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Abstract—This paper addresses the topic of robust routing 
and scheduling for parallel systems that suffer from operation 
interruptions and unreliable resources. The proposed approach 
uses a partially controllable extension of timed Petri nets as a 
model of the deterministic and stochastic behaviours. The mean 
job durations are first evaluated. Then a mean timed 
reachability graph is proposed to encode the timing aspects and 
Dijkstra algorithm is used to solve the routing and scheduling 
problems related to operation and resource failure rates. 
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I. Introduction 
Route selection and operation scheduling play an 

important role in many application domains as computer 
science, flexible manufacturing or logistics and results are 
used to solve many problems, mainly from the operations 
research community. In particular, the well-known problems 
of flow-shop and job-shop scheduling have been investigated 
for a long time [6] [10]. Most of these scheduling problems 
do not consider uncertainties. However, in the real world, 
schedules suffer from the uncertain events such as machine 
and operation failures that can severely affect the system 
performance [34]. One important issue when addressing 
uncertain environments is how to model and predict such 
disruptions in such a way that robust schedules can be 
computed systematically and easily. This work proposes a 
method based on Timed Petri Nets to solve scheduling 
problems for parallel systems in Markovian uncertain 
environments. Petri net (PN) models have numerous 
advantages such as a well-sound graphical and mathematical 
formalism that simplifies the representation and 
understanding of numerous discrete-event systems [3] [5]. 
They are suitable to represent the multiplicity of resources, 
routing problems, batch sizes estimation, buffers capacity 
evaluation and so on. Besides, PN models have some 
technical advantages: They are easy to update by adding or 
removing components; they are also formalized with linear 
algebra and temporal specifications which can be included in 
a systematic way. Further, they are easy to combine with 
exploration and optimization algorithms. 

The contributions of this paper are twofold: (1) to model 
the risk of operation disruption and resource unavailability 
with TPN in a Markovian context, (2) to design the Time 
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Extended Reachability Graph (TERG) of the proposed model 
to describe the mean temporal behaviour of the considered 
systems. Furthermore, the paper illustrates how the usual 
Dijkstra algorithm can be used with the TERG to solve the 
routing and scheduling problems. 

The paper is organized as follows: Section 2 presents the 
state of the art. Section 3 details the proposed Partially 
Controlled Timed Petri Net (PC-TPN) model used to describe 
the meantime behaviours of parallel jobs with shared 
resources and operation and resource failures. We devote 
Section 4 to describe the different steps of the routing and 
scheduling problem resolution. Section 5 gives an example 
and Section 6 summarizes conclusions and perspectives. 

II. State of the art 
PN and (max, +) algebra have been long used to solve 

optimization problems of discrete event systems (DES) [4] 
[5] and in particular of scheduling problems. Most of the PN 
scheduling literature studies Flexible Manufacturing Systems 
(FMS) systems with makespan as the optimization criterion 
[8] [11] [17] [25] [31]. 

A few works have introduced resiliency or vulnerability 
analysis in scheduling problems. Uncertainties can result in 
the unavailability of resources, lead eventually to deadlocks 
and have negative impacts on system performance. 
Generally, the two major approaches that deal with 
uncertainty in the scheduling literature are reactive 
scheduling and robust scheduling [34]. On one hand, reactive 
scheduling refers to changes to the original schedule that aim 
to accommodate. These changes are made after the disruption 
occurrence [18]. Robust scheduling, on the other hand, aims 
to devise schedules that are resilient to disruptions [34]. In 
robust scheduling, the objective is to create an off-line 
schedule capable to absorb disruptions: Approaches for 
robust scheduling include inserting idle times [22], adding 
buffer times [9] [28], searching for resilient schedules using 
multi-objective optimization [1] [19] and combining risk and 
scheduling objectives [13] [35]. All existing approaches can 
be divided into 3 categories: metaheuristics, graph search 
methods in reachability graph and graph search methods in 
TERG. 

