
               Proc. Of the 2nd International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020 
                                              Copyright © Institute of Research Engineers and Doctors. All rights reserved. 
                                                       ISBN: 978-1-63248-189-4 DOI: 10.15224/978-1-63248-189-4-01 

1 
 

Influence of the stall torque on a vibro-impact 
system with non-ideal excitation 
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Abstract— A vibro-impact system driven by an DC electric 
motor is analyzed. The vibro-impact system is consisting of a 
crank-slider mechanism and one oscillator attached to it. 
Oscillator can impact in a fixed wall. The impact model has 
been assumed as inelastic, causing the change of velocity in sign 
and intensity by the restitution factor. Mathematical model 
which describes this system is a coupled system of second order 
nonlinear differential equations. The aim is to determine the 
influence of the stall torque on the motion of the oscillator. The 
system of differential equations is solved numerically. The 
results of the analysis are summarized in diagrams which are 
showing the relationship between the stall torque and the 
maximum amplitude of the oscillator movement, and the 
average value of excitation frequency of the electric motor. 
Frequency response diagram is also formed. Based on the 
diagrams regions of impact and non-impact solutions are 
distinguished, and regions with multiple solutions. For four 
different values of the stall torque displacement diagrams and 
the excitation versus time diagrams are shown.  
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I. Introduction 
Systems driven by electric motors appear in many 
engineering applications. One of the applications where it 
can be found are vibro-impact systems. If the system can 
affect the behavior of the electric motor as the source of 
excitation such systems are in literature described as systems 
with non-ideal excitation. The vibro-impact system, which is 
analyzed in this paper, is driven by a non-ideal power 
source. The characteristic of the electric motor is assumed to 
be linear. The power of the electric motor is influenced by 
the stall torque. Influence of the stall torque on the vibro-
impact system is analyzed in this paper. It will be shown that 
for small values of the stall torque the system behaves more 
as a system with non-ideal excitation, where for higher 
values it behaves almost like a system with ideal excitation. 
A system with a motion barrier can work as an vibro-impact 
system or a system that oscillates but for some values of 
parameter it can go in a vibro-impact regime. One regime of 
work is related to impact solutions and the other to non-
impact solutions, only the right value of the stall torque can 

give the desired motion of the system. Extensive research 
has been conducted in the field of vibro-impact systems 
where the excitation of the system is constant as well as in 
the field of dynamical non-impact systems with non-ideal 
excitation [1-14]. However, only few papers have been 
published related to vibro-impact systems with non-ideal 
excitation [15-17] where the in none of them the influence 
of the stall torque on the system is analyzed. The use of a 
vibro-impact attachment as a dynamic absorber in a non-
impact system with non-ideal excitation is analyzed in [15]. 
In [16], a vibro-impact system with non-ideal excitation 
with three degrees of freedom is investigated, where the 
impact is modelled via a stiff spring where the influence on 
the motion of the system by electric motor parameters is not 
analyzed. The motion observed is a relative motion between 
two bodies impacting each other. Numerical analysis is used 
in overall research because of the strong nonlinearity of the 
problem. Possible use of vibro-impact systems as an 
attachment in chaos control is analyzed in [17] for non-
impact systems with non-ideal excitation. The necessity to 
carry out a run up and close down numerical simulations for 
obtaining all possible results is also pointed out in [1-6]. 

The physical model is a crank-slider mechanism 
containing a vibro-impact system having the form of a 
spring-mass oscillator that can hit a base. The aim is to 
determine the interaction between a driving torque and the 
motion of the oscillator from the viewpoint of the influence 
of the stall torque on the regions of impact solution. The 
examination is based on the mathematical model of the 
driving torque of the electric motor. The parameters in the 
model of the electric motor is the no-load angular velocity 
and the stall torque. The no-load angular velocity will be 
held at constant values, where the value of the stall torque is 
changed. For small values of the stall torque the power of 
the electric motor will be small which results that the system 
behaves as a system with non-ideal excitation. As the 
magnitude of the stall torque is increased to some large 
value this will affect the excitation to behave very close to a 
system with ideal excitation.   

