
Token based Load Balancing Strategy in
Distributed Systems

 Ankita Singhal1, Anuj Tiwari2 ,Archana Nigam3

 1,3 M.Tech IIT Roorkee INDIA,2M.Tech DAVV Indore INDIA,
 1ankita_1611@yahoo.co.in
 2 01anujtiwari@gmail.com

 3 iti_1001@yahoo.co.in

Abstract - Load balancing in a distributed system is
the process of redistributing the workload among
various nodes so as to improve resource utilization
and the mean response time and also to balance
the workload among the nodes of the system to
avoid the situation in which one node is overloaded
while other is sitting idle. A dynamic load
balancing approach needs no prior knowledge
about the global status of the distributed system
and does balancing based on the current status of
the system. Most of the techniques involve
communication between the nodes to exchange
their load information to make load balancing
decisions i.e. where the arrived task can be best
executed from. But this considerably increases
mean response time.

This paper presents a token based technique for
load balancing in which there is no communication
among the nodes and so no exchange of load
information messages. Each individual node is
configured to make its own decision whether to
accept the arriving request or not and once
accepted it will be executed from there. No other
nodes can now accept this request.

Keywords: Loadbalancing, mean response time,
task allocation, task transfer, distributed systems

I. INTRODUCTION

A distributed system consists of a collection of
autonomous computers, connected through a network
and distribution middleware, which enables
computers to coordinate their activities and to share
the resources of the system, so that users perceive the
system as a single, integrated computing facility. In
the Internet, several types of services use replicated
server nodes which are geographically dispersed
across the whole network. The aim of this approach is
to prevent too many accesses from concentrating at a
particular node, which causes degradation of the
response time of a node itself and congestion in the
network around that node. In distributed system, load
balancing services distribute client workload equally
among various back-end servers (nodes) in order to
obtain the best response time possible. Moreover, it
should be avoided that some tasks are forced to wait

for a very long time. For this, tasks arrived at heavily
loaded nodes should be forwarded to lightly loaded
nodes. There have been numerous number of
techniques proposed for this purpose. The techniques
can be divided mainly into two categories – load
balancing on the part of router (or proxy) and server
side load balancing. The term load balancing is often
used as task allocation. This task allocation scheme
can have another two broad categories – centralized
and distributed. In centralized approach, there is a
single dedicated node that performs the task allocation
by monitoring over the various parameters of all the
other nodes in the system. This approach can be used
for small systems since there is a single point of
failure in this approach and thus can bring down the
whole system to a standstill. In distributed approach,
task allocation is performed by all the nodes by
communicating with each other. The distributed
approach provides a good fault tolerance and
scalability but most of the techniques proposed
involve a large range of broadcasting of their load
information to other nodes which substantially
increases the traffic on the network.

This paper implements server side load balancing and
the main aim of the technique proposed is to improve
the overall response time of arriving task. The
proposed work tries to fill up the gaps that were found
in existing load balancing strategies. The main aim of
existing strategies is that each node must have almost
equal load distribution i.e. if there are 4 nodes in a
system then each must have near to 25% of total load.
But in an attempt to distribute the load in such a
disciplined manner, the main aim of improving
response time is overlooked. The complexity of the
algorithms leads to degradation of response time
rather than improving it. The technique proposed in
this paper tries to improve the overall response time
but does not necessarily distributes the load on the
backend servers very evenly. Till a server has tasks
much less than its capacity it should readily accept
more tasks to run without bothering about the load on
other servers. This will save the time of
communication with other nodes, exchanging load
information with them and then finally deciding
where the task will be run. If a server is underloaded it
must execute a task immediately.

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering
Editor In Chief Dr. R. K. Singh. Copyright © 2012 Universal Association of Computer and Electronics Engineers.
All rights reserved. ISBN: 978-981-07-1847-3
doi:10.3850/978-981-07-1847-3 P0939

420

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

II. LITERATURE REVIEW

With the great advancements in computer technology
and the availability of many distributed systems, the
problem of load balancing in distributed systems has
gained a higher attention and importance. Task
allocation in distributed systems has been studied and
many policies proposed [1], [2], [3], [4].
Consequently, a vast amount and variety of research
has been conducted in an attempt to solve this
problem. There are basically two main strategies for
load balancing-static and dynamic. In the static
approach, load balancing is achieved by providing a
mapping or assignment from a set of tasks to a set of
processors such that system’s performance is
maximised. The chord protocol uses this technique
[5]. But in static approach prior knowledge about the
global status of the distributed system, job resource
requirement, and communication time are assumed. In
the dynamic approach e.g. [6], [7], load balancing is
based on the current state of the system; tasks are
allowed to move dynamically from an overloaded
node to an under loaded node to receive faster service.
This ability to react to changes in the system is the
main advantage of the dynamic approach to load
balancing. Although finding a dynamic solution is
much more complicated than finding a static one,
dynamic load balancing can produce a better
performance because it makes load balancing
decisions based on the current load of the system. So
the task allocation scheme in this paper will use
dynamic task allocation scheme.

