

4

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

A heuristic graph partitioning method to minimize
remote communication costs

 [Shing Ki Wong, Siu Ming Yiu]

Abstract—Existing graph partitioning algorithms rarely
focus on the choice of the replicas. Most of them make use of
random hashing to allocate vertices to partitions due to its
convenience and simplicity. However, such random property
may result in undesirable partitioning results with huge
communication cost if many high degree vertices are being
replicated. We address this problem and propose a greedy
algorithm to minimize the number of replications of high
degree vertices and at the same time minimize the replication
factor by sorting the vertices before allocating them to different
partitions. We compare our algorithm with one of the well
performed existing graph partitioning algorithms,
PowerLyra’s hybrid-cut, and prove that our algorithm gives
better results in most practical situations. Experimental results
show that our algorithm gives much lower replication factor
compared to PowerLyra’s hybrid-cut algorithm generally in
random graphs, power-law graphs and real-life graphs.

Keywords—graph, partitioning, heuristic, replica, insert

I. Introduction
Graph computation has become significantly important

nowadays in many areas involving network concepts like the
Internet connectivity framework, social network, physical
transport network and protein network. By representing
individuals in a network with nodes and their corresponding
relationships with edges, the network can be transformed
into a graph structure, which can then be further analysed by
a large amount of calculations and operations in data
mining. Among these wide range of graph operations, Graph
partitioning is one of the main computations making use of
the graph structure representation of network systems. It
divides a large graph into smaller sub-pieces, making it
more convenient for parallel systems such as MapReduce to
manipulate the data in smaller scales. In the era of big data,
the size of graph grows exponentially and therefore efficient
data placement is essential. Efficient graph partitioning
algorithms need to guarantee high data locality to minimize
data migration costs, while at the same time maintaining
similar sizes for each partition for effective parallel
computations.

The logic behind a graph partitioning algorithm plays a
very important role in this foundation. It is because poor
partitioning results may incur huge overhead and
significantly degrade the performance of subsequent graph
analysis procedures. In frameworks such as PowerGraph [1]
and Giraph [2], the quality of the partitioning result is even
more critical.

As shown in Fig. 1, many existing graph partitioning
algorithms give less focus on how to replicate vertices in an
efficient way by just doing it with random hashing. They
give poor partitioning results especially for graphs which
contain large number of clusters This kind of graphs is very
common nowadays in social networks, where each cluster
represents an individual social circle of the community.
Furthermore, graph partitioning usually generates replicas in

order to preserve the full relationships between vertices after
partitioning. Existing algorithms pay little attention to the
choice of replicas and may incur huge communication costs
by replicating high-degree vertices as they are the most
active vertices in the graph.

There are different criteria to determine whether a graph
partitioning method is good or not. Common considerations
include the time spent and the memory consumed (i.e. how
long does the algorithm takes and how big is the partitioned
graphs). The time spent usually depends on the complexity
of the algorithm, while the memory consumed depends on
the number of mirrors created. Because of this, many
existing algorithms try to minimize the number of replicas
during partitioning (i.e. reducing the replication factor). It is
a usual approach and most of the time it gives good
partitioning results. Our proposed algorithm also focuses on
reducing the number of replicas but we also put much effort
in deciding which vertices to be replicated in order to
achieve a good partitioning result. Notice that there are
differences in the degree of importance for the vertices,
which means replicating vertices with different degrees
poses different level of communication costs on the whole
system. The higher the vertex degree, the higher the cost and
vice versa. Therefore, it is better off to avoid replicating
high degree vertices during partitioning. However, most of
the existing algorithms overlooked this issue since it is not
easy to obtain a balanced partitioning with a low replication
factor, and at the same time maintaining the connections of
vertices as local as possible.