The paper is organized in four sections. Section II 
contains the description of a mechanical model of the 
system under consideration and the derived differential 
equations of motion are shown. Section III presents the 
results and discussion of the numerical analysis. The paper 
ends up with the section of conclusions summarized in 
Section IV. 

II. Mechanical model and 
equations of motion 

A vibro-impact system under consideration (Figure 1.) 
consists of a crank-slider mechanism and a mass-spring 
system (oscillator) attached to it. The crank-slider 
mechanism consists of an eccentric drive that is assumed to 
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be symmetrical or balanced. The system parameters are 
given in Figure 1.a): the lengths of the rods are OA = a , AB 
= l; mass of rod AB is neglected; the moment of inertia of 
the rod OA with respect to the axis through O is  ; the mass 
of the slider is    and of the oscillator   ; the stiffness of 
the spring is   and the length of an underformed spring is   . 
The mass    can collide with a stop (base) in certain 
regimes. Friction between the oscillator C and the contact 
surface is introduced as viscous friction force. It will be 
assumed that the driving torque    ̇  depends on the 
angular velocity of the eccentric drive. 

 
Figure 1.  Vibro-impact system - mechanical model of the system under 
consideration 

The system has two degrees of freedom with the 
generalized coordinates being the displacement of the 
oscillator x and the angle of rotation of the eccentric drive  , 
as shown in Figure 1.  

The driving torque is assumed to be a linear function of 
the angular velocity of the eccentric drive: 

 
   ̇    (  

 ̇

  

) (1) 

Equation (1) describes how the driving torque changes 
with the angular velocity, and it represents the linear 
characteristic of the driving DC electric motor. This is 
presented in Figure 2. The increase of the stall torque   , as 
shown in Figure 2., rotates clockwise the characteristic of 
the DC electric motor. For a very large values of   , this 
characteristic becomes vertical (dashed line), which 
represents the case of ideal excitation.  

The equations of motion can be expressed as: 
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where: 
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To define the velocity  ̇   a function      that describes 
the motion of the slider B,  is introduced: 

         (4) 
 

The motion of the slider B,      Figure 3., and the 
corresponding derivatives are given by: 
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Figure 2.  Characteristics of driving torque as a function of the angular 

velocity  ̇ for different values of the parameter    

For the sake of simplicity, it is of interest to find the 
approximation of the function     . This can be done by 
developing it into series as follows: 
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where the following small parameter   is introduced: 

  
 

 
 

The first approximation of the function      is given by: 
              (7) 

while its derivatives are: 
             ,               (8) 

In the case of the first approximation, a simplified 
model of the system can be formed as shown in Figure 3. 

 
Figure 3.  Simplified mechanical model of the system under consideration 

The corresponding equations of motion in the first 
approximation are: 

 ̈     ̇                       
 

    
          ̈     ̇
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)             

          

(9) 

Given the form of Eq. (9) and the existing coupling 
between the generalized coordinates   and  , the angular 
velocity will not be constant, but it will change in time. The 
system of differential equations (9) represents a system of 
coupled nonlinear differential equations of motion. They 
cannot be solved analytically in exact form, but their 
solutions can be found by carrying out numerical 
simulations or utilizing approximate analytical methods.  

As noted in Figure 1.b) and Figure 3., the oscillator can 
hit the base, where the coordinate marked by xstop represents 
the position of a fixed wall at which the oscillator can 
impact. If the impact occurs periodically during the 
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oscillating motion of the attachment, the system corresponds 
to a vibro-impact system. 

The impact condition, based on the stop position can be 
described as follows: 

             

 ̇         ̇    
 (10) 

By involving the impact condition, additional 
nonlinearity is involved in the system described by the 
coupled system of nonlinear differential equations (9). 

The system parameters used to in these considerations 
are given in Table I. 

