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Abstract—Existing graph partitioning algorithms rarely 
focus on the choice of the replicas. Most of them make use of 
random hashing to allocate vertices to partitions due to its 
convenience and simplicity. However, such random property 
may result in undesirable partitioning results with huge 
communication cost if many high degree vertices are being 
replicated. We address this problem and propose a greedy 
algorithm to minimize the number of replications of high 
degree vertices and at the same time minimize the replication 
factor by sorting the vertices before allocating them to different 
partitions. We compare our algorithm with one of the well 
performed existing graph partitioning algorithms, 
PowerLyra’s hybrid-cut, and prove that our algorithm gives 
better results in most practical situations. Experimental results 
show that our algorithm gives much lower replication factor 
compared to PowerLyra’s hybrid-cut algorithm generally in 
random graphs, power-law graphs and real-life graphs. 
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I.  Introduction 
Graph computation has become significantly important 

nowadays in many areas involving network concepts like the 
Internet connectivity framework, social network, physical 
transport network and protein network. By representing 
individuals in a network with nodes and their corresponding 
relationships with edges, the network can be transformed 
into a graph structure, which can then be further analysed by 
a large amount of calculations and operations in data 
mining. Among these wide range of graph operations, Graph 
partitioning is one of the main computations making use of 
the graph structure representation of network systems. It 
divides a large graph into smaller sub-pieces, making it 
more convenient for parallel systems such as MapReduce to 
manipulate the data in smaller scales. In the era of big data, 
the size of graph grows exponentially and therefore efficient 
data placement is essential. Efficient graph partitioning 
algorithms need to guarantee high data locality to minimize 
data migration costs, while at the same time maintaining 
similar sizes for each partition for effective parallel 
computations. 

The logic behind a graph partitioning algorithm plays a 
very important role in this foundation. It is because poor 
partitioning results may incur huge overhead and 
significantly degrade the performance of subsequent graph 
analysis procedures. In frameworks such as PowerGraph [1] 
and Giraph [2], the quality of the partitioning result is even 
more critical. 

As shown in Fig. 1, many existing graph partitioning 
algorithms give less focus on how to replicate vertices in an 
efficient way by just doing it with random hashing. They 
give poor partitioning results especially for graphs which 
contain large number of clusters This kind of graphs is very 
common nowadays in social networks, where each cluster 
represents an individual social circle of the community. 
Furthermore, graph partitioning usually generates replicas in 

order to preserve the full relationships between vertices after 
partitioning. Existing algorithms pay little attention to the 
choice of replicas and may incur huge communication costs 
by replicating high-degree vertices as they are the most 
active vertices in the graph. 

There are different criteria to determine whether a graph 
partitioning method is good or not. Common considerations 
include the time spent and the memory consumed (i.e. how 
long does the algorithm takes and how big is the partitioned 
graphs). The time spent usually depends on the complexity 
of the algorithm, while the memory consumed depends on 
the number of mirrors created. Because of this, many 
existing algorithms try to minimize the number of replicas 
during partitioning (i.e. reducing the replication factor). It is 
a usual approach and most of the time it gives good 
partitioning results. Our proposed algorithm also focuses on 
reducing the number of replicas but we also put much effort 
in deciding which vertices to be replicated in order to 
achieve  a good partitioning result. Notice that there are 
differences in the degree of importance for the vertices, 
which means replicating vertices with different degrees 
poses different level of communication costs on the whole 
system. The higher the vertex degree, the higher the cost and 
vice versa. Therefore, it is better off to avoid replicating 
high degree vertices during partitioning. However, most of 
the existing algorithms overlooked this issue since it is not 
easy to obtain a balanced partitioning with a low replication 
factor, and at the same time maintaining the connections of 
vertices as local as possible. 

To illustrate the importance of the degree of a vertex, 
consider an example of an IP network. In the graph of the 
network, each vertex represents a node and an edge is 
connected between any two nodes if they are linked with 
each other. Generally, a node which has more links with 
others will generate more communication per period of time 
then a node that with fewer links. Therefore, the 
communication cost of a high-degree vertex will be higher 
than a low-degree vertex per unit of time. Because of this, 
more attention should be put on high-degree vertices than 
low-degree vertices during partitioning. The same situation 
also applies in other networks with similar structure such as 
social networks (e.g. Facebook and Twitter). 

