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Abstract— Glioma has been one of the most common life-
threatening brain tumor diseases all over the world with different 
levels of aggressiveness: Low Grade Glioma (LGG) and High 
Grade Glioma (HGG), and consequently automated glioma grade 
prediction methods based on multi-modal MRI images are of 
great interest. However, the development of effective automated 
methods, and in particular convolutional neural networks (CNN) 
for fast and accurate medical image analysis has relied on the 
availability of large annotated training datasets. The purpose of 
this study was to develop a 2D CNN model, Triplanar-CNN, to a 
fully automated and accurate glioma grade prediction, using a 
small training dataset of less than 300 glioma patients who 
underwent pre-operative volumetric MRI exams, which included 
FLAIR, T1Gd, T1, and T2 modalities. Our approach operates on 
all of the MRI modalities and plane slices (axial, coronal, and 
sagittal) based on reconstructing the volumetric MRI as a set of 
2D stacked slices in the sagittal, coronal and axial planes, and 
allows to leverage pre-trained CNN models for feature extraction, 
which is essential given the inadequate amount of labeled training 
dataset. The proposed Triplanar-CNN architecture consists of 
three sub-networks, each based on leveraging CNN model pre-
trained on natural images, and separately applied to axial, 
coronal and sagittal view of a 3D MRI, respectively, followed by a 
common fusion-layer to integrate the extracted features by each 
sub-networks, which is an input to a fully connected layer used 
for prediction. On the BraTS 2017 dataset, the Triplanar-CNN 
were trained separately for each modality, and each 
corresponding model yields more than 0.9 AUC for classifying 
glioma into two groups. Moreover, averaging the probability of 
glioma grading by all four MRI modalities boosts the 
classification performance compared to either of the four 
separately, achieved a patient-level grading result of 95.8% and 
0.985 in accuracy and AUC, respectively, outperforming state-of-
the-art results. Five-fold-cross validation was used to evaluate the 
models. To sum up, we developed a fully automated CNN-based 
model that can be translated into a clinical tool for non-invasive 
diagnosis of glioma using pre-operative MRI scans in a rapid and 
accurate way, leading to better outcomes for patients 

Keywords— Deep Learning, Convolutional Neural Networks, 
Glioma grading, Multi-Modal MRI 

I.  Introduction 
Gliomas that arise from glial cells are the most dangerous 

cancer in the world. It is also the most common primary brain 
tumor that represents about 80% of total malignant brain 
tumors [1]. Depending on the underlying histopathological and 
molecular parameters of the tumor along with the World Heal- 
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-th Organization (WHO) tumor stratification guidelines, 
gliomas can be categorized as high-grade glioma (HGG, grade 
III and IV ) or low-grade glioma (LGG, grade I and II ) [2]. 
Patients with LGG, which are slow-growing tumors, have a 
higher survival rate than patients with HGG tumors, which 
occur in the most vital and complex organ in human bodies 
[3]. The most common treatment of patients with glioma 
encompasses surgical resection, radiotherapy, chemotherapy, 
and follow-up plans, either separately or in combination. 
However, patients with LGG and HGG may follow different 
treatment options. Therefore, a rapid and accurate preoperative 
stratification of glioma grades is critical in predicting the 
disease prognosis, and in using a custom-made treatment 
strategy perfectly tailored to each individual patient. 

For the past years, in practice, prediction of glioma grades 
has been based on either removing a section of the tumor 
during surgery or a tumor biopsy is used to take a sample of 
the tumor by inserting a needle through the skull into the 
brain, then a pathologist examines the tumor tissue under a 
microscope. However, these approaches are invasive, 
subjective task, prone to sampling and even time-consuming 
for experienced specialists due to the complex mechanical 
properties of the tissues, which vary from patient to patient 
[4]. Thus, it was indispensable to come up with a preoperative 
approach that can be used to noninvasively classify glioma 
grades rapidly and accurately via a comprehensive imaging of 
the tumor area.  

Recently, technological advances have led to the acquisition 
of higher resolution images of a human brain with noninvasive 
medical imaging devices, such as magnetic resonance imaging 
(MRI). These powerful diagnostic tools adjunct the clinicians 
to visualize the smaller structures and abnormalities in the 
brain through visual inspection of images that provide 
valuable information concerning tumor type and grade [5]. 
Thus, glioma grading from imaging data avoids the invasive 
biopsy and the sampling error procedure. However, this comes 
at the cost of generating a bunch number of images per patient, 
which does not appear feasible that the clinician himself has to 
visually inspect morphological features of the tumor region in 
the whole brain MRI images, calculate a bunch of numbers, 
makes some advanced statistics and then combines the 
numbers into a meaningful diagnosis. Therefore, the 
development of a computer-assisted technique (CAD) to aid 
the radiologists for more accurate and fast glioma grading 
based on the multi-modal brain MRI volumetric data acquired 
prior to any invasive examination is of great current interest 
[6].  