To illustrate the importance of the degree of a vertex,
consider an example of an IP network. In the graph of the
network, each vertex represents a node and an edge is
connected between any two nodes if they are linked with
each other. Generally, a node which has more links with
others will generate more communication per period of time
then a node that with fewer links. Therefore, the
communication cost of a high-degree vertex will be higher
than a low-degree vertex per unit of time. Because of this,
more attention should be put on high-degree vertices than
low-degree vertices during partitioning. The same situation
also applies in other networks with similar structure such as
social networks (e.g. Facebook and Twitter).

Figure 1. General graph partitioning result using random hashing on
vertices.

5

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

In this paper, we propose a new graph partitioning
algorithm, which efficiently assigns vertices into machine
using a greedy algorithm to avoid the creation of replicas for
high-degree vertices and minimize the communication cost.
It gives guaranteed improvement from PowerLyra’s hybrid-
cut graph partitioning algorithm, which already gives
promising performance compared to other existing graph
partitioning algorithms.

This paper is structured as follow:

 We discuss the suitable criteria for an efficient graph
partitioning algorithm. We state our view and focus on
the criteria and illustrate it with real life situation. We
also point out the deficiency of existing algorithms
which may lead to low performance in graph
partitioning in certain situations.

 We introduce our algorithm and state the objectives in
behind, then give a detailed explanation on that.

 We prove in theory that our algorithm is guaranteed to
have improvement over one of the best algorithms,
PowerLyra’s hybrid-cut algorithm, under a reasonable
circumstance.

 We conduct simulations with randomly generated
graphs to verify our theoretic deduction.

 We conduct simulations with large network graphs on
our algorithm and PowerLyra's hybrid-cut algorithm
and show that our algorithm gives better results.

II. Related Work
The two common approaches for graph partitioning used

are edge-cut and vertex-cut. To avoid complexity, many
existing graph partitioning algorithms simply make use of
hashing to randomly assign vertices and edges into the
machines. It is simple and convenient but may result in poor
partitioning as it does not pay much attention on the graph
structure.

Pregel [3][4] and GraphLab [5] make use of random
edge-cut (hashing) to distribute vertices evenly into
machines. Pregel only support push-mode algorithms while
GraphLab creates replicas and duplicate edges to eliminate
this restriction. PowerGraph [1] is a distributed system
aiming at balancing the number of edges in different
machines to minimize communication overhead. GraphX [6]
is another graph processing system on Spark [7] that makes
use of vertex-cut to create replicas of vertices in partitioning
to support dynamic computations. SBV-Cut [8] introduces
the balance vertices concept to achieve a balanced vertex-cut
of graphs. SPAR [9] criticizes that most graph partitioning
algorithms are not incremental (offline) which will cause
huge computational cost for highly dynamic graphs. It
focuses on its incremental (online) property which updates
the graph according to the six possible events: inserting or
deleting on vertices, edges and machines. S-CLONE [10]
aims at optimizing the placement of replicas in order to
minimize the reading cost of the neighbours. Costs
optimizing approach is carried out in [11] to find out the
best data placement by considering different aspect of costs
in a graph system. A distributed decentralized local
searching algorithm is proposed [12] for extremely large
graphs which only reads in local information for local
operations.

METIS [13] is a multilevel graph partitioning scheme
which goes through three phases during partitioning (i.e.
coarsening, partitioning of the coarsest graph and
refinement). It uses a coarsening heuristic which limit the
size of partition to achieve a better result. KaFFPa [14] is
another multilevel graph partitioning scheme which makes
use of max-flow min-cut computations with local
improvements for partitioning, constraining the maximum
partition size and minimizing cut size. The parallel version
of METIS and KaFFPa are presented in [15] and [16] to
produce good partitions of large unstructured graphs a short
amount of time. Evolutionary search techniques is adopted
in [17] together with multilevel graph partitioner to improve
the overall fitness for each generation. Another use of
evolutionary algorithm is conducted in [18] to perform local
optimization when exploring spaces with standard graph
partitioning methods. MITS [19] is another multilevel
algorithm which uses tabu search approach during
refinement procedure. A parallel genetic algorithm is
proposed in [20] which is easy to be implemented in
massive architectures. DFEP [21] introduces the concept of
edge partitioning and gives a heuristic algorithm to obtain
reasonable balanced partitions.