Figure 1.  General graph partitioning result using random hashing on 
vertices. 
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In this paper, we propose a new graph partitioning 
algorithm, which efficiently assigns vertices into machine 
using a greedy algorithm to avoid the creation of replicas for 
high-degree vertices and minimize the communication cost. 
It gives guaranteed improvement from PowerLyra’s hybrid-
cut graph partitioning algorithm, which already gives 
promising performance compared to other existing graph 
partitioning algorithms. 

This paper is structured as follow: 

 We discuss the suitable criteria for an efficient graph 
partitioning algorithm. We state our view and focus on 
the criteria and illustrate it with real life situation. We 
also point out the deficiency of existing algorithms 
which may lead to low performance in graph 
partitioning in certain situations. 

 We introduce our algorithm and state the objectives in 
behind, then give a detailed explanation on that. 

 We prove in theory that our algorithm is guaranteed to 
have improvement over one of the best algorithms, 
PowerLyra’s hybrid-cut algorithm, under a reasonable 
circumstance. 

 We conduct simulations with randomly generated 
graphs to verify our theoretic deduction. 

 We conduct simulations with large network graphs on 
our algorithm and PowerLyra's hybrid-cut algorithm 
and show that our algorithm gives better results. 

II. Related Work 
The two common approaches for graph partitioning used 

are edge-cut and vertex-cut. To avoid complexity, many 
existing graph partitioning algorithms simply make use of 
hashing to randomly assign vertices and edges into the 
machines. It is simple and convenient but may result in poor 
partitioning as it does not pay much attention on the graph 
structure.  

Pregel [3][4] and GraphLab [5] make use of random 
edge-cut (hashing) to distribute vertices evenly into 
machines. Pregel only support push-mode algorithms while 
GraphLab creates replicas and duplicate edges to eliminate 
this restriction. PowerGraph [1] is a distributed system 
aiming at balancing the number of edges in different 
machines to minimize communication overhead. GraphX [6] 
is another graph processing system on Spark [7] that makes 
use of vertex-cut to create replicas of vertices in partitioning 
to support dynamic computations. SBV-Cut [8] introduces 
the balance vertices concept to achieve a balanced vertex-cut 
of graphs. SPAR [9] criticizes that most graph partitioning 
algorithms are not incremental (offline) which will cause 
huge computational cost for highly dynamic graphs. It 
focuses on its incremental (online) property which updates 
the graph according to the six possible events: inserting or 
deleting on vertices, edges and machines. S-CLONE [10] 
aims at optimizing the placement of replicas in order to 
minimize the reading cost of the neighbours. Costs 
optimizing approach is carried out in [11] to find out the 
best data placement by considering different aspect of costs 
in a graph system. A distributed decentralized local 
searching algorithm is proposed [12] for extremely large 
graphs which only reads in local information for local 
operations. 

METIS [13] is a multilevel graph partitioning scheme 
which goes through three phases during partitioning (i.e. 
coarsening, partitioning of the coarsest graph and 
refinement). It uses a coarsening heuristic which limit the 
size of partition to achieve a better result. KaFFPa [14] is 
another multilevel graph partitioning scheme which makes 
use of max-flow min-cut computations with local 
improvements for partitioning, constraining the maximum 
partition size and minimizing cut size. The parallel version 
of METIS and KaFFPa are presented in [15] and [16] to 
produce good partitions of large unstructured graphs a short 
amount of time. Evolutionary search techniques is adopted 
in [17] together with multilevel graph partitioner to improve 
the overall fitness for each generation. Another use of 
evolutionary algorithm is conducted in [18] to perform local 
optimization when exploring spaces with standard graph 
partitioning methods. MITS [19] is another multilevel 
algorithm which uses tabu search approach during 
refinement procedure. A parallel genetic algorithm is 
proposed in [20] which is easy to be implemented in 
massive architectures.  DFEP [21] introduces the concept of 
edge partitioning and gives a heuristic algorithm to obtain 
reasonable balanced partitions. 