Among Metaheuristics, most common have been Genetic 
Algorithms [2] [24] [33], Particle Swarm Optimization (PSO) 
[8] [36], Differential Evolution [16] and Ant Colony 
Optimization (ACO) [20]. In these methods, both the 
encoding and the decoding can be simple and good solutions 
reached in short computer times; nevertheless, these methods 
depend on the considered problem ; that is why it is too 
difficult to reuse them. 

Graph search methods are popular in the Petri net 
scheduling literature: they consist in adaptations of the A* 
search algorithms and its variants to the PN state space [11]. 
In essence, all these algorithms search for a reference marking 
by expanding the markings of the PN reachability graph. The 
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output of such algorithms is a path from the initial marking 
MI to the reference marking Mref, provided that such a path 
exists [32]. The major drawback of the A* algorithm is that it 
requires exponential time and memory [32]. For this reason, 
pruning the search tree is a common practice, but at the 
expense of optimality. Several pruning methods have been 
proposed to reduce the time and space complexity by limiting 
the exploration depth within “windows” [21] [31] by 
checking the “safeness” or potential deadlocks of nodes [17] 
by using predictive control [12] and expanding a limited 
number of candidates as in the beam search exploration 
algorithms [23] [26]. The main drawback of the previous 
approaches is to be sub-optimal without proposing any bound 
on the approximation error. 

Extension of the TPN reachability graphs that incorporate 
time information has been also studied for scheduling issues. 
The States Class Graph [37] was the first method of the state 
space representation adapted to TPN with firing time intervals 
associated with transitions. For this purpose, a time-domain 
is added to each marking thanks to a set of inequalities over 
the firing variables. The method has been further improved 
with the Atomic States Class Graph [38] and the Zones Based 
Graph [39]. In all previous approaches, the time information 
does not appear explicitly in the nodes of the graph and the 
methods are not directly suitable for control and scheduling 
issues. The explicit abstraction (including the time 
information) of a TPN with time intervals associated with the 
transitions has been proposed in [42] and [45] that introduce 
respectively the Timed Aggregate Graph (TAG) and the 
Modified State Class Graph (MSCG) devoted to state 
estimation and diagnosis issues. Applications for the timed 
reachability graphs control have been proposed in [40] [41] 
and [14] On one side, the synthesis of maximal permissive 
TPN supervisor that fulfil safety and reachability properties 
has been developed by [40]. On the other side, the design of 
controllers (including the earliest firing policy) that allows us 
to compute optimal control sequence (i.e. control sequence 
that leads to a minimal makespan) has been developed in [14]. 

III. Deterministic and stochastic 
timed Petri nets 

A. Petri nets 
A Petri net structure is defined as PN = <P, T, WPR, WPO> 

where P = {P1,…, Pn} is a set of n places and T = {T1,…, Tq} 
is a set of q transitions, WPO  (N) nq and WPR  (N) nq are 
the post and pre incidence matrices (N is the set of non- 
negative integer numbers) and W = WPO – WPR is the 
incidence matrix. <PN, MI > is a PN system with initial 
marking MI  (N) n [3] [5]. Such PN system will be denoted 
as <PN, MI >. M  (N) n represents the PN marking vector. 
The enabled degree of a transition Tj at marking M is defined 
as nj(M) = min{floor(mk / w

PR
kj) : Pk  °Tj}, where °Tj stands 

for the preset of Tj, mk is the marking of place Pk, w
PR

kj is the 
entry of matrix WPR in row k and column j, and floor(x) stands 
for the largest integer smaller than or equal to x. When Tj is 
enabled, it can fire to give a new marking M’, that is what we 
denote   by   M   [   Tj   >   M’,    where    M'   =   M    +    
W(:, j) (with W(:, j) denoting the jth column of matrix W). A 
firing sequence  is a sequence of transitions that 
consecutively fire from a given marking M; this is denoted as 
M [ > M’ and M’ is said to be reachable from M. A firing 

sequence  is a sequence of transitions that consecutively fire 
from a given marking M; that is denoted as follows: M [ > 
M’ and M’ is said to be reachable from M. 