Sheep [22] transforms the input graph into an
elimination tree and do partition on the tree which the tree
partitions will later be converted back to graph partitions. It
scales to larger graphs and gives promising runtime results.
It gives promising performance in skewed graphs such as
power-law graphs which are very common in real life
scenario. However, it only works for undirected graphs,
while many of the social network graphs (e.g. Twitter,
Facebook) are directed graphs which are not applicable.

For directed graphs, PowerLyra [23] performs pretty
good in terms of low execution time and communication
cost. It gives significant improvements by proposing a p-
way hybrid-cut, which offers differentiated partitioning
methods on low-degree and high-degree vertices in order to
reduce the replication factor (). It pays attention in low-
degree vertices to avoid creating mirrors of them. Although
PowerLyra offers good results in minimizing the replication
factor by reducing the number of mirrors for low-degree
vertices, it puts little focus on reducing the number of
mirrors for high-degree vertices, which are indeed of higher
importance.

III. The Proposed Method
This section explains our concepts behind and gives the

detailed algorithm of our proposed graph partitioning
method. Our algorithm focuses on minimizing the numbers
of replicas for high degree vertices to optimize the
partitioning result.

A. Minimizing High-degree Replicas
Our main objective is to minimize the number of replicas

for high-degree vertices in partitions. Compared to low-
degree vertices, high-degree vertices experience more
communication per period of time due to its higher number
of neighbour vertices. Having more replicas in different
partitions implies more remote communications is needed
(e.g. network overhead). Hence, replicating high-degree
vertices will pose more communication overhead to the
system then replicating low-degree vertices. This is the

6

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

reason why we aim at minimizing the number of replicas for
high degree vertices by keeping as many as possible their
neighbours with them together locally in the same partition.
As shown in Fig. 2, we try to avoid partitioning on the
clusters of the graph and put each whole cluster into the
same partition so as to minimize the number of replicas of
high degree vertices.

B. Choice of Neighbours
Our algorithm chooses to assign the target vertices

instead of source vertices together with the high-degree
vertex. The reason is that it is unlikely that a vertex will be
updated by all its source vertices at the same time (Fig. 3 --
left). Therefore, the remote communication cost from the
source vertices is usually not maximized in a certain time
interval. However, on the other hand, once a vertex is being
updated, all of its neighbours will be notified at the same
time interval and the remote communication cost will be
much higher compared to that from the above case (Fig. 3 --
right). Therefore, it is better to keep the target neighbours
locally with the vertex to avoid excessive remote
communication cost in a certain time interval. We decided
not to keep both target vertices and source vertices together
in order to simplify the complexity of our algorithm.

C. Definition
To represent the importance of a certain vertex in a

graph. We define the traffic as the degree (i.e. total number
of in-edges and out-edges) of a vertex in the original pre-
partitioning graph. The total traffic cost () is the sum of all
the traffic of the replicas in all machines after the
partitioning. This definition reflects the idea that replication
of higher degree vertices will incur more communication
cost. The lower the cost is, the better the partitioning will be.
We also define the maximum capacity (C) as the benchmark
of the maximum number of vertices allowed to be put into
one partition.

Figure 2. Dividing a graph into diff erent machines in groups of clusters.

Figure 3. Updates from source vertices(left) and updates to target
vertices(right).

D. The Algorithm
Our proposed algorithm consist of two steps, it first does

a sorting, followed by an allocation of vertices into the
partitions accordingly.

[Step 1] Sort the vertices in descending order of degrees.

[Step 2] Starting from the vertex with highest degree, check
whether it already exists in any one of the partitions.

 If yes, for low-degree vertices, put all its target vertices
into the least occupied machine. For high-degree
vertices, fill the least occupied partition with its target
vertices. If it reaches the maximum capacity, continue
assign the remaining vertices into the next least
occupied partition.

 If no, put the vertex and all its target vertices into the
least occupied partition.