Approaches of CAD-based grading of glioma can be 
coarsely divided into two categories: (1) the handcrafted-based 
approaches. In this approach, the tumor regions are usually 
segmented first either through the manual or automatic way, 



Proc. Of the International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020 
  Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

     ISBN: 978-1-63248-188-7 DOI:10.15224/978-1-63248-188-7-05 

22 
 

the features including multi-parametric histogram and image 
texture are extracted from the segmented regions, and machine 
learning methods are applied to give prediction after feature 
selection [7]. However, major challenges remain for 
methodological development to optimize feature extraction 
and selection. In addition, the preprocessing procedure is 
complex and time-consuming.  (2) the deep learning (DL) 
based approaches- DL methods especially CNNs that learn the 
features relevant to the problem directly from datasets, without 
the intermediate step of radiologists or handcrafted radiomics 
feature extraction, is the most common emerging technology 
in the medical field and other domains [8]–[10], and have also 
recently been employed for glioma grading [11].  

There have been attempts to accurately predict brain tumor 
patients' glioma grade from volumetric MRI images, using 
various CNN algorithms, and have reported good results. On 
one hand, the researchers modified the state-of-the-art CNN 
architectures, which have been proved to have high accuracy 
in natural image classification or leverage them via transfer 
learning. For instance, Khawaldeh et al. [12] reconstructed a 
3D FLAIR modality in the axial plane, and selected slices that 
contain lesions to develop a 2D CNN model, which was based 
on AlexNet architecture [13], for glioma grading. Similarly, 
Yang et al. [14] used CNN models trained on natural images, 
GoogLeNet [15], and fine-tuned it using axial T1Gd slices and 
achieved a glioma grading prediction accuracy of 94.5%. On 
the other hand, many researchers developed their own CNNs. 
For instance, Pereira et al. developed a 3D CNN architecture 
to classify glioma grades from automatically defined tumor 
regions [16].  

Although there exist several DL-based techniques for 
glioma grade prediction from pre-operative volumetric MRI 
images, they have certain limitations that need to be 
considered. The first limitation of most of these systems is, 
they exploit only one modality or only axial plane slices, 
despite the different type of plane slices and modalities could 
provide complementary information on grading glioma 
patients. Furthermore, many existing DL models are based on 
3D CNN without considering the insufficient training dataset 
available to reach the full potential of the CNN architecture. 
Lack of available pre-trained 3D CNN model is also another 
challenge to use 3D CNN for small datasets. Besides, 3D 
CNNs are not computationally efficient. When 3D datasets 
sizes are small, multi-view CNN architectures have been 
designed and trained to recognize volumetric images from a 
collection of their views on 2D images with greater accuracy 
compared to 3D CNNs [17]. Hence, to overcome the above 
described limitations, we developed a novel 2D CNN 
architecture, Triplanar-CNN, which is an extension of the 
multi-view CNN, for predicting glioma grade from multi-slice 
2D images of a volumetric MRI that enables us to leverage 
pre-trained 2D CNNs and achieves high classification 
performance for noninvasively classifying glioma into two 
groups, using MRI data obtained from BraTS’17 dataset.  

In summary, we developed a deep learning model, 
Triplanar-CNN, to discriminate between LGG and HGG using 
pre-operative multimodal MRI images. The Triplanar-CNN 
architecture, which is a three-column CNN, takes as input a 
three-dimensional MRI scan and computes the output 

probability indicating the grade of glioma in that scan in five 
stages (Fig. 1).  In the first stage, preprocessing, we 
reconstructed all the multimodal 3D MRI scans as a set of 2D 
stacked slices in the axial, coronal and sagittal planes. In the 
second stage, using the three columns, we leverage pre-trained 
2D models for extracting features from each plane each 
modality 2D projected stacked slices. In the third stage, 
extracted features from the three columns are consolidated into 
a fixed size feature map. In the fourth stage, for each modality, 
classification is performed using a fully connected layer and a 
sigmoid activation function on top of it. Finally, the individual 
classification performance of each modality was compared 
and the probability predictions of the four modalities were 
averaged to obtain the final more accurate classification result 
at the patient level.  

