

16

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

Optimal routing and scheduling for unreliable
Markovian systems modeled with Timed Petri nets.

Oussama Hayane, Dimitri Lefebvre

Abstract—This paper addresses the topic of robust routing
and scheduling for parallel systems that suffer from operation
interruptions and unreliable resources. The proposed approach
uses a partially controllable extension of timed Petri nets as a
model of the deterministic and stochastic behaviours. The mean
job durations are first evaluated. Then a mean timed
reachability graph is proposed to encode the timing aspects and
Dijkstra algorithm is used to solve the routing and scheduling
problems related to operation and resource failure rates.

Keywords—Discrete event systems, Timed Petri nets,

routing, scheduling, failures.

I. Introduction
Route selection and operation scheduling play an

important role in many application domains as computer
science, flexible manufacturing or logistics and results are
used to solve many problems, mainly from the operations
research community. In particular, the well-known problems
of flow-shop and job-shop scheduling have been investigated
for a long time [6] [10]. Most of these scheduling problems
do not consider uncertainties. However, in the real world,
schedules suffer from the uncertain events such as machine
and operation failures that can severely affect the system
performance [34]. One important issue when addressing
uncertain environments is how to model and predict such
disruptions in such a way that robust schedules can be
computed systematically and easily. This work proposes a
method based on Timed Petri Nets to solve scheduling
problems for parallel systems in Markovian uncertain
environments. Petri net (PN) models have numerous
advantages such as a well-sound graphical and mathematical
formalism that simplifies the representation and
understanding of numerous discrete-event systems [3] [5].
They are suitable to represent the multiplicity of resources,
routing problems, batch sizes estimation, buffers capacity
evaluation and so on. Besides, PN models have some
technical advantages: They are easy to update by adding or
removing components; they are also formalized with linear
algebra and temporal specifications which can be included in
a systematic way. Further, they are easy to combine with
exploration and optimization algorithms.

The contributions of this paper are twofold: (1) to model
the risk of operation disruption and resource unavailability
with TPN in a Markovian context, (2) to design the Time

Oussama Hayane

Laboratoire GREAH / université le havre normandie
France

Dimitri Lefebvre

Laboratoire GREAH / Université Le Havre Normandie
France

Extended Reachability Graph (TERG) of the proposed model
to describe the mean temporal behaviour of the considered
systems. Furthermore, the paper illustrates how the usual
Dijkstra algorithm can be used with the TERG to solve the
routing and scheduling problems.

The paper is organized as follows: Section 2 presents the
state of the art. Section 3 details the proposed Partially
Controlled Timed Petri Net (PC-TPN) model used to describe
the meantime behaviours of parallel jobs with shared
resources and operation and resource failures. We devote
Section 4 to describe the different steps of the routing and
scheduling problem resolution. Section 5 gives an example
and Section 6 summarizes conclusions and perspectives.

II. State of the art
PN and (max, +) algebra have been long used to solve

optimization problems of discrete event systems (DES) [4]
[5] and in particular of scheduling problems. Most of the PN
scheduling literature studies Flexible Manufacturing Systems
(FMS) systems with makespan as the optimization criterion
[8] [11] [17] [25] [31].

A few works have introduced resiliency or vulnerability
analysis in scheduling problems. Uncertainties can result in
the unavailability of resources, lead eventually to deadlocks
and have negative impacts on system performance.
Generally, the two major approaches that deal with
uncertainty in the scheduling literature are reactive
scheduling and robust scheduling [34]. On one hand, reactive
scheduling refers to changes to the original schedule that aim
to accommodate. These changes are made after the disruption
occurrence [18]. Robust scheduling, on the other hand, aims
to devise schedules that are resilient to disruptions [34]. In
robust scheduling, the objective is to create an off-line
schedule capable to absorb disruptions: Approaches for
robust scheduling include inserting idle times [22], adding
buffer times [9] [28], searching for resilient schedules using
multi-objective optimization [1] [19] and combining risk and
scheduling objectives [13] [35]. All existing approaches can
be divided into 3 categories: metaheuristics, graph search
methods in reachability graph and graph search methods in
TERG.

Among Metaheuristics, most common have been Genetic
Algorithms [2] [24] [33], Particle Swarm Optimization (PSO)
[8] [36], Differential Evolution [16] and Ant Colony
Optimization (ACO) [20]. In these methods, both the
encoding and the decoding can be simple and good solutions
reached in short computer times; nevertheless, these methods
depend on the considered problem ; that is why it is too
difficult to reuse them.

