms. Fowler also says, that Microser- 
vices can be defined based on their characteristics. Wolff 
[7] employs also in his definition the characteristics of the 
Microservices, and for this reason calls this approach “concept 

of modularization”. 
Main concepts of Microservices: 

• Modularization and functionality 
• Independence 
• Lightweight communication 
• Definition of interfaces 

Characteristics: 

• Scalability 
• Deployment, Replaceability and Scalability 
• Responsiveness 
• Reusability 

In contrast to SOA, the microservices perspective does not 
aim to completely change the structure of the company, but   
to achieve a system that is expandable and maintainable. The 
business logic needs to be partitioned so that a service can 
issue a special request to other services with as few depen-  
dencies as possible. The microservices approach is additionally 
accompanied by concepts that move the operation of software 
closer to the development of the software. This particular 
aspect does not seem to get as much attention in the SOA 
approach. 

As far as the development of future architectures in vehicles 
is concerned, characteristics from both approaches are promis- 
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ing. Due to the modularity and independence of the software 
in SOA, this approach could be transferred relatively easily to 
the automotive world, while preserving the previous OEM- 
supplier model. However, due to the importance of failure 
safety, topics from the microservices approach also come into 
play, as operations are treated as a primary problem here. 

The concrete design of such an architecture as well as 
further overlaps from the IT area will be investigated in future 
work within the A3F project. 

IV. CONCLUSIONS 

In this paper, we have analyzed the shortcomings of current 
automotive system architectures and identified key future 
challenges. However, with the help of modern IT principles, 
the automotive industry can also develop further here and 
adopt promising approaches. Service-oriented architecture is a 
groundbreaking concept here, which is presumably relatively 
easy to implement due to the OEM-vendor structure. 

Greater challenges exist on the part of the technical imple- 
mentation of the proposed cluster, particularly with regard to 
the compatibility of flexibility and fail-safety. Further investi- 
gations will have to follow in this regard as part of the A3F 
project. 
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