
 Proc. Of the 5th International E-Conference on Advances in Engineering, Technology and Management - ICETM 2021
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-192-4 DOI: 10.15224/ 978-1-63248-192-4-11

58

The Need for New Software Architectures for
Next-generation Vehicles

Johannes Büttner, Cristina Alonso-Villa, Pere Bohigas Boladeras, Markus Kucera and Thomas Waas
Faculty of Computer Science and Mathematics

Regensburg University of Applied Sciences
Regensburg, Germany

Abstract—Assuming that future connected cars with auto-
mated driving functions will require even more computing power
and communication bandwidth, the current network infrastruc-
ture as well as the existing individualized control units are
not a profitable option for such vehicles. In addition, changing
user expectations demand flexible architectural patterns and
upgradeability of software components without the need to visit
the workshop. However, the current statically developed and
configured ECU architecture does not offer any practicable
possibilities for this. For these reasons, the research for a new
dynamic and flexible architecture is necessary. This new type of
system architecture is expected to meet future requirements in
terms of space, cost, performance, energy efficiency and number
of required computing units in the vehicle, which will arise as a
result of the implementation/inclusion of new automated driving
functionalities, and due to the changes in user expectations.
Solutions to this issue can be found in the field of enterprise
IT (cluster computing), in which technologies such as Ethernet,
container-based virtualization and flexible software architec-
tures have proven themselves to be very efficient for years.
Relevant infrastructures, for example from cloud computing
providers, have commonly been used in high-performance or
high-availability applications. Thus, in the research project A3F
has been investigated which of these concepts and methods can
be applied to modern vehicle system architectures. One of the
main goals is to assess the synergy potential of the two sectors,
information technology and automotive industry, which to date
have very different orientations. However, this synergy is expected
to grow strongly in the course of the developments mentioned
above.

In the following pages, the necessary changes related to
hardware and software will be discussed briefly und will be
compared to concepts and possible solutions from the IT world.

I. INTRODUCTION

Nowadays, there’s a computer – in the broadest sense of
the word – almost everywhere, in every gadget that automates
some aspect of daily life. Cars and other vehicles are no
exception to this. Since the 1970s, the amount of existing
connections in vehicles has steadily increased until a decade
later the first field-buses were introduced, which allowed for
a decrease in the number of cables needed and a rise in
the number of control units [1]. As the number of electronic
components for driver assistance functions increased, so did
the complexity of the architecture, which has since become
increasingly difficult to control.

In addition, the latest technological developments and trends
are challenging the current system architectures of vehicles:

Over-The-Air updates (OTA-Updates), self-driving cars and
the so-called connected car [2].

Concerning OTA-Updates, one first needs the ability to
deploy updates to the existing software by means of a backend
that provides the updates and a network connection that can
load these updates, but even more importantly, the control units
themselves must be upgradeable, i.e., they must provide a way
to install new software in an automated manner. Subsequently,
it is necessary to consider the granularity with which the
software is to be updated and how modular and dependent
the individual systems are on each other.

Self-driving cars require massive computing power whilst
combining a large number of input signals from sensors all
over the vehicle. To achieve this, control units and sensors
are typically connected via a bus. However, the bandwidth of
current vehicles will presumably be insufficient to process the
necessary amount of sensor signals.

Connected cars (V2V, V2X, ...), on the other hand, require
a high network bandwidth both on the internal network and to
the outside world. Again, this requires increasing the network
bandwidth of current vehicles.

As the demands on the hardware side continue to increase,
the software side should also be reconsidered.

A good way to illustrate the escalation of the amount of
software present in vehicles is to observe the increase in the
percentage of production costs derived from software, from
20% in 2000 to 37% in 2010. Thus, as Doherty et al. [3]
point out, cars became more dependent on software, which
lead to the implementation of methodologies characteristic of
the IT world.

This has produced an increase in the complexity of the
systems and thus an increment in the possibility of software-
related errors. Therefore new solutions should be focused in
providing a fail-safe stability.

One way to address this problem and meet the requirements
of future vehicles is through exploring the IT sector: modu-
larity, scalability, and fail-safety are key approaches to service
delivery.