Graph search methods are popular in the Petri net
scheduling literature: they consist in adaptations of the A*
search algorithms and its variants to the PN state space [11].
In essence, all these algorithms search for a reference marking
by expanding the markings of the PN reachability graph. The

17

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

output of such algorithms is a path from the initial marking
MI to the reference marking Mref, provided that such a path
exists [32]. The major drawback of the A* algorithm is that it
requires exponential time and memory [32]. For this reason,
pruning the search tree is a common practice, but at the
expense of optimality. Several pruning methods have been
proposed to reduce the time and space complexity by limiting
the exploration depth within “windows” [21] [31] by
checking the “safeness” or potential deadlocks of nodes [17]
by using predictive control [12] and expanding a limited
number of candidates as in the beam search exploration
algorithms [23] [26]. The main drawback of the previous
approaches is to be sub-optimal without proposing any bound
on the approximation error.

Extension of the TPN reachability graphs that incorporate
time information has been also studied for scheduling issues.
The States Class Graph [37] was the first method of the state
space representation adapted to TPN with firing time intervals
associated with transitions. For this purpose, a time-domain
is added to each marking thanks to a set of inequalities over
the firing variables. The method has been further improved
with the Atomic States Class Graph [38] and the Zones Based
Graph [39]. In all previous approaches, the time information
does not appear explicitly in the nodes of the graph and the
methods are not directly suitable for control and scheduling
issues. The explicit abstraction (including the time
information) of a TPN with time intervals associated with the
transitions has been proposed in [42] and [45] that introduce
respectively the Timed Aggregate Graph (TAG) and the
Modified State Class Graph (MSCG) devoted to state
estimation and diagnosis issues. Applications for the timed
reachability graphs control have been proposed in [40] [41]
and [14] On one side, the synthesis of maximal permissive
TPN supervisor that fulfil safety and reachability properties
has been developed by [40]. On the other side, the design of
controllers (including the earliest firing policy) that allows us
to compute optimal control sequence (i.e. control sequence
that leads to a minimal makespan) has been developed in [14].

III. Deterministic and stochastic
timed Petri nets

A. Petri nets
A Petri net structure is defined as PN = <P, T, WPR, WPO>

where P = {P1,…, Pn} is a set of n places and T = {T1,…, Tq}
is a set of q transitions, WPO  (N) nq and WPR  (N) nq are
the post and pre incidence matrices (N is the set of non-
negative integer numbers) and W = WPO – WPR is the
incidence matrix. <PN, MI > is a PN system with initial
marking MI  (N) n [3] [5]. Such PN system will be denoted
as <PN, MI >. M  (N) n represents the PN marking vector.
The enabled degree of a transition Tj at marking M is defined
as nj(M) = min{floor(mk / w

PR
kj) : Pk  °Tj}, where °Tj stands

for the preset of Tj, mk is the marking of place Pk, w
PR

kj is the
entry of matrix WPR in row k and column j, and floor(x) stands
for the largest integer smaller than or equal to x. When Tj is
enabled, it can fire to give a new marking M’, that is what we
denote by M [Tj > M’, where M' = M +
W(:, j) (with W(:, j) denoting the jth column of matrix W). A
firing sequence  is a sequence of transitions that
consecutively fire from a given marking M; this is denoted as
M [ > M’ and M’ is said to be reachable from M. A firing

sequence  is a sequence of transitions that consecutively fire
from a given marking M; that is denoted as follows: M [ >
M’ and M’ is said to be reachable from M.

In the next, k-bounded nets are considered. In this case,
the number of reachable markings from the initial marking MI

is finite and noted N. S is the set of all reachable markings
from the initial marking MI and  is the generator matrix of
the reachability graph: for all M, M’  S  S, (M, M’) = Tj

if M [Tj >M’, otherwise (M, M’) =  where  stands for the
empty strings. Gathering all these elements, we can define the
Reachability Graph of a PN system by <S,, MI>.

B. Timing aspects
There are several classes of deterministic and stochastic

timed PN; in particular, Transition – Timed PN (T-TPN), that
associate a constant firing duration to each transition in the
net [30] and Stochastic Petri Nets (SPN) that associate a
variable exponentially distributed firing duration to each
transition in the net. A T-TPN system <PN, D, MI> is a timed
PN where D: T → R+ is a firing time function that assigns a
positive real delay dj  D to each transition Tj of the net. The
transition Tj may fire at earliest after the delay dj from the date
it has been enabled.

An SPN system <PN, , MI> is a timed Petri net whose
delays to fire transitions are characterized by the vector of
firing parameters µ  (R*+)q (where R*+ is the set of strictly
positive real numbers) [15] [16]. The firing parameter of a
given transition Tj is referred to as (Tj) or as j. For any
transition Tj, enabled at M, the firing delay is given by a
random variable with an exponential probability density
function of parameter nj(M)µj.