Repeat until all vertices have been inserted.

Sorting the vertices in step 1 costs O(n) time and
allocating the vertices in step 2 costs O(mn2) time, where m
is the number of machines and n is the number of vertices.
Thus the total time complexity of the algorithm is O(mn2).

IV. Performance Guarantee
This section gives a theoretic proof on the performance

of our proposed algorithm over the hybrid-cut graph
partitioning algorithm in PowerLyra.

A. Guarantee of Lower Traffic Cost
To guarantee that out proposed algorithm gives a better

result, we show that the total traffic cost of our algorithm is
lower than that of PowerLyra, that is:

PowerLyra > 0

Theorem 1. If more than 37.5% of neighbour vertices are
not staying together with the source after partitioning, our
algorithm gives a lower value of total traffic cost and thus a
better partitioning by creating less replicas on high-degree
vertices.

Proof. We express the total traffic cost of PowerLyra
(PowerLyra) and our proposed method (0) in terms of the
highest number of degree and deduce the required
percentage of neighbour vertices are not staying together
with the source after partitioning.

Lemma 1. Total traffic cost for PowerLyra’s hybrid-cut

PowerLyra’s hybrid-cut makes use of hashing to assign
vertices into partitions. We here assume that the portion of
neighbours not staying with a certain vertex (outlying
portion) is p after the partitioning. Then the expected
number of replicas for a certain vertex of degree k is:

p × k

and the total traffic cost of a vertex of degree k is:

k(pk).

7

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

Summing up all the degrees from 1 to n we get:

Lemma 2. Total traffic cost for our algorithm

For our algorithm, since we sort the vertices in advance
and assign them in descending order one by one, the
maximum number of replicas of a vertex with degree n - k is
k until the degree reaches n / 2. After that, the maximum
number of replicas will be bounded at n - k for k > n / 2.
Summing up all the degrees we get:

Setting PowerLyra > 0, we get:

Taking limit for n → ∞ we get p > 3 / 8 (37.5%).

V. Evaluation
We implement our algorithm in C++ using The Boost

Graph Library 1.60.0 [24]. The hybrid-cut algorithm of
PowerLyra is also being implemented for comparison and
we assume that vertices with degree more than half of the
maximum degree are regarded as high-degree vertices. The
maximum capacity is given by

where n ≈ 4 is optimal in terms of minimizing the maximum
capacity while at the same time optimizing the partitioning
results.

A. Measuring Criteria
We judge the performance of partitioning with three

criteria in different dimensions, which include the
replication factor (), outlying portion (p) and epsilon ().

The meaning of each criteria is mentioned in the following
subsections.

1) Replication Factor
The replication factor () is a common measure for

partitioning performance. It is given by the average number
of replications made for each vertex among all partitions.
The lower the replication factor, meaning that fewer replica
are created and a smaller size of partitioning, the better the
partitioning result..

2) Outlying Portion
The outlying portion (p) is defined by the average

percentage of neighbours not staying with each host vertex
(the vertex with the highest degree among its replica) after
partitioning. It is calculated by

for each vertex v, where V is the set of replica of v among
the machines. The lower the outlying portion, the more the
neighbours are partitioned with the source vertex in the
same partition, and thus the better the partitioning result.

3) Epsilon
The epsilon () is defined in the (k, 1 + ) balanced

partition problem. It tries to find a minimum cost partition of
a graph G into k components with each component
containing a maximum number of (1 + )(n / k) nodes,
which means

where k is the number of machines in the partition. In our
analysis, we calculate the corresponding value of  for each
partition result. The lower the value of , the more even the
distribution of vertices among the partitions, and thus the
better the partitioning result.