In the next, k-bounded nets are considered. In this case, 
the number of reachable markings from the initial marking MI 

is finite and noted N. S is the set of all reachable markings 
from the initial marking MI and  is the generator matrix of 
the reachability graph: for all M, M’  S  S, (M, M’) = Tj 

if M [Tj >M’, otherwise (M, M’) =  where  stands for the 
empty strings. Gathering all these elements, we can define the 
Reachability Graph of a PN system by <S,, MI>. 

B. Timing aspects 
There are several classes of deterministic and stochastic 

timed PN; in particular, Transition – Timed PN (T-TPN), that 
associate a constant firing duration to each transition in the 
net [30] and Stochastic Petri Nets (SPN) that associate a 
variable exponentially distributed firing duration to each 
transition in the net. A T-TPN system <PN, D, MI> is a timed 
PN where D: T → R+ is a firing time function that assigns a 
positive real delay dj  D to each transition Tj of the net. The 
transition Tj may fire at earliest after the delay dj from the date 
it has been enabled. 

An SPN system <PN, , MI> is a timed Petri net whose 
delays to fire transitions are characterized by the vector of 
firing parameters µ  (R*+)q (where R*+ is the set of strictly 
positive real numbers) [15] [16]. The firing parameter of a 
given transition Tj is referred to as (Tj) or as j. For any 
transition Tj, enabled at M, the firing delay is given by a 
random variable with an exponential probability density 
function of parameter nj(M)µj. 

Also, the time semantic of considered T-TPN and SPN is 
characterized by the server, choice and memory policies. In 
this work, an infinite server is used as a server policy, with 
that a race is used as a choice policy and finally a resampling 
memory is used as a memory policy [7]. 

According to these policies and under some specific 
assumptions, it is possible to interpret an SPN as a 
continuous-time Markovian process [7] [27]. That means that 
the dynamics of a k-bounded SPN are described by a 
continuous-time Markov model with a state-space isomorphic 
to the reachability set of the SPN [7]. A timed firing sequence 
σ of length |σ| = K and of duration τK is defined as σ= 
T(τ1)T(τ2)…T(τK) where τ1,..., τK represent the firing times that 
satisfy 0 ≤ τ1 ≤ τ2 ≤… ≤ τK. The timed firing sequence σ fired 
at M leads to the timed trajectory (σ,M)= M(0) [T(τ1) > 
M(1)….M(K-1)[T(τK) > M(K). 

C. Control aspects 
In this paper, the set of transitions 𝑻 is divided into 2 

disjoint subsets   and 𝑻𝑵𝑪   such that 𝑻 =  𝑻𝑪   ∪  𝑻𝑵𝑪 where 
  and 𝑻𝑵𝑪  are respectively the  subsets of controllable  and 
uncontrollable transitions. Firing enabled controllable 
transitions is enforced by the control actions which are 
decided by a controller, whereas the firing of uncontrollable 
transitions is not. The uncontrollable transitions represent 
failure and repair events. Such transitions fire spontaneously 
according to exponentially distributed events. Consequently, 
each transition Tj  TNC is associated with a firing rate j. On 
the contrary, the controllable transitions fire after a 
deterministic delay. Consequently each transition Tj  TC is 
associated to a deterministic firing time dj. 
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This paper studies Partially Controlled Timed PNs (PC- 
TPN) <PN, DC, NC, MI> where deterministic firing times DC 

are associated with controllable transitions and firing rates 
NC are associated with uncontrollable ones. Such models 
combine deterministic timing aspects that have been 
intensively used to describe and solve scheduling problems in 
stable environments [13] and also stochastic timing aspects 
that have been used to evaluate the reliability and availability 
of fault and repair processes [14]. Consequently, they appear 
suitable to describe and solve routing and scheduling 
problems in uncertain environments where unexpected events 
may occur. This contribution continues our research effort in 
this direction. 