Also, the time semantic of considered T-TPN and SPN is
characterized by the server, choice and memory policies. In
this work, an infinite server is used as a server policy, with
that a race is used as a choice policy and finally a resampling
memory is used as a memory policy [7].

According to these policies and under some specific
assumptions, it is possible to interpret an SPN as a
continuous-time Markovian process [7] [27]. That means that
the dynamics of a k-bounded SPN are described by a
continuous-time Markov model with a state-space isomorphic
to the reachability set of the SPN [7]. A timed firing sequence
σ of length |σ| = K and of duration τK is defined as σ=
T(τ1)T(τ2)…T(τK) where τ1,..., τK represent the firing times that
satisfy 0 ≤ τ1 ≤ τ2 ≤… ≤ τK. The timed firing sequence σ fired
at M leads to the timed trajectory (σ,M)= M(0) [T(τ1) >
M(1)….M(K-1)[T(τK) > M(K).

C. Control aspects
In this paper, the set of transitions 𝑻 is divided into 2

disjoint subsets and 𝑻𝑵𝑪 such that 𝑻 = 𝑻𝑪 ∪ 𝑻𝑵𝑪 where
 and 𝑻𝑵𝑪 are respectively the subsets of controllable and
uncontrollable transitions. Firing enabled controllable
transitions is enforced by the control actions which are
decided by a controller, whereas the firing of uncontrollable
transitions is not. The uncontrollable transitions represent
failure and repair events. Such transitions fire spontaneously
according to exponentially distributed events. Consequently,
each transition Tj  TNC is associated with a firing rate j. On
the contrary, the controllable transitions fire after a
deterministic delay. Consequently each transition Tj  TC is
associated to a deterministic firing time dj.

18

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

This paper studies Partially Controlled Timed PNs (PC-
TPN) <PN, DC, NC, MI> where deterministic firing times DC

are associated with controllable transitions and firing rates
NC are associated with uncontrollable ones. Such models
combine deterministic timing aspects that have been
intensively used to describe and solve scheduling problems in
stable environments [13] and also stochastic timing aspects
that have been used to evaluate the reliability and availability
of fault and repair processes [14]. Consequently, they appear
suitable to describe and solve routing and scheduling
problems in uncertain environments where unexpected events
may occur. This contribution continues our research effort in
this direction.

IV. Modelling unreliable
Markovian systems with SPN
This section describes the modelling of scheduling

problems within uncertain environments under the formalism
of PC-TPN. It is assumed that several jobs may be selected to
perform series of tasks and that each job consists of a set of
operations, performed by a set of resources and executed
according to a predefined sequence of transition firings. The
main practical applications of this description rely on the
fields of flexible manufacturing systems, computer science
and logistic. Operations may be interrupted and resources are
unreliable. The controller aims to select the best route and to
schedule the operations in order to perform the different task
series with a minimal makespan considering the risk of
operation and resource failures.

A. Modelling the problem with PC-TPN
In this paper, we consider the problem where several tasks

can be performed by a set of jobs. The controller should
assign the tasks to the jobs and schedule the operations in each
job to optimize the makespan. Let 𝑱, 𝑶 and 𝑹 be respectively
a set of jobs, a set of operations and a set of resources. The
subset of operations of the job 𝑗 is 𝑶𝒋 ⊆ . Each operation
𝑜 consists of the processing activity and a subset of resources
𝑹𝒐  𝑹 required to perform this activity. The route of a job
defines the order in which such operations must be processed.

Places in the PC-TPN model can be either buffer places
or resource places.

Figure 1. Modelling of the operation o with resources RO = {r1,…,rk}
using PC-TPN

Figure 2. Modelling of parallel jobs with common resources

The sets of resource places are 𝑷𝑹𝒆𝒔. In terms of the Petri
net, an operation is represented by a controllable transition 𝑇,
an input buffer represented by a place 𝑃 ∈ 𝑇 , an output
buffer represented by a place 𝑃′ ∈ 𝑇 (that may as well be the
input buffer of the next job operation) and a set of resources
places {𝑃𝑟 ∈ 𝑷𝑹𝒆𝒔 / 𝑟 ∈ 𝑹𝒐 }: T  𝑃𝑟  and 𝑇  𝑃𝑟 . Fig. 1
shows an example of an operation and its resources.

The batch size of each job 𝑗 (i.e. the number of
simultaneous executions of the job) is encoded in a specific
place referred as 𝑃𝑐(𝑗) Fig. 2. This place is unique for each
job subnet. The total number of tasks to be performed is also
encoded in the PC-TPN model with a specific place referred
to as Pexec in Fig. 2 connected to the transitions of the first
operations of each job. Finally, the place 𝑃𝑟𝑒𝑓 counts the
total number of all job executions in Fig. 2. This place belongs
to the set of post transitions of the latest operations of each
route of each job.