Sheep [22] transforms the input graph into an 
elimination tree and do partition on the tree which the tree 
partitions will later be converted back to graph partitions. It 
scales to larger graphs and gives promising runtime results. 
It gives promising performance in skewed graphs such as 
power-law graphs which are very common in real life 
scenario. However, it only works for undirected graphs, 
while many of the social network graphs (e.g. Twitter, 
Facebook) are directed graphs which are not applicable. 

For directed graphs, PowerLyra [23] performs pretty 
good in terms of low execution time and communication 
cost. It gives significant improvements by proposing a p-
way hybrid-cut, which offers differentiated partitioning 
methods on low-degree and high-degree vertices in order to 
reduce the replication factor (). It pays attention in low-
degree vertices to avoid creating mirrors of them. Although 
PowerLyra offers good results in minimizing the replication 
factor by reducing the number of mirrors for low-degree 
vertices, it puts little focus on reducing the number of 
mirrors for high-degree vertices, which are indeed of higher 
importance. 

III. The Proposed Method 
This section explains our concepts behind and gives the 

detailed algorithm of our proposed graph partitioning 
method. Our algorithm focuses on minimizing the numbers 
of replicas for high degree vertices to optimize the 
partitioning result. 

A. Minimizing High-degree Replicas  
Our main objective is to minimize the number of replicas 

for high-degree vertices in partitions. Compared to low-
degree vertices, high-degree vertices experience more 
communication per period of time due to its higher number 
of neighbour vertices. Having more replicas in different 
partitions implies more remote communications is needed 
(e.g. network overhead). Hence, replicating high-degree 
vertices will pose more communication overhead to the 
system then replicating low-degree vertices. This is the 
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reason why we aim at minimizing the number of replicas for 
high degree vertices by keeping as many as possible their 
neighbours with them together locally in the same partition. 
As shown in Fig. 2, we try to avoid partitioning on the 
clusters of the graph and put each whole cluster into the 
same partition so as to minimize the number of replicas of 
high degree vertices. 

B. Choice of Neighbours 
Our algorithm chooses to assign the target vertices 

instead of source vertices together with the high-degree 
vertex. The reason is that it is unlikely that a vertex will be 
updated by all its source vertices at the same time (Fig. 3 -- 
left). Therefore, the remote communication cost from the 
source vertices is usually not maximized in a certain time 
interval. However, on the other hand, once a vertex is being 
updated, all of its neighbours will be notified at the same 
time interval and the remote communication cost will be 
much higher compared to that from the above case (Fig. 3 -- 
right). Therefore, it is better to keep the target neighbours 
locally with the vertex to avoid excessive remote 
communication cost in a certain time interval. We decided 
not to keep both target vertices and source vertices together 
in order to simplify the complexity of our algorithm.  

C. Definition 
To represent the importance of a certain vertex in a 

graph. We define the traffic as the degree (i.e. total number 
of in-edges and out-edges) of a vertex in the original pre-
partitioning graph. The total traffic cost () is the sum of all 
the traffic of the replicas in all machines after the 
partitioning. This definition reflects the idea that replication 
of higher degree vertices will incur more communication 
cost. The lower the cost is, the better the partitioning will be. 
We also define the maximum capacity (C) as the benchmark 
of the maximum number of vertices allowed to be put into 
one partition.  

Figure 2.  Dividing a graph into diff erent machines in groups of clusters. 

Figure 3.  Updates from source vertices(left) and updates to target 
vertices(right). 

D. The Algorithm 
Our proposed algorithm consist of two steps, it first does 

a sorting, followed by an allocation of vertices into the 
partitions accordingly. 

 

[Step 1] Sort the vertices in descending order of degrees. 

[Step 2] Starting from the vertex with highest degree, check 
whether it already exists in any one of the partitions. 

 If yes, for low-degree vertices, put all its target vertices 
into the least occupied machine. For high-degree 
vertices, fill the least occupied partition with its target 
vertices. If it reaches the maximum capacity, continue 
assign the remaining vertices into the next least 
occupied partition. 