IV. Modelling unreliable 
Markovian systems with SPN 
This section describes the modelling of scheduling 

problems within uncertain environments under the formalism 
of PC-TPN. It is assumed that several jobs may be selected to 
perform series of tasks and that each job consists of a set of 
operations, performed by a set of resources and executed 
according to a predefined sequence of transition firings. The 
main practical applications of this description rely on the 
fields of flexible manufacturing systems, computer science 
and logistic. Operations may be interrupted and resources are 
unreliable. The controller aims to select the best route and to 
schedule the operations in order to perform the different task 
series with a minimal makespan considering the risk of 
operation and resource failures. 

A. Modelling the problem with PC-TPN 
In this paper, we consider the problem where several tasks 

can be performed by a set of jobs. The controller should 
assign the tasks to the jobs and schedule the operations in each 
job to optimize the makespan. Let 𝑱, 𝑶 and 𝑹 be respectively 
a set of jobs, a set of operations and a set of resources. The 
subset of operations of the job 𝑗 is 𝑶𝒋   ⊆  . Each operation 
𝑜 consists of the processing activity and a subset of resources 
𝑹𝒐  𝑹 required to perform this activity. The route of a job 
defines the order in which such operations must be processed. 

Places in the PC-TPN model can be either buffer places 
or resource places. 

 

 

Figure 1. Modelling of the operation o with resources RO = {r1,…,rk} 
using PC-TPN 

 

 
 

Figure 2. Modelling of parallel jobs with common resources 
 

The sets of resource places are 𝑷𝑹𝒆𝒔. In terms of the Petri 
net, an operation is represented by a controllable transition 𝑇, 
an input buffer represented by a place 𝑃 ∈ 𝑇 , an output 
buffer represented by a place 𝑃′ ∈ 𝑇 (that may as well be the 
input buffer of the next job operation) and a set of resources 
places {𝑃𝑟 ∈ 𝑷𝑹𝒆𝒔 / 𝑟 ∈ 𝑹𝒐 }: T  𝑃𝑟  and 𝑇  𝑃𝑟 . Fig. 1 
shows an example of an operation and its resources. 

The batch size of each job 𝑗 (i.e. the number of 
simultaneous executions of the job) is encoded in a specific 
place referred as 𝑃𝑐(𝑗) Fig. 2. This place is unique for each 
job subnet. The total number of tasks to be performed is also 
encoded in the PC-TPN model with a specific place referred 
to as Pexec in Fig. 2 connected to the transitions of the first 
operations of each job. Finally, the place 𝑃𝑟𝑒𝑓 counts the 
total number of all job executions in Fig. 2. This place belongs 
to the set of post transitions of the latest operations of each 
route of each job. 

The proposed model describes the situation where tasks 
can be performed by any job within those composing the 
whole system. The following assumptions hold in the 
remainder of the paper: 

 Uncontrollable transitions represent either 
interruptions of operations in Fig. 3 or resource 
unavailability in Fig. 4. 

 The firing durations of all controllable transitions and 
the firing rates of all uncontrollable transitions are 
assumed to be known. 

 Each operation requires at most one resource to be 
performed. 

 Each operation or resource place has only a single 
uncontrollable transition in its post set. Different 
classes of operation or resource failures are not 
considered here. 
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B. Modelling operation disruptions 
The interruption of the operations describes the case when 

a job requires additional processing time due to raw material 
defects or other processing problems. 

 

 
Figure 3. Interruption of an operation. 

 
These interruptions can be modelled with an interruption 

subnet. An interruption subnet consists of a subset of 2 places 
{P, Pf}, a subset of 2 transitions {Tf, Tr}, and a set of arcs {(P, 
Tf), (Tf, Pf), (Pf, Tr), (Tr, P)}. Transition Tf represents the 
operation failure, and Tr the operation recovery. Place P 
represents an input buffer and place Pf represents the 
condition “waiting for recovery” in Fig. 3. 