TABLE I.  SYSTEM PARAMETERS 

   0.35 [kg] l 0.12 [m] 

   0.2 [kg]    0.36 [m] 

      [N/m] k 0.5 [] 

b 0.5 [Ns/m]    0-5 [Nm] 

a 0.04 [m]   √   ⁄  [rad/s] 

J 0.06 [kg m2]    1.5  [rad/s] 

III. Results and discussion 
The analysis of the influence caused by the variation of 

the stall torque on the vibro-impact system is done using 
numerical analysis. The main goal is to show that for one 
specific values of the no-load angular velocity    of the 
driving torque and different values of the stall torque various 
solution can be obtained. As mentioned in the introduction 
and by [1-6] run up and close down simulations are 
conducted. These simulations are done in the matter that for 
the initial value of    the initial conditions are        , 
 ̇   ,     and  ̇    and for every next step the initial 
condition are taken to be the last values at which the 
previous simulation stopped. The run up simulation is 
marked on the diagrams that follows with (black) circles, 
where the close down simulation is marked with (magenta) 
x. All analysis is related to steady state motion which will 
occur after dissipation of the energy by friction force. 

Through numerical analysis the relationship between the 
stall torque and the values of the frequency ratio      ⁄  is 
obtained and the results are shown in Figure 4. In this figure 
the average value of the excitation frequency is used. The 
no-load angular velocity of the driving torque is chosen to 
be  
       . For small values of the stall torque the average 
value of the excitation frequency is below the no-load 
angular velocity. This region represents the region where the 
system behaves as a system with non-ideal excitation. Also 
in this region for the simulation of run up and close down 
double solution are obtained. When the average value of 
excitation frequency comes closer to the value of no-load 
angular velocity the system behaves like a system with ideal 
excitation. The transition point is close to the value     . 
After this value the average value of the excitation 
frequency stays the same for every value of the stall torque 
that follows. 

Diagram shown in Figure 5. shows how the 
displacement is changing with varying the value of the stall 
torque. The upper full (green) line represents the position of 
the stop which has the value: 

               (11) 

 
Figure 4.  Relation between frequency ration      ⁄  and the stall torque 

   

Two different regions can be distinguished from the 
diagram shown in Figure 5.  

 
Figure 5.  Dependence of the oscillator extreme motion values           

and the stall torque    

Region where two solutions exists, and the region where 
only one solution is existing for the run up and close down 
simulation. The region with two solutions is related to small 
values of the stall torque. As mentioned early, this region is 
the region where the system behaves like a system with non-
ideal excitation. In this region for the same value of    the 
oscillator can hit the stop or the maximum movement of it is 
lower than      . This means that one solution represents an 
impact solution and the other a non-impact solution. This 
possibility can be adjusted by choosing the right initial 
conditions of the system. For higher values of the stall 
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torque only non-impact solutions exists. This information is 
very important because of the desired work regime of the 
system. If the designer of the system wants the system to 
operate in an impact regime of work, the parameter of stall 
torque must be chosen in the first region. Additionally, he 
must choose the right initial conditions also. 

From the two previous diagrams where the relation of 
the average excitation frequency and the extreme values of 
the displacement are shown in reference to the stall torque a 
frequency response diagram is also formed. This diagram is 
shown in Figure 6.  The run up and close down simulation 
show that at certain point jumps on this diagram occurs. 
Jumps in the frequency response diagrams are specific for 
all nonlinear systems, but in the quantitative change of the 
displacement value. For this system the jump is qualitative 
in the sense that change both in the value of the 
displacement magnitude and the excitation frequency 
occurs. Multiple solutions are occurring in a short region 
above the value      ⁄      and there can be impact or 
non-impact solutions. For the value higher than      ⁄  
    till almost to      ⁄      impact solutions are 
existing. This diagram, based on the average values of the 
excitation frequency shown in Figure 4. is formed from the 
region till the value     , or the region for every value of 
the stall torque where the system behaves like a system with 
non-ideal excitation. At the value close to      ⁄      
solutions for every value      is contained. 

 
Figure 6.  Frequency response diagram 

The empty space on Figure 6. Is related to the step in 
numerical analysis, if the step is smaller than the space 
would be filled but the analysis would take much longer and 
no new qualitative data would be gathered. 