The proposed model describes the situation where tasks
can be performed by any job within those composing the
whole system. The following assumptions hold in the
remainder of the paper:

 Uncontrollable transitions represent either
interruptions of operations in Fig. 3 or resource
unavailability in Fig. 4.

 The firing durations of all controllable transitions and
the firing rates of all uncontrollable transitions are
assumed to be known.

 Each operation requires at most one resource to be
performed.

 Each operation or resource place has only a single
uncontrollable transition in its post set. Different
classes of operation or resource failures are not
considered here.

19

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

B. Modelling operation disruptions
The interruption of the operations describes the case when

a job requires additional processing time due to raw material
defects or other processing problems.

Figure 3. Interruption of an operation.

These interruptions can be modelled with an interruption

subnet. An interruption subnet consists of a subset of 2 places
{P, Pf}, a subset of 2 transitions {Tf, Tr}, and a set of arcs {(P,
Tf), (Tf, Pf), (Pf, Tr), (Tr, P)}. Transition Tf represents the
operation failure, and Tr the operation recovery. Place P
represents an input buffer and place Pf represents the
condition “waiting for recovery” in Fig. 3.

With the race policy, the mean time required to fire
transition T can be evaluated by considering the probabilities
of occurrence of 0, 1, 2,…,k successive faults when the

operation is expected to be performed.

Let us first compute the probability to fire transition T
when T and Tf are in conflict. The firing time d for T is
constant. On the contrary the firing times for Tf are
exponentially distributed with a firing rate o. Let us refer to
the probability to fire T as o and the probability to fire Tf as
1-o with o= exp(- o  d). When Tf fires the mean firing
duration d(Tf) is obtained as

𝑑
  𝑡  exp(−  t) 𝑑𝑡

C. Modelling the unreliable resources
Unreliable resources also exist. This is the case when a

resource becomes unavailable due to failures or other
disruptions such as worker absence, or power outage. The
main differences with the aforementioned operation
interruption are: (1) the resource may become unavailable
even when it is not required, whereas an operation
interruption only occurs when the operation is in progress; (2)
the shared resource that becomes unavailable affects all jobs
that require it whereas an operation interruption only affects
the job where the interruption occurred.

As in the case of interruptions, these situations can be
modelled with an unreliable resource subnet. Such a subnet
consists of a subset of 2 places {Pf, Pr}, a subset of 2
transitions {Tf, Tr}, and a set of arcs {(Pr, Tf), (Tf, Pf), (Pf, Tr),
(Tr, Pr)}. Transition Tf represents the resource failure, and Tr

the resource recovery. Place Pr represents the resource
availability whereas Pf represents the unavailability of the
same resource in Fig. 4. With the race policy, the mean time
required to fire transition T can be evaluated by considering
the probabilities of occurrence of 0, 1, 2,…,k successive

faults when the operation is expected to be performed with
the resource r. Two cases should be considered separately:

(i) The failure of resource r occurs when it is required
(i.e., when transition T is enabled). In this case m(Pr)
= 1 and this case is similar to the case when an
operation fails by considering r= exp(- r  d)
instead of o. Note that the mean probability to be in
case (i) is r / (r + r). The mean duration d’ to
perform the operation is computed with an equation
similar to (2).

(ii) The failure of resource r occurs when the resource is
idle (i.e., when transition T is not enabled). In this

that leads to

𝑑(𝑇𝑓) = 0 ,

∫
𝑑

𝑜  exp(−𝑜  t) 𝑑𝑡 case, m(Pr) = 0 and the resource should first be
repaired with a mean duration 1 / r, then the system
returns to case (i). The mean probability to be in case
(i) is r / (r + r).

(𝑇) =
1

−
𝑑  𝑜. 



𝑓 𝑜
 1−𝑜 Consequently, the mean duration d’ to perform the

operation is computed as:
The probability to fire T after k successive operation

failures is (1-o)
k
o and the duration to perform the

operation increases to d + k(d(Tf) + (o)
-1). Consequently,

the mean duration d’ to perform the operation is computed as

𝑑′ =

1 − 𝑟

𝑟
 (

1

𝑟

1
+) 

𝜇𝑟

𝜇𝑟

𝜇𝑟 + 𝑟

𝑑’ = ∑ (1 − 𝑜)

 𝑜  (𝑑 + 𝑘 (𝑑(𝑇𝑓) +

 1

)),
𝜇𝑜

1
+ (

𝜇𝑟

1 − 𝑟

𝑟
 (

1

𝑟

1
+)) 

𝜇𝑟 𝜇𝑟

𝑟

𝑟

that leads to
After simplification

1− 1 1

  ()−1

𝑑′ = 𝑑 +

or

1 − 𝑜

𝑜
 (() +

1
)

𝑓 𝜇𝑜

𝑑′ = 𝑟  (
𝑟 𝑟

+
𝜇𝑟

) + 𝑟 𝑟

𝜇𝑟+𝑟
(3)

𝑑′ =
 1−𝑜

 (
1

+
1

). (2)

𝑜 𝑜 𝜇𝑜

Figure 4. Unreliable resource.