With the race policy, the mean time required to fire 
transition T can be evaluated by considering the probabilities 
of occurrence of 0, 1, 2,…,k successive faults when the 

operation is expected to be performed. 

Let us first compute the probability to fire transition T 
when T and Tf are in conflict. The firing time d for T is 
constant. On the contrary the firing times for Tf are 
exponentially distributed with a firing rate o. Let us refer to 
the probability to fire T as o and the probability to fire Tf as 
1-o with o= exp(- o  d). When Tf fires the mean firing 
duration d(Tf) is obtained as 

𝑑 
  𝑡  exp(−  t) 𝑑𝑡 

C. Modelling the unreliable resources 
Unreliable resources also exist. This is the case when a 

resource becomes unavailable due to failures or other 
disruptions such as worker absence, or power outage. The 
main differences with the aforementioned operation 
interruption are: (1) the resource may become unavailable 
even when it is not required, whereas an operation 
interruption only occurs when the operation is in progress; (2) 
the shared resource that becomes unavailable affects all jobs 
that require it whereas an operation interruption only affects 
the job where the interruption occurred. 

As in the case of interruptions, these situations can be 
modelled with an unreliable resource subnet. Such a subnet 
consists of a subset of 2 places {Pf, Pr}, a subset of 2 
transitions {Tf, Tr}, and a set of arcs {(Pr, Tf), (Tf, Pf), (Pf, Tr), 
(Tr, Pr)}. Transition Tf represents the resource failure, and Tr 

the resource recovery. Place Pr represents the resource 
availability whereas Pf represents the unavailability of the 
same resource in Fig. 4. With the race policy, the mean time 
required to fire transition T can be evaluated by considering 
the probabilities of occurrence of 0, 1, 2,…,k successive 

faults when the operation is expected to be performed with 
the resource r. Two cases should be considered separately: 

(i) The failure of resource r occurs when it is required 
(i.e., when transition T is enabled). In this case m(Pr) 
= 1 and this case is similar to the case when an 
operation fails by considering r= exp(- r  d) 
instead of o. Note that the mean probability to be in 
case (i) is r / (r + r). The mean duration d’ to 
perform the operation is computed with an equation 
similar to (2). 

(ii) The failure of resource r occurs when the resource is 
idle (i.e., when transition T is not enabled). In this 

 

that leads to 

𝑑(𝑇𝑓 ) = 0 ,  

∫
𝑑 

𝑜  exp(−𝑜  t) 𝑑𝑡 case, m(Pr) = 0 and the resource should first be 
repaired with a mean duration 1 / r, then the system 
returns to case (i). The mean probability to be in case 
(i) is r / (r + r). 
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k
o and the duration to perform the 
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the mean duration d’ to perform the operation is computed as 
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Figure 4. Unreliable resource. 
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V. Optimal scheduling based on 
TERG 

A. Timed reachability graph 
In this paper, an extended reachability set is introduced 

that is composed of states S = (M, CAL) that include not only 
the markings M but also the delays to fire the enabled 
controllable transitions at M. 

 

 
Figure 5. Example of a system with operation disruptions and unavailable 

resources 
 

Such firing delays are encoded in a calendar CAL and 
SCAL(M) refers to the set of calendars consistent with the 
marking M. 