 If no, put the vertex and all its target vertices into the 
least occupied partition. 

Repeat until all vertices have been inserted. 

 

Sorting the vertices in step 1 costs O(n) time and 
allocating the vertices in step 2 costs O(mn2) time, where m 
is the number of machines and n is the number of vertices. 
Thus the total time complexity of the algorithm is O(mn2).  

IV. Performance Guarantee 
This section gives a theoretic proof on the performance 

of our proposed algorithm over the hybrid-cut graph 
partitioning algorithm in PowerLyra. 

A. Guarantee of Lower Traffic Cost 
To guarantee that out proposed algorithm gives a better 

result, we show that the total traffic cost of our algorithm is 
lower than that of PowerLyra, that is: 

PowerLyra > 0 

Theorem 1. If more than 37.5% of neighbour vertices are 
not staying together with the source after partitioning, our 
algorithm gives a lower value of total traffic cost and thus a 
better partitioning by creating less replicas on high-degree 
vertices. 

Proof. We express the total traffic cost of PowerLyra 
(PowerLyra) and our proposed method (0) in terms of the 
highest number of degree and deduce the required 
percentage of neighbour vertices are not staying together 
with the source after partitioning. 

Lemma 1. Total traffic cost for PowerLyra’s hybrid-cut 

PowerLyra’s hybrid-cut makes use of hashing to assign 
vertices into partitions. We here assume that the portion of 
neighbours not staying with a certain vertex (outlying 
portion) is p after the partitioning. Then the expected 
number of replicas for a certain vertex of degree k is: 

p × k 

and the total traffic cost of a vertex of degree k is: 

k(pk). 
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Summing up all the degrees from 1 to n we get: 

Lemma 2. Total traffic cost for our algorithm 

For our algorithm, since we sort the vertices in advance 
and assign them in descending order one by one, the 
maximum number of replicas of a vertex with degree n - k is 
k until the degree reaches n / 2. After that, the maximum 
number of replicas will be bounded at n - k for k > n / 2. 
Summing up all the degrees we get: 

Setting PowerLyra > 0, we get: 

Taking limit for n → ∞ we get  p > 3 / 8 (37.5%). 

V. Evaluation 
We implement our algorithm in C++ using The Boost 

Graph Library 1.60.0 [24]. The hybrid-cut algorithm of 
PowerLyra is also being implemented for comparison and 
we assume that vertices with degree more than half of the 
maximum degree are regarded as high-degree vertices. The 
maximum capacity is given by 

where n ≈ 4 is optimal in terms of minimizing the maximum 
capacity while at the same time optimizing the partitioning 
results. 

A. Measuring Criteria 
We judge the performance of partitioning with three 

criteria in different dimensions, which include the 
replication factor (), outlying portion (p) and epsilon (). 

The meaning of each criteria is mentioned in the following 
subsections. 

1) Replication Factor 
The replication factor () is a common measure for 

partitioning performance. It is given by the average number 
of replications made for each vertex among all partitions. 
The lower the replication factor, meaning that fewer replica 
are created and a smaller size of partitioning, the better the 
partitioning result.. 

2) Outlying Portion 
The outlying portion (p) is defined by the average 

percentage of neighbours not staying with each host vertex 
(the vertex with the highest degree among its replica) after 
partitioning. It is calculated by 

for each vertex v, where V is the set of replica of v among 
the machines. The lower the outlying portion, the more the 
neighbours are partitioned with the source vertex in the 
same partition, and thus the better the partitioning result. 

3) Epsilon 
The epsilon () is defined in the (k, 1 + ) balanced 

partition problem. It tries to find a minimum cost partition of 
a graph G into k components with each component 
containing a maximum number of (1 + )(n / k) nodes, 
which means  

where k is the number of machines in the partition. In our 
analysis, we calculate the corresponding value of  for each 
partition result. The lower the value of , the more even the 
distribution of vertices among the partitions, and thus the 
better the partitioning result. 