B. Random Graphs
We generate random graphs of vertex size 1000 with

edge size 2000, 4000 and 6000 for 100 simulations each. We
calculate the average replication factors (), outlying
portions (p) and epsilon () for both methods for the
corresponding graphs with partition number ranging from 5
to 30. The results are shown in Fig. 4, 5 and 6. Generally
speaking, all of the replication factor, outlying portion and
epsilon increase with the edge size because the partitioning
quality decreases with the increase of graph complexity. Our
proposed method always gives lower replication factor,
outlying portion and epsilon compared to PowerLyra's
hybrid-cut algorithm. With the increase of the number of
partitions involved, our algorithm gives even better results.

8

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

Figure 4. Replication factor of our algorithm and PowerLyra’s hybrid-cut
in random graphs.

Figure 5. Outlying portion of our algorithm and PowerLyra’s hybrid-cut
in random graphs.

Figure 6. Epsilon of our algorithm and PowerLyra’s hybrid-cut in random
graphs.

1) Practicability
We can see that in Fig. 5, the outlying portion p for

PowerLyra’s hybrid-cut keeps increasing with the edge size
increasing from 2000 to 6000. The outlying portion reaches
0.4 for | E | = 6000 (i.e. around 0.6% of max | E | = 990000)
when the number of machines equals 10, which already
exceed our theoretic p (0.375). It indicates that our
algorithm fits into practical situation and outperform in most
of the random graphs (≈ 99.4% of graphs).

C. Power-law Graphs
Most of the real-life graphs (e.g. network graphs) are

power-law like. To examine our algorithm on such a
common type of graph, we generate power-law graphs of
vertex size 1000 with edge size 2000, 4000 and 6000 for 100

simulations each. We calculate the average replication
factors (), outlying portions (p) and epsilon () for both
methods for the corresponding graphs with partition number
ranging from 5 to 30. The results are shown in Fig. 7, 8 and
9. Similar to our simulations on random graphs, our
proposed method guarantees lower replication factor,
outlying portion and epsilon compared to PowerLyra's
hybrid-cut algorithm. Note that when | E | = 6000, the results
deteriorates and give less advantage compared to | E | =
2000 and 4000. It is due to the fact that the graphs generated
with higher number of edges become less power-law like
compared to that with lower number of edges. As a result,
our algorithm takes less advantage on the power-law
property, thus affecting the results.

Figure 7. Replication factor of our algorithm and PowerLyra’s hybrid-cut
in power-law graphs.

Figure 8. Outlying portion of our algorithm and PowerLyra’s hybrid-cut
in power-law graphs.

Figure 9. Epsilon of our algorithm and PowerLyra’s hybrid-cut in power-
law graphs.

9

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

D. Real-life Graphs
To validate the practicability of our algorithm in real life

situations, we run the two algorithms with large network
graphs in three categories, including social network graphs,
peer-to-peer network graphs and signed network graphs. All
of the graphs are directed and are obtained from the Stanford
Large Network Dataset Collection [25]. We calculate the
replication factor, outlying portion and epsilon for each of
the graph with partition number ranging from 5 to 30 and
take the average for each of the three measurements. Fig. 10,
11 and 12 show the corresponding results.

Figure 10. Replication factor of our algorithm and PowerLyra’s hybrid-cut
in various large networks.

Figure 11. Outlying portion of our algorithm and PowerLyra’s hybrid-cut
in various large networks.

Figure 12. Epsilon of our algorithm and PowerLyra’s hybrid-cut in various
large networks.

1) Replication Factor and Outlying
Portion

As shown in Fig. 10 and 11, our proposed algorithm
outperforms PowerLyra's hybrid-cut in all the tested
scenarios by giving lower values of replication factor.
Results shows that our algorithm gives guaranteed
improvement in reducing replication factor on partitioning
results. Among the three categories of real-life graph, our
algorithm outperforms most in social network graphs,
followed by peer-to-peer network graphs and then signed
network graphs.