Precisely this is the goal of the project Fail-Safe Archi-
tecture for Self-Driving vehicles (A3F): to test the suitability
of these technologies from the IT branch to solve some of
the most impelling pitfalls in the development of a fail-safe
software platform for autonomous-driving vehicles.

https://icetm.theired.org/

 Proc. Of the 5th International E-Conference on Advances in Engineering, Technology and Management - ICETM 2021
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-192-4 DOI: 10.15224/ 978-1-63248-192-4-11

59

The A3F Project is a collaboration between Continental AG
and the University of Applied Sciences of Regensburg (OTH
Regensburg). Whereas the former does research and executes
analysis on hardware and network communication, the latter
focuses on software architechtures and finding solutions on
an application level. The present paper has been written in
the framework of the OTH Regensburg and thus deals mainly
with issues pertaining software.

II. THE CHALLENGES OF THE UPCOMING VEHICLE

ARCHITECTURE

As discussed above, the main design considerations of an
architectural change amount to the following:

1) Significantly more data must be exchanged between
control units and sensors, hence the network bandwidth
must be increased.

2) It must be possible to reinstall or update the software
on the individual control units during operation.

3) The software on the control units must be fail-safe.
To increase the network bandwidth between the control units
and sensors, one could simply install more cables. However,

this also increases the weight of the vehicle, which is likewise
undesirable. Thus, this type of architecture does not scale well.

Another approach is to group the control units more closely
together and integrate them on a few high-performance units.
This means that a large amount of the signals that would oth-
erwise be sent over the network are already processed within
the control unit. This approach is already being practiced and

the trend has become visible in recent years, for example in
the so-called domain controllers or domain architecture.

The next item appears to be more challenging, since previ-
ous systems are configured in a very static fashion. There are
not yet any suitable ways of deploying updates “over the air”;

instead, direct physical access to the control units is required.
In addition, the interaction of the individual control units –
although each unit has its own software – is developed as an
overall system and as such is either updateable as a whole
or not at all. For example, introducing a new feature to the
vehicle and thus a new software component requires revising
the configuration of the entire system in terms of resource
consumption, performance and safety. This makes it extremely
impractical to not only deploy updates over the air, but even
install them in the first place.

On top of that, the software must also be fail-safe, which
is the biggest constraint on the flexibility of the system.
As already mentioned, the system as a whole is tested for
safety before it is rolled out, so it is impossible to replace
or update individual components without performing the test
on the whole system again. However, this does not mean
that the software should not be developed in a modular
fashion. It would be conceivable, for example, to test various
combinations of software components already at the OEM,
and if these are successful, to roll them out to the vehicles
over the air. Each update would therefore need to be tested
beforehand in the overall system at the OEM. Once this is the
case, however, safety is also guaranteed for the end customer.

III. SOFTWARE ARCHITECTURE

Software architectures provide the structure for the devel-

opment of software and allow both abstract and concrete
definition of modularization, dependencies, and interfaces.
They also have great influence on scalability and extensibility
of software.

Both the IT industry and the automotive industry anticipate
the need to divide software into defined modules and subsys-
tems in order to properly manage complex systems. In this
spirit, it is very likely that the current OEM-supplier model
will evolve in such a way that componies previously knows as
hardware vendors will supply software modules in the future.
This means that the OEM must provide a platform that allows
the integration of such modules. The software architecture of
this platform must in turn be suitable for this. This approach
shows similarities to the service-oriented architecture that has
been established in IT for years. In more recent years, another
interesting trend has emerged, namely microservices.

1) Service-Oriented Architecture (SOA): SOA is a concept
that allows for a great flexibility and interpretation. For
this reason, there are many definitions that include different
components and different views. For instance, Josuttis [4]
defines SOA as a paradigm that diminishes the complexity of
a company by dividing its technical structure. Driven by the
use of distributed systems based on the fact that in a company
exist a great amount of areas, each with their own systems.
In addition, these systems can be distinguished by their own
specifications and by the differences in hardware and software.

Erl [5] on his behalf considers SOA as an “open, agile,

expandable, unified, componentized architecture consisting
in autonomous, [...] capable of quality-of-service, possibly
reusable services [...]. SOA can be considered an abstraction
of the business logic and technology that leads to a loose
link between the domains.” For Erl, SOA depends on the
companies that implement it. In A3F we have worked with Erls
interpretation of SOA, as it is the more productive perspective.