+ 

20

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

V. Optimal scheduling based on
TERG

A. Timed reachability graph
In this paper, an extended reachability set is introduced

that is composed of states S = (M, CAL) that include not only
the markings M but also the delays to fire the enabled
controllable transitions at M.

Figure 5. Example of a system with operation disruptions and unavailable

resources

Such firing delays are encoded in a calendar CAL and
SCAL(M) refers to the set of calendars consistent with the
marking M.

A calendar at marking M, CAL = {(T, ), with M [T >}
contains the list of the enabled controllable transitions T and
their minimal delay  before firing. When a transition is
enabled several times at M, it appears several time in CAL
with identical or different delays. The timed extended
reachability set is thus defined as SE = {(M, CAL)  S  SCAL
(M)}. Thus, each state S  SE is composed of a marking M(S)
 S plus a calendar CAL(S)  SCAL(M(S)). Consequently the
Timed Extended Reachability Graph (TERG) of a given PC-
TPN is formally defined as < SE, E, BE, SI >. NE is the
number of states in SE. E  (T  {})NENE is the transition
matrix such that for all S, S’  SE  SE, E(S, S’) = Tj if M(S)
[Tj >M(S’), otherwise E(S, S’) = . BE  (N)NENE is a delay
matrix such that for all S, S’  SE  SE, BE(S, S’) = dj if M(S)
[Tj >M(S’) and dj is the delay to fire Tj at earliest, otherwise
BE(S, S) = 0 and BE(S, S’) =  for S  S’. Note that the
unknown firing delays of uncontrollable transitions are not
reported in BE. SI is the initial state corresponding to the initial
marking and to the calendar where the enabled transitions are
the ones enabled at date 0. A more detailed description of
TERG and also a constructive algorithm can be found in [15].

B. Paths of minimal duration in TERG
Dijkstra algorithm is an algorithm that searches the paths

of smallest cost between nodes in a graph. Thus, defining a
source node and a destination node in a graph, the algorithm
finds the best path between those nodes by stopping the
algorithm once the path with smallest cost to the destination

node has been determined. The algorithm is used in many
domains as urban and interurban logistic problems but also
network routing protocols.

The core of the Dijkstra algorithm is to assign some initial
distance values between nodes and to improve them step by
step. The stages of the algorithm are as follows:

 Mark all nodes unvisited and define by UNXPL the
set of all the unvisited nodes. Assign to every node a
tentative distance value: set it to zero for the initial
node and to infinity for all other nodes. Set the initial
node as current node.

 For the current node, consider all of its unvisited
neighbors and calculate their tentative distances
through the current node. Compare the newly
calculated tentative distance to the current assigned
value and assign the smaller one.

 Do the same considering all unvisited neighbors of
the current node, then mark the current node as
visited and remove it from UNXPL.

 If the destination node has been marked visited or if
the smallest tentative distance among the nodes in
UNXPL is infinity, then stop. The algorithm has
finished. Otherwise, select the unvisited node that is
marked with the smallest tentative distance, set it as
the new current node, and continue the search.

The Dijkstra algorithm is applied on the TERG by using
the time information encoded in matrix BE in order to define
the cost between the TERG states. The returned path is then
trivially transformed in a control sequence by using the
information in matrix E. This control sequence is minimal
in time and lead to an optimal makespan.

VI. Example
The example of PC-TPN in Fig. 5 is the model of a system

with 3 jobs. Each job consists of 5 operations (for clarity, the
transitions that correspond to the operations are highlighted
in red in Fig. 5) and has a batch size of 1. The global number
of job executions adds up to 3 (represented by the final
marking of place 𝑃𝑟𝑒𝑓) and the controller can select between
the three jobs. Two shared resources are required to perform
the operations: Resource 1 is used on operations 2 and 7,
resource 2 is used on operations 9 and 14. All other operations
require non-shared resources and therefore these resources
are not explicitly modeled. The durations (in TU) of the
operations are also reported in Fig. 5. When no failure at all
occurs, jobs duration is reported in Table 1 and job 1 is the
best solution to execute a single task. Fig. 6 and Fig. 7
illustrate the effect of the operation and resource failures on
the mean duration of each job for a single task. Fig. 6 reports
the mean duration of job 1 (black color), job 2 (red color), job
3 (blue color) with respect to the operation failure rate and
Fig. 7 reports the same mean durations with respect to the
resource failure rate. One can notice that depending on the
operation failure rate, the controller will prefer job 1 for o 
[0, 0.28[, then it will prefer job 3 for o  [0.28, 0.47[and
finally prefer job 2 for o  0.47 (as long as r = 0). The
resource failures also affect the jobs mean duration but do not
change the most preferable job as long as o = 0.