Task allocation schemes proposed till now typically
concentrate on whether to use load information of
remote nodes or not. In any typical distributed task
allocation each node behaves as follows. In random
subset task allocation [8], when a task arrives at the
local node, the node decides whether to execute task
locally or to transfer it. If the node decides to transfer
it, the node selects a subset of remote nodes randomly.
Then it selects the node with the lightest load as the
destination node. In order to select the destination
node, the local node probes all the nodes in the subset
to get their load information.

In Nearest Neighbour task allocation [9], since
communication is limited to only neighbouring nodes,
communication delay is short and hence the load
information is not as old as it was in random subset
task allocation technique.

III. DETAILED PROBLEM STATEMENT

Our main threshold for comparing all the results will
be the NearestNeighbor(NN) approach described in
[9]. In NN approach, when a task arrives, the local
node always determines whether the task can be
executed locally or should be transferred. If the
destination node is more appropriate than local node,
the task is transferred. Otherwise the task is executed

locally. The destination node is selected from its
neighbors. The local node selects the neighbor with
the lightest node. In NN, each node stores information
of all of its neighbors. If the load of a node is changed,
i.e. a new task is added to the run queue of the node or
a task finished executing, the node sends a message to
all of its neighbors immediately. Receiving the
message, the neighbors update its load information.

In this paper we will assume the group of neighbors
but the protocol inside each group will change. Before
explaining the protocol that will be used, first let us try
to understand the problem in the existing protocol.

The main problem in this approach or any other load
balancing approach such as RandomSubset [8] is the
“broadcast” of load information. Since the load over
any node is subject to frequent changes, a lot of
bandwidth is consumed in sending and receiving the
‘load information messages ‘. Another problem with
this approach is the time involved in transferring the
task. Task transfer is not a simple operation and
involves some overhead. This increases processing
delay.

So here in this paper, we aim at eliminating the
broadcast of load information and decreasing the
processing delay involved.

IV. PROPOSED SOLUTION AND
ASSUMPTIONS

Assumptions involved:

• All tasks are of same type that is nearly same
service time is required by each arriving task.

• All nodes are identical in terms of
information.

Here we will first try to minimize processing delay i.e.
we will propose a technique that does not involve task
transfer and then we will come to first problem (of
broadcasting) described above.

To eliminate the task transfer problem we first get at
the root of the problem. Why there is a need for task
transfers? Task transfer at nodes mainly occurs
because the task reaches the wrong node i.e. a node
that is already overloaded or does not have minimum
delay and so it has to transfer it to other destination
node. To keep a check on this parameter we proceed
as follows:

Each server has its own capacity beyond which it
cannot serve requests. Since each server knows its
own capacity, don’t let the server, which has reached
its capacity; accept any request since if any request
reaches such a server it will have to be transferred.
When the load on this server goes down it can again
become active to accept request. So, if a request has
reached any of the server it will be served from there
.When all of the nodes are overloaded, request will

421

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

wait (for a specified amount of time) for any of the
servers to get active again.

For implementing this approach, we used the concept
of token as used in token ring protocol. The token is a
sequence of special bits that is known by each node in
the system. There is only one token for all the nodes in
the system. As soon as a task arrives, any of the
servers that is ready to accept the request (that is
length of run queue is less than its capacity) seizes the
token. Once the token is seized no other node can
seize it since the token is unique. Thus, the task is
completed by the node that seized the token and then
releases it. When a new task arrives, again the token is
seized by any of the nodes that can complete the task,
completes it and then releases. This procedure is
repeated each time a new task arrives.

Considering this approach we have solved both the
problems. Firstly, no task transfer is needed and
secondly since all the decisions are made solely on the
basis of load of each individual server there is no need
to broadcast the load information to other nodes.

We will call the proposed technique as SeizeToken.

V. SIMULATION

In order to determine the behavior of the scheme
mentioned in section IV we perform the following
simulations:

We simulate the NearestNeighbor and SeizeToken to
compare the results. The simulation is performed over
50 concurrent requests. The simulator for this was
implemented using Netbeans7.1. For nearest
neighbor, time taken in task transfer is 100 msec. The
mean task service time is 50 msec. Arrived tasks are
sent to randomly selected nodes. Then, they are
executed locally or transferred to other node
according to task allocation scheme. The number of
transfers depends on the number of nodes in the
system. We performed the simulation for number of
nodes as two and then three. The communication
delay between the node and its neighbor is assumed to
be fixed.

For SeizeToken, as the technique is proposed no task
transfer takes place. The arrived tasks are sent to any
node that is ready to accept requests and is served
from there. For this also we performed the simulations
for two and three nodes.