A calendar at marking M, CAL = {(T, ), with M [ T >} 
contains the list of the enabled controllable transitions T and 
their minimal delay  before firing. When a transition is 
enabled several times at M, it appears several time in CAL 
with identical or different delays. The timed extended 
reachability set is thus defined as SE = {(M, CAL)  S  SCAL 
(M)}. Thus, each state S  SE is composed of a marking M(S) 
 S plus a calendar CAL(S)  SCAL(M(S)). Consequently the 
Timed Extended Reachability Graph (TERG) of a given PC- 
TPN is formally defined as < SE, E, BE, SI >. NE is the 
number of states in SE. E  (T  {})NENE is the transition 
matrix such that for all S, S’  SE  SE, E(S, S’) = Tj if M(S) 
[Tj >M(S’), otherwise E(S, S’) = . BE  (N)NENE is a delay 
matrix such that for all S, S’  SE  SE, BE(S, S’) = dj if M(S) 
[Tj >M(S’) and dj is the delay to fire Tj at earliest, otherwise 
BE(S, S) = 0 and BE(S, S’) =  for S  S’. Note that the 
unknown firing delays of uncontrollable transitions are not 
reported in BE. SI is the initial state corresponding to the initial 
marking and to the calendar where the enabled transitions are 
the ones enabled at date 0. A more detailed description of 
TERG and also a constructive algorithm can be found in [15]. 

B. Paths of minimal duration in TERG 
Dijkstra algorithm is an algorithm that searches the paths 

of smallest cost between nodes in a graph. Thus, defining a 
source node and a destination node in a graph, the algorithm 
finds the best path between those nodes by stopping the 
algorithm once the path with smallest cost to the destination 

node has been determined. The algorithm is used in many 
domains as urban and interurban logistic problems but also 
network routing protocols. 

The core of the Dijkstra algorithm is to assign some initial 
distance values between nodes and to improve them step by 
step. The stages of the algorithm are as follows: 

 Mark all nodes unvisited and define by UNXPL the 
set of all the unvisited nodes. Assign to every node a 
tentative distance value: set it to zero for the initial 
node and to infinity for all other nodes. Set the initial 
node as current node. 

 For the current node, consider all of its unvisited 
neighbors and calculate their tentative distances 
through the current node. Compare the newly 
calculated tentative distance to the current assigned 
value and assign the smaller one. 

 Do the same considering all unvisited neighbors of 
the current node, then mark the current node as 
visited and remove it from UNXPL. 

 If the destination node has been marked visited or if 
the smallest tentative distance among the nodes in 
UNXPL is infinity, then stop. The algorithm has 
finished. Otherwise, select the unvisited node that is 
marked with the smallest tentative distance, set it as 
the new current node, and continue the search. 

The Dijkstra algorithm is applied on the TERG by using 
the time information encoded in matrix BE in order to define 
the cost between the TERG states. The returned path is then 
trivially transformed in a control sequence by using the 
information in matrix E. This control sequence is minimal 
in time and lead to an optimal makespan. 

VI. Example 
The example of PC-TPN in Fig. 5 is the model of a system 

with 3 jobs. Each job consists of 5 operations (for clarity, the 
transitions that correspond to the operations are highlighted 
in red in Fig. 5) and has a batch size of 1. The global number 
of job executions adds up to 3 (represented by the final 
marking of place 𝑃𝑟𝑒𝑓) and the controller can select between 
the three jobs. Two shared resources are required to perform 
the operations: Resource 1 is used on operations 2 and 7, 
resource 2 is used on operations 9 and 14. All other operations 
require non-shared resources and therefore these resources 
are not explicitly modeled. The durations (in TU) of the 
operations are also reported in Fig. 5. When no failure at all 
occurs, jobs duration is reported in Table 1 and job 1 is the 
best solution to execute a single task. Fig. 6 and Fig. 7 
illustrate the effect of the operation and resource failures on 
the mean duration of each job for a single task. Fig. 6 reports 
the mean duration of job 1 (black color), job 2 (red color), job 
3 (blue color) with respect to the operation failure rate and 
Fig. 7 reports the same mean durations with respect to the 
resource failure rate. One can notice that depending on the 
operation failure rate, the controller will prefer job 1 for o  
[0, 0.28[, then it will prefer job 3 for o  [0.28, 0.47[ and 
finally prefer job 2 for o  0.47 (as long as r = 0). The 
resource failures also affect the jobs mean duration but do not 
change the most preferable job as long as o = 0. 
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When several tasks should be performed, the problem 
becomes more complicated because of the possible parallel 
use of different jobs and due to the sharing of resources r1 and 
r2 by different jobs. In that case, the construction of the TERG 
and the application of the Dijkstra algorithm in the resulting 
graph ensure the best job selection (i.e., the best routing) and 
the best operation schedule for the mean job duration. To 
conclude, the optimization is twofold: in term of routing and 
also in term of job scheduling. 