21

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

When several tasks should be performed, the problem
becomes more complicated because of the possible parallel
use of different jobs and due to the sharing of resources r1 and
r2 by different jobs. In that case, the construction of the TERG
and the application of the Dijkstra algorithm in the resulting
graph ensure the best job selection (i.e., the best routing) and
the best operation schedule for the mean job duration. To
conclude, the optimization is twofold: in term of routing and
also in term of job scheduling.

Figure 6. Mean duration time for each job with respect to o

(r = 0, o = 1, r = 1)

Table 1 sums up the results obtained for several values of
the operation and resource failure rates when the capacity of
each job is one and when 3 tasks are planned:

 Dur. (J1,J2,J3) : stand for the mean durations of each
job,

 Nbre Exec. (J1,J2,J3) : stands for the number of
executions of each job,

 D1 is the mean makespan (including the additional
times due to the risk of failures) for the job selection
and schedule decided by the controller,

 D2 is the minimal makespan (assuming that no failure
occurs) for the job selection and schedule decided by
the controller,

 D3 is the mean makespan (including the additional
times due to the risk of failures) for the job selection
and schedule computed by the controller in the case
when no failure occurs.

From Table 1 several conclusions can be given:
 The routing and the scheduling (D2) change with

respect to the operation and resource failure rates.

 The mean makespan computed by including the
additional times due to the risk of failures (D1) is
always lower than the makespan computed if the
control sequence obtained in the case where no
failure is considered (D3) (i.e., (r ,o) = (0,0)) is
applied.

 The complexity of the method (last column) depends
weakly on the uncertainties that are considered. The
complexity is due to first to the different markings of
the PC-TPN models and secondly to the number of
time constraints included in the TERG. The rapid
increase of the TERG size is the main limitation for
the application of the method to large systems.

Figure 7. Mean duration time for each job with respect to r

(o = 0, o = 1, r = 1)

TABLE I. RESULTS FOR THE SYSTEM IN FIG. 5

Rate
(r ,o)

Dur.
(J1,J2,J3)

Nbr. exec
(J1,J2,J3)

D1 D2 D3 Size

(0,0) (11,16,13) (1,1,1) 18 18 18 2610
(0.2,0) (12,20,16) (2,1,0) 24 22 26 3987
(0.4,0) (14,29,23) (2,0,1) 27 22 42 3536
(0.6,0) (16,44,36) (2,0,1) 36 28 72 3279
(0,0.2) (13,16,14) (1,1,1) 18 18 19 3765

(0.4,0.2) (16 29 24) (2,0,1) 32 22 42 4124
(0,0.6) (23,16,17) (0,2,1) 22 22 32 4932

(0.2,0.6) (24,21,21) (1,1,1) 28 19 33 5448
(0.6,0.6) (27,44,40) (2,0,1) 55 22 72 4362

…

VII. Conclusion
In this paper, we present an approach that computes

control sequences for routing and scheduling problems for
parallel systems in which operation interruptions and
resource failures are exponentially distributed. Multiple
successive failures are considered. This approach uses timed
PNs as a systematic formalism. The core of the approach is to
evaluate the risk of repetitive failures and to design a timed
extended reachability graph that includes this risk estimated
as an additional time. Based on the TERG design method that
was proposed previously by the author, it becomes possible
to compute the best routing and scheduling decisions on the
average.

The perspectives of these works are first to consider
limitations due to complexity of calculating TERG by using
a method that allows us to get an approximation of this timed
graph and secondly to extend the class of considered systems
when the operations may require several resources to be
performed.

Acknowledgment
The Project MRT AMED 2017-2020 has been funded

with the support from the European Union with the European
Regional Development Fund (ERDF) and from the Regional
Council of Normandie.

References

[1] N. Al-Hinai and T. Y. Elmekkawy, “Robust and stable flexible job
shop scheduling with random machine breakdowns using a hybrid
genetic algorithm. International Journal of Production Economics,
2011, 132(2), pp.279–281.

22

Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-04

[2] J. Caballero-Villalobos, G.E. Mejía-Delgadillo, R. García-Cáceres, and
Guillermo. “Scheduling of complex manufacturing systems with Petri
nets and genetic algorithms: a case on plastic injection moulds,” The
International Journal of Advanced Manufacturing Technology, 2013,
69(9–12), pp. 2773–2786.