The remaining of this article is organized as follows. In 
Section II, we present the dataset used for this paper followed 
by our proposed approach in detail including image pre-
processing, and the 2D-CNN architecture. Section III 
illustrates the results. Finally, discussion, and conclusions are 
presented in sections IV and V, respectively. 

Figure 1.  A schematic representation of the Triplanar-CNN architecture 
pipeline. Each 3D MRI modality is represented by a sequence of 2D slices in 
the axial, coronal and sagittal planes, giving rise to our Triplanar CNN 
architecture. Consecutive axial, coronal, and sagittal slices, respectively, are 
stacked as image input to the feature extractor. The feature extraction layers 
are employed to extract view-specific features from each modality. The 
concatenation layer integrates features obtained from each column, followed 
by a fully connected layer with a sigmoid activation function that maps the 3D 
MRI scan to probability prediction in the 0 to 1 range. The figure depicts only 
for T2 modality. Similar architectures were used for FLAIR, T1Gd, and T1 
modalities.  
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II. Materials and Methods 

A. Dataset and Image Preprocessing 
The data used in the preparation of this article were 

obtained from the BRATS’17 training dataset [18], [19], 
which consists of multi-modal MRI exams of 285 glioma 
patients (75 LGG and 210 HGG). For each patient, four MR 
imaging modalities were provided: FLAIR, T1Gd, T1, and T2. 
The images in the dataset were skull-stripped, registered to a 
common space, resampled to a uniform isotropic resolution 
(1mm3), and size-adapted to 240×240×155.   

For deep learning models, input sizes of all the images 
should be the same and should match the input size of the 
model architecture. As we planned to leverage 2D CNN 
models pre-trained on natural images of a fixed image 
resolution as well, we reconstructed each 3D MRI scan to a 
group of 2D stacked slices in the axial, coronal and sagittal 
planes. Some slices at the beginning and end of each plane, 
which did not contain any brain tissue, were discarded to 
avoid processing the background. We then crop each slice to a 
fixed size of 224×224 pixels for axial, and 112×224 pixels for 
coronal and sagittal views, respectively. To avoid the effect of 
image enlarging on the classification performance, two 
consecutive coronal slices were concatenated to form 224×224 
pixels. Similarly, two consecutive sagittal slices were 
concatenated and reshaped to 224×224 pixel sizes. 

We rescaled the intensity values of the slices to (0,255) 
range, convert them to PNG format, and normalized to have 
zero mean and unit variance. Then, all the reconstructed PNG 
images of an MRI in the axial, coronal and sagittal views were 
stacked together, and saved it in serialized form with pickle 
toolbox, respectively.  Therefore, our input shape turned to be 
(n, 3,224,224). The values can be interpreted such that first 
value holds for the number of stacked images in the axial, 
coronal or sagittal views, respectively. The second value for 
the number of color channels, third and fourth values for width 
and height of PNG images. The first value varies across 
different views and modalities. All the preprocessing stages 
were done using the Python programming language and 
NiBabel package [20].  

B. The Triplanar-CNN Model 
Architecture and Training 
CNN architecture, which was introduced by LeCun et al. 

for handwritten digit recognition [21], consists of 
convolutional and pooling layers occurring in an alternative 
fashion to extract high-level features from the input 2D 
images,  followed by dense layers to perform classification.  
As depicted in Fig 2. we developed a 2D CNN architecture, 
Triplanar-CNN, for classification of gliomas from volumetric 
MRI exams, inspired by prior work of Nan Wu [22]. It takes a 
three-dimensional MRI scan (a sequence of slices in the axial, 
coronal and sagittal planes) as input and outputs a probability 
indicating the grade of glioma in that scan. The architecture 
consists of three core modules: (i) three view-specific 
columns, each based on the feature extraction layers of 
AlexNet architecture that consists of five convolutional layers 

and three pooling layers, and a customized global and average 
pooling layers to reduce the number of features and 
consolidate into a fixed size feature map. For each of the three 
columns, we apply transfer learning from AlexNet pre-trained 
on natural images and fine-tuned the columns with the 
preprocessed axial slices, coronal slices, and sagittal slices, 
respectively. The three columns output a fixed-dimension 
hidden representation for each of the three views (Fig. 3). 
Similar feature extraction architecture has been used in our 
prior work for tuberculosis report generation using chest CT 
scans [8]. Besides AlexNet, three different existing state-of-
the-art deep learning models (ResNet [23], VGG [24], and  
GoogLeNet) as the feature extractor, pre-trained on natural 
image classification tasks, were also tested in our experiments, 
and discussed in detail in section III.  (ii)  a fusion layer to 
integrate the output of the three-column vectors into a single 
dimension vector, which is fed into the next layer, fully 
connected layer and (iii) a fully connected layer with a binary 
cross-entropy loss and sigmoid activation function to obtain 
the final prediction in the 0 to 1 range.  