 

Figure 6. Mean duration time for each job with respect to o 

(r = 0, o  = 1, r  = 1) 
 

Table 1 sums up the results obtained for several values of 
the operation and resource failure rates when the capacity of 
each job is one and when 3 tasks are planned: 

 Dur. (J1,J2,J3) : stand for the mean durations of each 
job, 

 Nbre Exec. (J1,J2,J3) : stands for the number of 
executions of each job, 

 D1 is the mean makespan (including the additional 
times due to the risk of failures) for the job selection 
and schedule decided by the controller, 

 D2 is the minimal makespan (assuming that no failure 
occurs) for the job selection and schedule decided by 
the controller, 

 D3 is the mean makespan (including the additional 
times due to the risk of failures) for the job selection 
and schedule computed by the controller in the case 
when no failure occurs. 

From Table 1 several conclusions can be given: 
 The routing and the scheduling (D2) change with 

respect to the operation and resource failure rates. 

 The mean makespan computed by including the 
additional times due to the risk of failures (D1) is 
always lower than the makespan computed if the 
control sequence obtained in the case where no 
failure is considered (D3) (i.e., (r ,o) = (0,0)) is 
applied. 

 The complexity of the method (last column) depends 
weakly on the uncertainties that are considered. The 
complexity is due to first to the different markings of 
the PC-TPN models and secondly to the number of 
time constraints included in the TERG. The rapid 
increase of the TERG size is the main limitation for 
the application of the method to large systems. 

 

 

Figure 7. Mean duration time for each job with respect to r 

(o = 0, o  = 1, r  = 1) 
 

TABLE I. RESULTS FOR THE SYSTEM IN FIG. 5 
 

Rate 
(r ,o) 

Dur. 
(J1,J2,J3) 

Nbr. exec 
(J1,J2,J3) 

D1 D2 D3 Size 

(0,0) (11,16,13) (1,1,1) 18 18 18 2610 
(0.2,0) (12,20,16) (2,1,0) 24 22 26 3987 
(0.4,0) (14,29,23) (2,0,1) 27 22 42 3536 
(0.6,0) (16,44,36) (2,0,1) 36 28 72 3279 
(0,0.2) (13,16,14) (1,1,1) 18 18 19 3765 

(0.4,0.2) (16 29 24) (2,0,1) 32 22 42 4124 
(0,0.6) (23,16,17) (0,2,1) 22 22 32 4932 

(0.2,0.6) (24,21,21) (1,1,1) 28 19 33 5448 
(0.6,0.6) (27,44,40) (2,0,1) 55 22 72 4362 

…       

 
 

VII. Conclusion 
In this paper, we present an approach that computes 

control sequences for routing and scheduling problems for 
parallel systems in which operation interruptions and 
resource failures are exponentially distributed. Multiple 
successive failures are considered. This approach uses timed 
PNs as a systematic formalism. The core of the approach is to 
evaluate the risk of repetitive failures and to design a timed 
extended reachability graph that includes this risk estimated 
as an additional time. Based on the TERG design method that 
was proposed previously by the author, it becomes possible 
to compute the best routing and scheduling decisions on the 
average. 

The perspectives of these works are first to consider 
limitations due to complexity of calculating TERG by using 
a method that allows us to get an approximation of this timed 
graph and secondly to extend the class of considered systems 
when the operations may require several resources to be 
performed. 
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