B. Random Graphs 
We generate random graphs of vertex size 1000 with 

edge size 2000, 4000 and 6000 for 100 simulations each. We 
calculate the average replication factors (), outlying 
portions (p) and epsilon () for both methods for the 
corresponding graphs with partition number ranging from 5 
to 30. The results are shown in Fig. 4, 5 and 6. Generally 
speaking, all of the replication factor, outlying portion and 
epsilon increase with the edge size because the partitioning 
quality decreases with the increase of graph complexity. Our 
proposed method always gives lower replication factor, 
outlying portion and epsilon compared to PowerLyra's 
hybrid-cut algorithm. With the increase of the number of 
partitions involved, our algorithm gives even better results. 
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Figure 4.   Replication factor of our algorithm and PowerLyra’s hybrid-cut 
in random graphs. 

Figure 5.  Outlying portion of our algorithm and PowerLyra’s hybrid-cut 
in random graphs. 

Figure 6.  Epsilon of our algorithm and PowerLyra’s hybrid-cut in random 
graphs. 

1) Practicability 
We can see that in Fig. 5, the outlying portion p for 

PowerLyra’s hybrid-cut keeps increasing with the edge size 
increasing from 2000 to 6000. The outlying portion reaches 
0.4 for | E | = 6000 (i.e. around 0.6% of max | E | = 990000) 
when the number of machines equals 10, which already 
exceed our theoretic p (0.375). It indicates that our 
algorithm fits into practical situation and outperform in most 
of the random graphs (≈ 99.4% of graphs). 

C. Power-law Graphs 
Most of the real-life graphs (e.g. network graphs) are 

power-law like. To examine our algorithm on such a 
common type of graph, we generate power-law graphs of 
vertex size 1000 with edge size 2000, 4000 and 6000 for 100 

simulations each. We calculate the average replication 
factors (), outlying portions (p) and epsilon () for both 
methods for the corresponding graphs with partition number 
ranging from 5 to 30. The results are shown in Fig. 7, 8 and 
9. Similar to our simulations on random graphs, our 
proposed method guarantees lower replication factor, 
outlying portion and epsilon compared to PowerLyra's 
hybrid-cut algorithm. Note that when | E | = 6000, the results 
deteriorates and give less advantage compared to | E | = 
2000 and 4000. It is due to the fact that the graphs generated 
with higher number of edges become less power-law like 
compared to that with lower number of edges. As a result, 
our algorithm takes less advantage on the power-law 
property, thus affecting the results. 

Figure 7.  Replication factor of our algorithm and PowerLyra’s hybrid-cut 
in power-law graphs. 

Figure 8.  Outlying portion of our algorithm and PowerLyra’s hybrid-cut 
in power-law graphs. 

Figure 9.  Epsilon of our algorithm and PowerLyra’s hybrid-cut in power-
law graphs. 
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D. Real-life Graphs 
To validate the practicability of our algorithm in real life 

situations, we run the two algorithms with large network 
graphs in three categories, including social network graphs, 
peer-to-peer network graphs and signed network graphs. All 
of the graphs are directed and are obtained from the Stanford 
Large Network Dataset Collection [25]. We calculate the 
replication factor, outlying portion and epsilon for each of 
the graph with partition number ranging from 5 to 30 and 
take the average for each of the three measurements. Fig. 10, 
11 and 12 show the corresponding results. 

Figure 10.   Replication factor of our algorithm and PowerLyra’s hybrid-cut 
in various large networks. 

Figure 11.   Outlying portion of our algorithm and PowerLyra’s hybrid-cut 
in various large networks. 

Figure 12.   Epsilon of our algorithm and PowerLyra’s hybrid-cut in various 
large networks. 

 

 

1) Replication Factor and Outlying 
Portion 

As shown in Fig. 10 and 11, our proposed algorithm 
outperforms PowerLyra's hybrid-cut in all the tested 
scenarios by giving lower values of replication factor. 
Results shows that our algorithm gives guaranteed 
improvement in reducing replication factor on partitioning 
results. Among the three categories of real-life graph, our 
algorithm outperforms most in social network graphs, 
followed by peer-to-peer network graphs and then signed 
network graphs. 