2) Epsilon
As shown in Fig. 12, our proposed algorithm

outperforms PowerLyra's hybrid-cut in peer-to-peer graphs
and signed network graphs. For social network graphs, our
algorithm gives lower value of epsilon. Table 1 gives the
breakdown of the average  for different number of
partitions ranging from 5 to 30 of the social network graphs
used for simulation. Our algorithm actually performs better
for the two Slashdot graphs, while perform worse for
Epinions and Wiki-Vote. It is due to the characteristic of our
proposed algorithm that aims at putting high-degree vertices
with their neighbours together in the same machine,
sacrificing the balance of the partitions to minimize the
number of high-degree replica in exchange of a low
replication factor. The large amount of closely located high-
degree vertices in the Epinions and Wiki-Vote network
graphs cause our algorithm to put them together in a single
machine, resulting in a larger value of .

TABLE I. AVERAGE EPSILON FOR SOCIAL NETWORK GRAPHS
SIMULATED BY POWERLYRA AND OUR PROPOSED ALGORITHM.

Name PowerLyra 0

soc-Epinions1 2.10 6.99

soc-Slashdot0811 2.94 2.56

soc-Slashdot0922 2.94 2.44

wiki-Vote 4.71 7.93

VI. Conclusion
This paper points out that current existing graph

partitioning algorithms overlook the seriousness of creating
replicas of high-degree vertices due to the random property
of hashing, which may incur high communication cost. Our
algorithm tackles the problem by using a greedy approach to
minimize the number of replicas for high-degree vertices so
that as many neighbours of high-degree vertices stay
together with their source vertices as possible. We proved
that our algorithm gives lower traffic cost than PowerLyra’s
hybrid-cut in practical situations. Experiment results show
that our algorithm gives lower replication factors than
PowerLyra’s hybrid-cut for random graphs, power-law
graphs and real-life graphs.

Acknowledgment
We thank Rong Chen for providing helpful information

on his project of PowerLyra. We also appreciate the
constructive and invaluable comments provided by the
reviewers on improving the paper.

10

 Proc. of the 10th Intl. Conf. on Advances in Computing, Control and Networking - ACCN 2020
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN No. 978-1-63248-184-9 DOI : 10.15224/978-1-63248-184-9-02

References

[1] Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In OSDI’12, 2012.

[2] Yuanyuan Tiany, Andrey Balminx, Severin Andreas Corsten, Shirish
Tatikonday, and John McPherson. From ’think like a vertex’ to ’think
like a graph’. In VLDB’13, 2013.

[3] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A
system for large-scale graph processing. In SIGMOD’10, 2010.

[4] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu.
Pregel algorithms for graph connectivity problems with performance
guarantees. In Proceedings of the VLDB Endowment, 2014.

[5] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos Guestrin, and Joseph Hellerstein. Graphlab: A new framework
for parallel machine learning. In UAI2010, 2010.

[6] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion
Stoica. Graphx: A resilient distributed graph system on spark. In
GRADES’13, 2013.

[7] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
In HotCloud’10, 2010.

[8] Mijung Kim and K. Selc¸uk Candan. Sbv-cut: Vertex-cut based graph
partitioning using structural balance vertices. Data Knowl. Eng.,
72:285–303, 2012.

[9] Josep M. Pujol, Vijay Erramill, Georgos Siganos, Xiaoyuan Yang,
Nikos Laoutaris, Parminder Chhabra, and Pablo Rodriguez. The little
engine(s) that could: Scaling online social networks. In
SIGCOMM’10, 2010.

[10] Duc A. Tran, Khanh Nguyen, and Cuong Pham. S-clone: Socially-
aware data replication for social networks. Computer Networks,
56:2001–2013, 2012.

[11] Lei Jiao, Jun Li, Tianyan Xu, Wei Du, and Xaoming Fu. Optimizing
cost for online social networks on geo-distributed clouds. IEEE/ACM
Transactions on Networking, 24:99–112, 2014.

[12] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Mark
Jelasity, and Seif Haridi. A distributed algorithm for large-scale graph
partitioning. ACM Transactions on Autonomous and Adaptive
Systems, 10, 2015.

[13] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20:359–392, 1998.

[14] Peter Sanders and Christian Schulz. Engineering multilevel graph
partitioning algorithms. In ESA’11, 2011.