Simulations were performed for 50 concurrent
requests for each case. As performance metrics, we

use the mean response time. Mean response time is
defined as the time from when the task arrives at the
system until the task leaves the system. There are 4
graphs plotted from the data obtained from
simulations. Fig 1 is the primary result which shows
the difference in mean response time from the existing
task transferring load balancing strategies. Fig 2 and
Fig 3 shows the effect of varying the number of nodes
in the system in two types of strategies. Finally, fig 4
clears the fact that the load, in the proposed technique
is not very even.

Simulation Results
Now we will explain each graph in a greater detail.
Fig 1 shows the response time taken for each request.
As described earlier, 50 concurrent requests were sent
over the system and mean response time for each
request was calculated. This was done for both
NearestNeighbor and SeizeToken algorithms. As can
be seen from the graph, SeizeToken algorithm, on an
average, takes less response time than NN. Thus the
proposed method outperforms the existing technique.
One main reason for this improvement is the way in
which each arriving task is handled. Any task as it
arrives is executed from there only and is not
transferred. Thus, SeizeToken seems to be more
efficient.

The graph of Fig 2 and Fig 3 gives a comparison of
the time taken to execute a task when there are three
servers and two servers in NearestNeighbor and
SeizeToken. As demonstrated, in NearestNeighbor
when there are more number of servers, a task is
transferred more number of times than in case of less
number of servers thus increasing the response time
on an average.

Contrary to this, our proposed technique SeizeToken
does not have any effect of number of servers
involved, on response time because virtually all
servers are working independently and they do not
communicate with each other. Thus a task is executed
from any of the randomly selected node and is
independent of other nodes.

Fig 4 shows the compromise that is done to avoid task
transfers. It gives an overview of load on each server
at any instant of time. The load distribution in
SeizeToken is not very even as same server can seize
token again and again to execute a request. The load
distribution was found to be more disciplined in case
of NN. But this does not affect the response time
much and only improves it over NearestNeighbor

422

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

Fig1.Comparison of response times of NearestNeighbor and SeizeToken Algorithm

Fig2.Comparison of response times in NearestNeighbor when implemented with 2 servers and 3 servers

Fig3.Comparison of response times in SeizeToken when implemented with 2 servers and 3 servers

423

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

Fig4.Comparison of load on various servers in SeizeToken

VI. Conclusion

In a distributed system, improving dynamic load
balancing mainly involved collecting load information
from various nodes, determining the least loaded and
transferring the task to that node. This obviously keeps
each node in the system with minimum possible load
and balances the system but this complex strategy
sometimes ignores the basic aim of load balancing that
is to improve the response time to the client. The
overhead involved in transfer of task may lead to
degradation of performance. Thus avoiding a
completely balanced system solves the problem. At
times, a particular given node may have a one or two
tasks more than the other but this does not mean it is
overloaded and the task should be transferred, it still
can execute many more tasks and so should be
executed from that node only. This is what came out
as a part of our simulation results. Also the technique
does not involve any single point of failure. Since
each node is operating completely independently,
failure of any node does not have any major adverse
effect on the system.

REFERENCES

[1] A.M.Alakeel, “A Guide to Dynamic Load
Balancing in Distributed Computer
Systems.”International Journal of Computer Science
and Information Security, vol. 10,no. 6,pp 153-
160,2010

[2] D. Eager, E. Lazowka, and J.Zahorjan, “Adaptive
load sharing in homogeneous distributed systems,”
IEEE Trans. On Software Engineering, vol. 12, no. 5,
pp 662-675, 1986.

[3] S. Shatz, J. Wang, and M.Goto, “Task allocation
for maximizing reliability of distributed computer
systems,” IEEE Trans. On Computers, vol. 41, no. 9,
pp. 1156-1168, 1992.

[4] A. Elsadek and B.Wells, “A heuristic model for
task allocation in heterogeneous distributed computing
systems,” The International Journal of Computers and
Their Applications, vol. 6, no. 1,1999.

[5] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. 2001. Chord: A
scalable peer-to-peer lookup service for internet
applications. SIGCOMM Computer. Communication.
Rev. 31, 4 (August 2001), 149-160

[6] A. Karimi, F. Zarafshan, A. b. Jantan, A. R. Ramli
and M.I. Saripan,”A New Fuzzy Approach for
Dynamic Load Balancing Algorithm,” International
Journal of Computer Science and Information
Security,” vol. 6 no. 1, pp. 001-005, October 2009.

[7] B. Blake, “Assignment of Independent Tasks to
Minimize Completion Time,” Software-Practice and
Experience, Vol. 22, No. 9,pp 723-734, September
1992.

[8] Mitzenmacher, M., "How useful is old
information?," Parallel and Distributed Systems,
IEEE Transactions on , vol.11, no.1, pp.6-20, Jan
2000

[9] Tada, H., "Nearest Neighbor Task Allocation for
Large-Scale Distributed Systems," Autonomous
Decentralized Systems (ISADS), 2011 10th
International Symposium on ,vol.,no., pp.227-232,
23-27 March 2011.

424