[3] C. G. C. Cassandras, “Discrete Event Systems: Modeling and
Performance Analysis,” Homewood, IL (USA): Aksen Ass. Inc. Pub,
1993.

[4] P. Chretienne, “Timed petri nets: A solution to the minimum-time-
reachability problem between two states of a timed-event graph,”
Journal of Systems and Software, 6(1–2), pp. 95–101. Ht, 1986.

[5] R. David and H. Alla, “Petri Nets and Grafcet Tools for Modelling
Discrete Event Systems,” New York: Prentice Hall. Ht, 1992.

[6] M. R. Garey, D. S. Johnson and R. Sethi, “The complexity of flowshop
and jobshop scheduling”. Mathematics of Operations Research, 1(2),
pp. 117–129, 1976.

[7] S. Haddad and P. Moreaux , “Stochastic Petri Nets (Chapter 7), In Petri
Nets: Fundamental Models and Applications,” Wiley, 2009.

[8] L. Han, K. Xing, X. Chen, and Xiong, F. “A Petri net-based particle
swarm optimization approach for scheduling deadlock-prone flexible
manufacturing systems,” Journal of Intelligent Manufacturing, 2015.

[9] A. Jamili, “Robust job shop scheduling problem: Mathematical models,
exact and heuristic algorithms,” Expert Systems with Applications, 55,
pp. 341–350, 2016.

[10] S. M. Johnson, “Optimal two‐ and three‐ stage production schedules
with setup times included”. Naval Research Logistics Quarterly, 1(1),
pp. 61–68, 1954.

[11] D. Y. Lee and F. DiCesare, “Scheduling Flexible Manufacturing
Systems using Petri Nets and Heuristic Search,” IEEE Transactions on
Robotics and Automation, 10(2), pp. 123–132, 1994.

[12] D. Lefebvre, “Approaching Minimal Time Control Sequences for
Timed Petri Nets.,” IEEE Transactions on Automation Science and
Engineering, 13(2), pp. 1215–1221, 2016.

[13] D. Lefebvre, “Dynamical Scheduling and Robust Control in Uncertain
Environments with Petri Nets for DESs,” Processes, 5(4), 54, 2017.

[14] D. Lefebvre and C. Daoui “ Control design for bounded Partially
Controlled TPNs using Timed Extended Reachability Graphs and
MDP,” IEEE Trans. SMC, 2018.

[15] D. Lefebvre, „Approximated Timed Reachability Graphs for the robust
control of discrete event systems, Discrete Event Dynamic Systems:
theory and applications,” 29(1), pp. 31-56, 2019.

[16] H. Lei, K. Xing, Z. Gao and F. Xiong, “A hybrid discrete differential
evolution algorithm for deadlock-free scheduling with setup times of
flexible manufacturing systems,” Transactions of the Institute of
Measurement and Control, 38(10), pp. 1270–1280, 2016.

[17] H. Lei, K. Xing, L. Han and Z. Gao, “ Hybrid heuristic search approach
for deadlock-free scheduling of flexible manufacturing systems using
Petri nets,” Applied Soft Computing Journal, 2017.

[26] G. Mejía, D. Lefebvre “ Robust scheduling of flexible manufacturing
systems with unreliable operations and resources,” IJPR Journal, 2019.

[27] M. K. Molloy, “Performance analysis using stochastic Petri nets”. IEEE
Transactions on Computers, C–31(9), pp. 913–917, 1982.

[28] H. Moradi, and S. Shadrokh, “A robust scheduling for the multi-mode
project scheduling problem with a given deadline under uncertainty of
activity duration,” IJPR Journal, pp. 1–30, 2018.

[29] P. S. I. Ow and T. E. Morton, “Filtered beam search in scheduling†,”
IJPR Journal, 26(1), pp. 35–62, 1988.

[30] C. Ramchandani, “Analysis of asynchronous concurrent systems by
timed petri nets,” Massachusetts Institute of Technology, 1973.

[31] A. Reyes Moro, H. Yu, and G. Kelleher, “ Hybrid heuristic search for
the scheduling of flexible manufacturing systems using Petri nets.,”
IEEE Transactions on Robotics and Automation, 2002.

[32] S. Russell, and P. Norvig, “Artificial Intelligence: A Modern
Approach,” Upper Saddle River, NJ (USA): Prentice Hall, 1995.

[33] S. A. Sadrieh, M. Ghaeli, P. A. Bahri and P. L. Lee, “An integrated
Petri net and GA based approach for scheduling of hybrid plants,”
Computers in Industry, 58(6), pp. 519–530, 2007.

[34] G. Vieira, J. Herrman, and E. Lin, “Rescheduling manufacturing
systems: a framework of strategies, policies and methods. Journal of
Scheduling, 6(1), pp. 39–62, 2003.