2) Epsilon 
As shown in Fig. 12, our proposed algorithm 

outperforms PowerLyra's hybrid-cut in peer-to-peer graphs 
and signed network graphs. For social network graphs, our 
algorithm gives lower value of epsilon. Table 1 gives the 
breakdown of the average  for different number of 
partitions ranging from 5 to 30 of the social network graphs 
used for simulation. Our algorithm actually performs better 
for the two Slashdot graphs, while perform worse for 
Epinions and Wiki-Vote. It is due to the characteristic of our 
proposed algorithm that aims at putting high-degree vertices 
with their neighbours together in the same machine, 
sacrificing the balance of the partitions to minimize the 
number of high-degree replica in exchange of a low 
replication factor. The large amount of closely located high-
degree vertices in the Epinions and Wiki-Vote network 
graphs cause our algorithm to put them together in a single 
machine, resulting in a larger value of . 

TABLE I.  AVERAGE EPSILON FOR SOCIAL NETWORK GRAPHS 
SIMULATED BY POWERLYRA AND OUR PROPOSED ALGORITHM. 

Name PowerLyra 0 

soc-Epinions1 2.10 6.99 

soc-Slashdot0811 2.94 2.56 

soc-Slashdot0922 2.94 2.44 

wiki-Vote 4.71 7.93 

VI. Conclusion 
This paper points out that current existing graph 

partitioning algorithms overlook the seriousness of creating 
replicas of high-degree vertices due to the random property 
of hashing, which may incur high communication cost. Our 
algorithm tackles the problem by using a greedy approach to 
minimize the number of replicas for high-degree vertices so 
that as many neighbours of high-degree vertices stay 
together with their source vertices as possible. We proved 
that our algorithm gives lower traffic cost than PowerLyra’s 
hybrid-cut in practical situations. Experiment results show 
that our algorithm gives lower replication factors than 
PowerLyra’s hybrid-cut for random graphs, power-law 
graphs and real-life graphs. 
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Appendix 
Table 2, 3 and 4 list the details of the large network 

datasets used for evaluation. 

TABLE II.  SOCIAL NETWORK GRAPHS USED FOR EVALUATION. 

Name | V | | E | Description 

soc-Epinions1 75k 508k 
Who-trusts-whom network of 

Epinions.com 

soc-Slashdot0811 77k 905k 
Slashdot social network from 

November 2008 

soc-Slashdot0922 82k 948k 
Slashdot social network from 

February 2009 

wiki-Vote 7k 103k 
Wikipedia who-votes-on-whom 

network 

TABLE III.  PEER-TO-PEER NETWORK GRAPHS USED FOR EVALUATION. 

Name | V | | E | Description 

p2p-Gnutella04 10k 39k 
Gnutella peer to peer network from 

August 4 2002 

p2p-Gnutella05 8k 31k 
Gnutella peer to peer network from 

August 5 2002 

p2p-Gnutella06 8k 31k 
Gnutella peer to peer network from 

August 6 2002 

p2p-Gnutella08 6k 20k 
Gnutella peer to peer network from 

August 8 2002 

p2p-Gnutella09 8k 26k 
Gnutella peer to peer network from 

August 9 2002  

p2p-Gnutella24 26k 65k 
Gnutella peer to peer network from 

August 24 2002  

p2p-Gnutella25 22k 54k 
Gnutella peer to peer network from 

August 25 2002  

p2p-Gnutella30 36k 88k 
Gnutella peer to peer network from 

August 30 2002  

p2p-Gnutella31 62k 147k 
Gnutella peer to peer network from 

August 31 2002  

TABLE IV.  SIGNED NETWORK GRAPHS USED FOR EVALUATION. 

Name | V | | E | Description 

soc-sign-epinions 131k 841k Epinions signed social network 
soc-sign-

Slashdot081106 
77k 516k 

Slashdot Zoo signed social network 
from November 6 2008 

soc-sign-
Slashdot090216 

81k 545k 
Slashdot Zoo signed social network 

from February 16 2009 
soc-sign-

Slashdot090221 
82k 549k 

Slashdot Zoo signed social network 
from February 21 2009 
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