We trained four instances of the same Triplanar-CNN 
architecture, one for each modality, resulting in four different 
results for a patient, one from each modality. The probability 
of glioma grading by the four modalities on the validation set 
were also averaged to obtain the final more accurate single 
classification result at the patient level. Class labels for HGG 
patients were set to 1, and class labels for LGG patients were 
set to 0.  

The dataset was split into five-folds for cross-validation 
experiments using stratified random sampling to ensure that 
each fold contains an approximately equal proportion of 
patients of both the grades. The models were trained using the 
Adam optimization algorithm [25], and each model optimized 
at different learning rates between 10-4 and 10-6. To combat 
overfitting, we early-stopped the parameter optimization and 
training process when the validation loss did not decrease for 
20 epochs. We then selected the version of the model with the 
lowest average loss on the validation dataset as our final 
model candidate. Our models were implemented and trained 
by the widely used deep learning framework Pytorch [26], and 
a desktop computer with NVIDIA GeForce RTX 2070 GPU. 

Figure 2.  An overview of the proposed Triplanar-CNN network. CNN refers 
to the AlexNet-based convolutional neural network column from Fig 3. The 

arrow indicates the direction of the information flow. 
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Figure 3.  Description of one CNN-based feature extractor column for a 
single view, and the dimension of feature maps after each layer. It transforms 
the input view of dimension n × 3× 224 × 224 into a 256-dimensional vector. 

III. Results 
We used five-fold cross-validation upon 285 patient 

subjects to reduce overfitting, wherefrom each class, 80% of 
all the image dataset is used as the training set and the rest as a 
validation set. That is, for each validation fold, the remaining 
other folds are used to train all the four models (for FLAIR, 
T1, T1Gd, and T2). Each fold had a similar ratio of HGG and 
LGG. Only 75 (26.3%) patients in fact had low-grade gliomas, 
whereas 210 (73.7%) had high-grade gliomas. Predictions 
from the FLAIR, T1, T1Gd, and T2 Triplanar-CNNs on the 
validation set were also ensembled using averaging the 
individual prediction results and generate a single output for 
each patient.  The performance measures averaged over all the 
five folds are reported in Table I, including the area under the 
receiver operating characteristic curve (AUC), accuracy 
(ACC) (5), sensitivity (SEN) (6), specificity (SPE) (7), 
precision (PRE), and F1-score (FSC). The AUC curve 
summarizes the trade-off between the true positive rate and 
false positive rate for a binary classifier at various probability 
thresholds settings. Precision indicates the positive predictive 
value for a model whereas F1-score is the harmonic mean of 
precision and sensitivity.  

True positive (TP) = Number of HGG patients correctly 
predicted as HGG  (1) 

False positive (FP) = Number of LGG patients incorrectly 
predicted as HGG. (2) 

True negative (TN) = Number of LGG patients correctly 
predicted as LGG. (3) 

False negative (FN) = Number of HGG patients incorrectly 
predicted as LGG. (4) 

  (5) 

  (6) 

 

As shown in Table I, the proposed approach achieved 
higher performance on every modality. It is also observed that 
ensembling all the four models resulted in improved 
performance over the individual models, which is 95.8% 
accuracy, and 0.985 AUC. The developed model achieved an 
AUC value of 0.89, 0.957, 0.96, and 0.983 when trained solely 
on FLAIR, T2, T1Gd and T2 modalities, respectively. In 
addition, the individual models obtained an accuracy, SPE, 
and SEN values greater than 90%, except FLAIR modality, 
which is around 80% in ACC, SPE, and SEN, demonstrating 
that the Triplanar-CNN model trained solely on single 
modalities are also able to extract discriminative features for 
distinguishing between HGGs, and LGGs. In addition, the 
result indicated that the Triplanar-CNN model trained solely 
with T1 modality has the best classification performance, 
94.7% accuracy, with more than 2.5% improvement over the 
other individual modalities classification performance. The 
results indicated that T1 modalities have more discriminative 
features for glioma grading compared to the other modalities.  
In addition, we know that the higher the specificity, the lower 
the chance of misclassifying the LGG patients, and the higher 
the sensitivity, the lower the chance of misclassifying the 
HGG patients. But, regardless of the class imbalance on the 
dataset, the ensemble model stratifies the LGG and HGG 
patients with 0.99 and 0.95, in SPE and SEN, which shows the 
robustness of the approach that we used. As shown in Table II, 
the performance of the proposed approach on the individual 
cross validation was also consistent and high. The minimum 
AUC was 0.93, and the maximum was 1.0. To sum up, the 
result indicated that our ensemble model, comprising the four 
modalities, can effectively separate patients with LGG from 
those with HGG. 