[15] George Karypis and Vipin Kumar. Parallel multilevel series k-way
partitioning scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48:278–300, 1999.

[16] Peter Sanders, Christian Schulz, Darren Strash, and Robert Williger.
Distributed evolutionary graph partitioning. In GECCO ’17, 2017.

[17] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary
search and multilevel optimisation approach to graph partitioning.
Journal of Global Optimization, 29:225–241, 2004.

[18] Pierre Chardaire, Musbah Barake, and Geoff P. McKeown. A probe-
based heuristic for graph partitioning. IEEE Transactions on
Computers, 56:1707–1720, 2007.R. Nicole, “Title of paper with only
first word capitalized,” J. Name Stand. Abbrev., in press.

[19] Una Benlic and Jin-Kao Hao. An eff ective multilevel tabu search
approach for balanced graph partitioning. Computers and Operations
Research, 38:1066–1075, 2011.

[20] E.-G. Talbi and P. Bessiere. A parallel genetic algorithm for the graph
partitioning problem. In ICS ’91, 1991.

[21] Alessio Guerrieri and Alberto Montresor. Distributed edge
partitioning for graph processing. arXiv preprint arXiv:1403.6270,
2014.

[22] Daniel Margo and Margo Seltzer. A scalable distributed graph
partitioner. In Proceedings of the VLDB Endowment, 2015.

[23] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra:
Diff erentiated graph computation and partitioning on skewed graphs.
In EuroSys’15, 2015.

[24] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The boost graph
library (bgl), 2016.

[25] Jure Leskovec. Stanford large network dataset collection, 2016.

Appendix
Table 2, 3 and 4 list the details of the large network

datasets used for evaluation.

TABLE II. SOCIAL NETWORK GRAPHS USED FOR EVALUATION.

Name | V | | E | Description

soc-Epinions1 75k 508k
Who-trusts-whom network of

Epinions.com

soc-Slashdot0811 77k 905k
Slashdot social network from

November 2008

soc-Slashdot0922 82k 948k
Slashdot social network from

February 2009

wiki-Vote 7k 103k
Wikipedia who-votes-on-whom

network

TABLE III. PEER-TO-PEER NETWORK GRAPHS USED FOR EVALUATION.

Name | V | | E | Description

p2p-Gnutella04 10k 39k
Gnutella peer to peer network from

August 4 2002

p2p-Gnutella05 8k 31k
Gnutella peer to peer network from

August 5 2002

p2p-Gnutella06 8k 31k
Gnutella peer to peer network from

August 6 2002

p2p-Gnutella08 6k 20k
Gnutella peer to peer network from

August 8 2002

p2p-Gnutella09 8k 26k
Gnutella peer to peer network from

August 9 2002

p2p-Gnutella24 26k 65k
Gnutella peer to peer network from

August 24 2002

p2p-Gnutella25 22k 54k
Gnutella peer to peer network from

August 25 2002

p2p-Gnutella30 36k 88k
Gnutella peer to peer network from

August 30 2002

p2p-Gnutella31 62k 147k
Gnutella peer to peer network from

August 31 2002

TABLE IV. SIGNED NETWORK GRAPHS USED FOR EVALUATION.

Name | V | | E | Description

soc-sign-epinions 131k 841k Epinions signed social network
soc-sign-

Slashdot081106
77k 516k

Slashdot Zoo signed social network
from November 6 2008

soc-sign-
Slashdot090216

81k 545k
Slashdot Zoo signed social network

from February 16 2009
soc-sign-

Slashdot090221
82k 549k

Slashdot Zoo signed social network
from February 21 2009

About Author (s):

Shing Ki Wong is a PhD candidate at The
University of Hong Kong focusing on
researches about game cheat detection,
analyzing and identifying cheating
behaviors in mobile games.

Siu Ming Yiu is currently a professor in
the Department of Computer Science of
the University of Hong Kong. His
research interests include cyber security,
cryptography, and FinTech.