A detailed look at the definition allows us to list a number
of characteristics:

Main concepts of SOA:

• Modularity
One of the central concepts of SOA. The systems have
to be build with a modular structure, in order to be as
independent as possible and thus make the deployment
and testing easier. The modularity is achieved through
the implementation of services.

• Loose coupling
A requisite that allows the integration of both individual
and standard software acquired from different manufac-
turers. The goal is to improve the flexibility, the error
tolerance and the scalability. By reducing the interdepen-
dency of the different parts of the system or between the
services, chain failures in the system can be avoided.

• High interoperation
A quality that makes it possible to combine a number

https://icetm.theired.org/

 Proc. Of the 5th International E-Conference on Advances in Engineering, Technology and Management - ICETM 2021
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-192-4 DOI: 10.15224/ 978-1-63248-192-4-11

60

of heterogeneous systems. Some examples of this are
interfaces and the Enterprise Service Bus (ESB).

Another important part are the services. Richter defines
them as “clearly defined services that can be employed as

elements of a bigger or multiple processing sequences.”

Figure 1. New architecture based on a computer cluster with redundant
network connection, investigated within the project A3F.

Components:

• Basic services
Represent the minimal service unit. A basic service
cannot be divided in smaller ones.

• Composed services
Composed by the arrangement of a number of basic
services. The build a higher level of abstraction and can
carry out more task in the scheduled order.

• Process services
A combination of composed services. They depict a

whole business process or long-term workflow that main-
tains its state after many calls.

• Interfaces and contracts
Interfaces guarantee the possibility to build independent
services and systems. Through the definition of interfaces
it is possible to communicate the function of the service
without disclosing the details of the implementation.
A contract irs a detailed specification of a service between
an specific provider and an specific user (Josuttis, 2008).
It contains the already defined interface plus details about
the resources that need to be submitted.

• Infrastructure
Also referred to as ESB, the infrastructure describes a
backbone that carries out task along the whole system.
In order to fulfill this role, it offers a series of methods
and technologies, such as the connection among other
services and components, conversion of data, routing,
security, fail-safety, management of services, monitoring
and logging.

The implementation of the SOA highly depends on the char-
acteristics, the individuality of the company and the goals set
for the architecture. For this reason, SOA provides descriptions
of a series of criteria that need to be taken into account in order
to achieve the desired flexible and expandable structure.

2) Microservices: Microservices can also be conceived
manifold. As Fowler [6] explains, they represent an approach
to the development of single applications as a set of ser-
vices that run in single processes, and communicate through
lightweight mechanisms. Fowler also says, that Microser-
vices can be defined based on their characteristics. Wolff
[7] employs also in his definition the characteristics of the
Microservices, and for this reason calls this approach “concept

of modularization”.
Main concepts of Microservices:

• Modularization and functionality
• Independence
• Lightweight communication
• Definition of interfaces

Characteristics:

• Scalability
• Deployment, Replaceability and Scalability
• Responsiveness
• Reusability

In contrast to SOA, the microservices perspective does not
aim to completely change the structure of the company, but
to achieve a system that is expandable and maintainable. The
business logic needs to be partitioned so that a service can
issue a special request to other services with as few depen-
dencies as possible. The microservices approach is additionally
accompanied by concepts that move the operation of software
closer to the development of the software. This particular
aspect does not seem to get as much attention in the SOA
approach.

As far as the development of future architectures in vehicles
is concerned, characteristics from both approaches are promis-

https://icetm.theired.org/

 Proc. Of the 5th International E-Conference on Advances in Engineering, Technology and Management - ICETM 2021
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-192-4 DOI: 10.15224/ 978-1-63248-192-4-11

61

ing. Due to the modularity and independence of the software
in SOA, this approach could be transferred relatively easily to
the automotive world, while preserving the previous OEM-
supplier model. However, due to the importance of failure
safety, topics from the microservices approach also come into
play, as operations are treated as a primary problem here.

The concrete design of such an architecture as well as
further overlaps from the IT area will be investigated in future
work within the A3F project.

IV. CONCLUSIONS

In this paper, we have analyzed the shortcomings of current
automotive system architectures and identified key future
challenges. However, with the help of modern IT principles,
the automotive industry can also develop further here and
adopt promising approaches. Service-oriented architecture is a
groundbreaking concept here, which is presumably relatively
easy to implement due to the OEM-vendor structure.