To further investigate the effectiveness of our proposed 
method, we also evaluated the performance of our proposed 
approach by using only 60% of the dataset (Folder, folder 4, 
and Folder 5) for training, 20% for validation (Folder 2), and 
20% for testing (Folder 3). As shown in Table III, our model 
achieved similar performance to that of the five-fold cross-
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validation, which shows that Triplanar CNN architecture pre-
trained on natural images may even effectively discriminate 
HGG subjects from LGG when trained on very small datasets. 

TABLE I.  AUC AND ACCURACY VALUES OF THE INDIVIDUAL 
MODALITIES AND THEIR ENSEMBLE ON FIVEFOLD CROSS-VALIDATION 

Models AUC ACC SPE SEN PRE  FSC 
FLAIR 0.89 83.2 0.8 0.84 0.92 0.88 
T2 0.957 90.2 0.95 0.89 0.98 0.93 
T1Gd 0.96 92.3 0.93 0.92 0.97 0.94 
T1 0.983 94.7 0.95 0.95 0.98 0.96 
Fused 0.985 95..8 0.99 0.95 0.99 0.97 

 

TABLE II.  AUC AND ACCURACY OF THE FOUR MODALITIES AND FUSED 
MODELS ON THE INDIVIDUAL FOLDER OF THE FIVEFOLD CROSS-VALIDATION 

 
Folders 

Models (ACC / AUC) 
FLAIR T1 T1Gd T2 Fused 

Folder 1 77.2 / 0.857 94.7 / 0.98 96.5 / 1.0 98.2/0.99 98.2 / 1.0 
Folder 2 91.2 / 0.963 98.2 / 1.0 98.2/0.99 94.7 /1.0 98.2 / 1.0 
Folder 3 87.7 / 0.91 98.2 / 0.99 100 / 1.0 93 / 0.99 100 / 1.0 
Folder 4 89.5 / 0.959 98.2 / 1.0 94.7/0.99 89.5/0.96 96.5 / 1.0 
Folder 5 70.2 / 0.763 84.2 / 0.93 71.9/0.81 75.4/0.84 86 / 0.93 
Average 83.2  / 0.89 94.7 / 0.98 92.3/0.96 90.2/0.96 95.8/ 0.98 

 

TABLE III.  CLASSIFICATION ACCURACIES ACHIEVED FOR TRAINING, 
VALIDATION AND TEST DATASETS 

 
Datasets 

Models (AUC ± ACC) 
FLAIR T1 T1CE T2 Fused 

train 1.0 ± 99.4 1.0 ± 98.8 1.0  ± 100 1.0  ± 94.2 1.0± 100 
valid 0.9 ± 89.3 1.0 ± 98.2 0.99± 96.5 0.99 ± 94.7 1.0±96.5 
test 0.83±77.2 0.983±94.7 1.0 ± 100 1.0 ± 96.5 1.0±100 

 

IV. Discussions 
Pre-operative grading of gliomas is a critical step in brain 

tumor diagnosis as it can help to choose the appropriate 
treatment strategy, and MRI is usually the preferred 
noninvasive imaging technique in the pre-surgical assessment 
of patients with glioma. Hence, studies have been conducted 
that can predict the grading of gliomas solely based on MRI 
features. However, conventional grading of gliomas using 
traditional machine learning methods on MRI scans that rely 
on the extraction of handcrafted features, which may not fully 
capture the useful information from every cross-sectional MRI 
slices, is time-consuming, subjective and sometimes could not 
be accurate. In this work, we substantially advanced this body 
of knowledge by using deep learning techniques that discover 
automatic features and does prediction directly from the 
image. We did this through a novel 2D convolutional neural 
network using pre-operative multi-modal volumetric MRI 
scans of the brain, which reduce the computational 
requirement of exploring volumetric MRI images. We found 
that the proposed approach achieved high classification 
performance (Accuracy = 95.8%, AUC = 0.985, SEN = 0.95, 
SPE = 0.99) using a small training dataset of less than 285 
patients MRI exams. 