[35] A. Zafra-Cabeza, M. A. Ridao, and E. F. Camacho, “Chance
constrained project scheduling under risk,” Conference Proceedings -
IEEE Int. Conf. SMC, 2, pp. 1789–1794, 2004.

[36] Y. Zhong, “Optimisation of block erection scheduling based on a Petri
net and discrete PSO,” IJPR Journal, 50(20), pp. 5926–5935, 2012.

[37] B. Berthomieu and M. Menasche. An Enumerative Approach for
Analyzing Time Petri Nets. In IFIP Congress, pages 41– 46, 1983.

[38] B. Berthomieu and F. Vernadat. State Class Constructions for
Branching Analysis of Time Petri Nets. In TACAS 2003, volume 2619
of LNCS, pages 442–457. Springer, 2003.

[39] G. Gardey, O. H. Roux, and O. F. Roux. Using Zone Graph Method for
Computing the State Space of a Time Petri Net. In FORMATS 2003,
volume 2791 of LNCS, pages 246–259. Springer, 2003.

[40] P. Heidari, H. Boucheneb, Maximally permissive controller synthesis
for time Petri nets, International Journal of Control, 2012

[41] P. Heidari, H. Boucheneb, Controller Synthesis of Time Petri Nets
Using Stopwatch, Journal of Engineering, Hindawi Publishing
Corporation, Article ID 970487, 2013.

[42] K. Klai, N. Aber, L. Petrucci, A New Approach To Abstract
Reachability State Space of Time Petri Nets, 20th International
Symposium on Temporal Representation and Reasoning, 2013.

[43] F. Basile, M.P. Cabasino, C. Seatzu, State Estimation and Fault
Diagnosis of Labeled Time Petri Net Systems With Unobservable
Transitions, IEEE Trans. AC, 60(4) : 997-1009, 2015.

[18] J. Leon, S. Wu and R. H. Storer, “Robustness measures and robust
scheduling for job shops,” IIE Transactions, 26(5), pp. 32–43, 1994.

[19] L. Liu, H. Gu and Y. Xi, “ Robust and stable scheduling of a single
machine with random machine breakdowns,” The International
Journal of Advanced Manufacturing Technology, 31(7–8), pp. 645–
654, 2007.

[20] X. M. Liu, L. Pan and H. Zheng, “Schedule Optimization of Time Petri
Nets Based on Ant Colony Systems,” Applied Mechanics and
Materials, pp. 263–266, 1733–1739, 2013.

[21] J. Luo, K. Xing, M. Zhou, X. Li, and X. Wang, “Deadlock-Free
Scheduling of Automated Manufacturing Systems Using Petri Nets and
Hybrid Heuristic Search,” IEEE Trans. SMC, 2015.

[22] S. V. Mehta and R. M. Uzsoy, “ Predictable scheduling of a job shop
subject to breakdowns,” IEEE Trans. ASE, 14(3), pp. 365–378, 1998.

[23] G. Mejía, J. P. Caballero-Villalobos and C. Montoya, “Petri Nets and
Deadlock-Free Scheduling of Open Shop Manufacturing Systems,”
IEEE Trans. SMC, 48(6), pp. 1017–1028, 2018.

[24] G. Mejía, C. Montoya, J. Cardona, and A. L. Castro, “Petri nets and
genetic algorithms for complex manufacturing systems scheduling,”
IJPR Journal, 50(3), pp. 791–803, 2011.

[25] Mejía, G., & Niño, K. “ A new Hybrid Filtered Beam Search algorithm
for deadlock-free scheduling of flexible manufacturing systems using
Petri Nets,” Computers & Industrial Engineering, pp. 108, 165–176,
2017.

About Author (s):

Oussama Hayane After having the Diploma of
Engineer in Industrial Engineering from the
Ecole Nationale Polytechnique - Algiers in 2016,
he resumed his studies in 2017 at the ENS Paris-
Saclay (ex. Cachan) for a Master Degree in
Complex System Engineering (Design and
Control of Critical Systems - CCSC). In 2019 he
joined the Université Le Havre Normandie as a
PhD Student.

Dimitri Lefebvre graduated from the Ecole
Centrale of Lille (France) in 1992. He received
his PhD in Automatic Control and Computer
Science from University of Sciences and
Technologies, Lille in 1994, and an HDR from
University of Franche Comté, Belfort, France in
2000. Since 2001, he has been a Professor at
Institute of Technology and Faculty of Sciences,
University Le Havre, France. He is with the
Research Group on Electrical Engineering and
Automatic Control (GREAH) and from 2007 to
2012 he was the head of the group. His current
research interests include Petri nets, learning
processes adaptive control, fault detection and
diagnosis.