Greater challenges exist on the part of the technical imple-
mentation of the proposed cluster, particularly with regard to
the compatibility of flexibility and fail-safety. Further investi-
gations will have to follow in this regard as part of the A3F
project.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
of the Bavarian Ministry of Economic Affairs, Energy and
Technology (Bayerisches Staatsministerium für Wirtschaft und
Medien, Energie und Technologie [STMWI]), ot the fund-
ing program “Information and Communication Technology
Bavaria (Informations- und Kommunikationstechnologien” as
well as the support by project management organization
VDI/VDE Innovation + Technik GmbH.

REFERENCES

[1]H. Richter, “Elektronik und datenkommunikationim au-
tomobil,” IfI Technical Report Series, vol. Institut für In-
formatik, Technische Universität ClausthalJulius-Albert
Str. 4, 38678 Clausthal-Zellerfeld, Germany, p. 15, IfI-
09-05 May 2009, ISSN: 1860-8477. [Online]. Available:
http : / / www. in . tu - clausthal . de / forschung / technical -
reports/.

[2]R. Grave, “Autonomous driving – from fail-safe to fail-
operational systems,” TechDay, Dec. 2015, [Online].
Available: https : / / d23rjziej2pu9i . cloudfront . net / wp -
content / uploads / 2015 / 12 / 09163552 / Autonomous -
Driving- From- Fail- Safe- to- Fail- Operational- Systems_
TechDay_December2015.pdf (visited on 06/17/2017).

[3]P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T.
Persson, and B. Wingman, “A distributed architecture for
autonomous unmanned aerial vehicle experimentation,”

in Distributed Autonomous Robotic Systems 6, R. Alami,
R. Chatila, and H. Asama, Eds., Tokyo: Springer Japan,

2007, pp. 233–242, ISBN: 978-4-431-35869-5 978-4-431-
35873-2. DOI: 10 . 1007 / 978 - 4 - 431 - 35873 - 2 _ 23.

[Online]. Available: http://www.springerlink.com/index/
10.1007/978-4-431-35873-2_23 (visited on 09/17/2019).

[4]N. M. Josuttis, SOA in practice, 1st ed. Beijing ; Se-
bastopol: O’Reilly, 2007, 324 pp., OCLC: ocm77796085,
ISBN: 978-0-596-52955-0.

[5]T. Erl, Service-oriented architecture: concepts, technol-
ogy, and design. Upper Saddle River, NJ: Prentice Hall
Professional Technical Reference, 2005, 760 pp., ISBN:
978-0-13-185858-9.

[6]M. Fowler and J. Lewis, “Microservices: Nur ein weiteres

konzept in der softwarearchitektur oder mehr?” Objekt
Spektrum, vol. SIGS DATACOM GmbH, no. 1, 2015.

[7]E. Wolff, Microservices: Grundlagen flexibler Soft-
warearchitekturen, 1., korrigierter Nachdruck. Heidel-
berg: dpunkt.verlag, 2016, 376 pp., OCLC: 915162854,
ISBN: 978-3-86490-313-7 978-3-86491-841-4 978-3-
86491-842-1 978-3-86491-843-8.

https://icetm.theired.org/
http://www.in.tu-clausthal.de/forschung/technical-reports/
http://www.in.tu-clausthal.de/forschung/technical-reports/
http://www.in.tu-clausthal.de/forschung/technical-reports/
https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2015/12/09163552/Autonomous-Driving-From-Fail-Safe-to-Fail-Operational-Systems_TechDay_December2015.pdf
https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2015/12/09163552/Autonomous-Driving-From-Fail-Safe-to-Fail-Operational-Systems_TechDay_December2015.pdf
https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2015/12/09163552/Autonomous-Driving-From-Fail-Safe-to-Fail-Operational-Systems_TechDay_December2015.pdf
https://d23rjziej2pu9i.cloudfront.net/wp-content/uploads/2015/12/09163552/Autonomous-Driving-From-Fail-Safe-to-Fail-Operational-Systems_TechDay_December2015.pdf
https://doi.org/10.1007/978-4-431-35873-2_23
http://www.springerlink.com/index/10.1007/978-4-431-35873-2_23
http://www.springerlink.com/index/10.1007/978-4-431-35873-2_23