Based on the previous diagrams impact and non-impact 
solutions can occur for different values of stall torque. To 
investigate this in a deeper manner diagrams of the 
displacement and excitation frequency in time for specific 
values of the stall torque are shown in Figure 7. Left 
diagrams represent the displacement diagrams in time, 
where on the right diagrams  ̇   vs t are shown. In Figure 
7.a) for the value         non-impact solutions are 

obtained and the excitation frequency is smaller than the no-
load angular velocity value.  

For the higher value of the stall torque     , shown in 
Figure 7.b) impact solution is occurring and the excitation 
frequency comes very close to the value of the no-load 
angular frequency. The response in time of the excitation 
frequency is much faster. 

  
a)          t  ,        ,  ̇   ,     and  ̇    

  
b)          t  ,        ,  ̇   ,     and  ̇    

  
c)          t  ,        ,  ̇   ,     and  ̇       

  
d)          t  ,        ,  ̇   ,     and  ̇    

  
e)           t  ,        ,  ̇   ,     and  ̇    

Figure 7.  Diagrams       and   ̇  ⁄     fro different values of    
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Based on Figure 6. for a specific value of the stall torque 
two solutions can occur which depends on the initial 
conditions as it was mentioned. In Figure 7.c) in reference to 
the solution shown in Figure 7.b) for the specific value of 
the stall torque      an non-impact solution is shown for a 
different set of initial conditions. 

In Figure 7.d) the oscilator behaves so that for a short 
time is operating in a vibro-impact manner than changes to 
non-impact motion. This instant relates also to the excitation 
frequency where a jump happens from one value to another 
higher value of excitation frequency. The dashed (green) 
line represents the average values of the excitation 
frequency in all right diagrams given in Figure 7.  

Figure 7.e) represent the case where the stall torque is 
high which makes the power of the excitation source high 
and makes the system to operate very close to the behavior 
of a system with ideal excitation. The excitation frequency 
response is almost at an instant. The oscilator operates in a 
non-impact manner as can be seen on the left diagram in 
Figure 7.e). 

IV. Conclusion 
The influence of the stall torque on a vibro-impact 

system with non-ideal excitation is analysed. The vibro-
impact system consists of a crank-slider mechanism with a 
mass-spring oscillator system attached to it. The system is 
driven using a DC electric motor. The characteristic of the 
electric motor is presented as a linear function of the 
excitation frequency with two influencing parameters. One 
parameter is the no-load angular velocity of the electric 
motor which is held constant, and the other parameter is the 
stall torque. The analysis is conducted using numerical 
simulations. In the simulations the stall torque is the variable 
parameter for which the behaviour of the oscillator is 
analysed. The results of the analysis are represented in 
different diagrams.  

Through run up and close down analysis diagrams that 
are showing the change of the excitation frequency and 
extreme displacement of the oscilator in reference to the 
stall torque are formed and shown i the paper. From this two 
diagrams the two regions are noticed and pointed out. These 
two regions divide the behaviour of the system where for 
some range of the stall torque the system behaves like a 
system with non-ideal excitation. These behaviour is noted 
for small values of the stall torque. The second region is 
related to higher values of the stall torque and the system 
behaves like a system with ideal excitation. In this case the 
average value of excitation frequency is equal to the value of 
the no-load angular velocity of the electric motor. I the 
region of smaller values of the stall torque multiple solutions 
are obtained for the run up and close down simulations. One 
solution represents an impact solution, where the other one 
represents the non-impact solution. The dependence in 
which the system will operate is related to the initial 
conditions. For specific values of the initial condition the 
system will operate in a vibro-impact regime.  

Based on the results a frequency response diagram is 
formed. The frequency response diagram shows the 
dependence of the extreme displacement values of the 
oscilator in reference to the excitation frequency values that 

are in the region of small values of the stall torque. Or the 
diagram is related only to the values of the stall torque 
where the system operates as a system with non-ideal 
excitation. Qualitative jumps are pointed out for the run up 
and close down simulation. Jumps occurs so that a change in 
the excitation frequency and displacement amplitude of the 
oscillator happens. As it is pointed out by [6] the jump 
happens, on the frequency response diagram, from a 
unstable to a stable solution.  
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