Based on the obtained findings, our results are consistent 
with some previous reports that classify glioma using solely 
on single and multiple MRI modality, in that using multiple 
modalities improves classification performance which is 
consistent with the visual examination from medical doctors. 
However, in contrary to previous studies where FLAIR 
modalities were reported to be superior to T1Gd images [27], 
and T2 to be more superior to FLAIR [28] in providing a more 
complete characterization of glioma, our findings show that 
T1 modality is more predictive than the other three modalities, 
and the individual classification performance of FLAIR 
modality was the lowest. Though in our experiment, the 
individual classification performance of the four modalities, in 
multiple performance measurements, were consistent across 
different 2D architectures and sub-datasets, more investigation 
has to be done on comparison of the individual classification 
performance of various modalities for glioma grading. 

A. Choice of Feature Extractor 
Feature extractor is the most important component of any 

deep learning architecture, and hence in our proposed 
architecture too. As it is shown in the methods section, we 
used pre-trained models as a feature extractor. Hence, in order 
to choose the right state-of-the art CNN model as part of our 
Triplar-CNN architecture, we experimented with four state-of-
the-art deep learning models, each pre-trained on natural 
images, and found AlexNet to perform best (Table IV).  As 
depicted in Fig.3, AlexNet outperforms the other architectures, 
though its difference is not significant with VGG19. For this 
reason, we chose AlexNet as a feature extractor in our 
proposed Triplanar-CNN architecture. 

Figure 4.  Comparison among ReseNet18, VGG19, GoogLeNet, and 
AlexNet. A Scatter plot of the false positive rate (1-specificity) versus true 
positive rate (sensitivity) for the models shows that AlexNet achieves the 

highest AUC. 

TABLE IV.  PRE-TRAINED MODELS COMPARISON 

Models AUC ACC SEN SPE PRE FSC 
ResNet 0.684 71.9 0.905 0.2 0.76 0.826 
VGG19 0.911 86.0 0.881 0.8 0.925 0.902 
GoogLeNet 0.71 71.9 0.952 0.067 0.741 0.833 
AlexNet 0.938 87.7 0.857 0.933 0.973 0.911 
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B. Results Comparison with Some 
Existing Works 

 
A comparison of our results with some of the state-of-the-

art methods recently published works for glioma grading 
evaluated on the same public dataset and other private or 
public datasets are presented in Table V. Our method is 
superior to other existing algorithms in multiple performance 
metrices including AUC and accuracy. However, direct 
comparisons between our study and some previous studies 
based on private data are not possible without having access to 
MRI data of the patient cohort, as reported in these studies. 
Nevertheless, we show the state-of-the-art studies on glioma 
grading that have used pre-operative MRI modalities. Overall, 
the results reported in this paper are high and innovative, and 
can be considered as the state-of-the-art for stratifying glioma 
grades using deep learning models. 

TABLE V.  COMPARISON WITH THE EXISTING CAD-BASED STUDIES 

Authors Approaches Year Dataset 
size 

AUC Accuracy 
(%) 

Hsieh [29] Handcrafted  2017 107 0.89 88 
Cho [30] Handcrafted 2017 274 0.89 89.8 
Zhang [7] Handcrafted 2017 120 0.945 94.5 
Chen [31] Handcrafted  2018 274 0.96 91.3 
Cho [32] Handcrafted 2018 *285 0.921 88.8 
Ge [28] DL 2018 *285 - 93.3 
Khawaldeh [12] DL 2018 *285 - 91.2 
Pereira [16] DL 2018 *285 0.984 92.98 
Bi [33] Handcrafted 2019 60 0.86 91 
Zhu [34] DL 2019 181 0.82 - 
Reza [35] Handcrafted 2019 *285 0.88 88 
Proposed DL 2020 *285 0.985 95.78 

*Indicates authors used the same cohort dataset used in this paper 

V. Conclusion 
 

We developed a deep learning model based on a novel 2D-
CNN architecture for predicting glioma grade fast and 
accurately, using only small multi-modal MRI images, and 
this could potentially be of great help to radiologists to employ 
better decisions in further management of patients with more 
appropriate treatments. Future studies will need to extend the 
results presented herein larger datasets, increase the number of 
classes that can be classified by including more sub-grades of 
glioma tumors. 
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