

51

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

Multiple Resource Management and Burst Time
Prediction using Deep Reinforcement Learning

Vaibhav Kumar, Siddhant Bhambri, Prashant Giridhar Shambharkar
Delhi Technological University

India

Abstract—Resource management and job scheduling are two
problems that go hand-in-hand and the solutions to which are
primarily dependent on the nature of workload. With increasing
demand to automate the entire process from allocating resources
to scheduling jobs efficiently, deep reinforcement learning
techniques have been brought into the picture which adapt to the
environment and learn from experience. In this paper, we present
SchedQRM which classifies burst time of jobs based on their
signature and employs Deep Q-Network algorithm to find an
optimal solution for any arbitrary job set. We also evaluate our
proposed work against state-of-the-art heuristics to show the
efficacy of our approach.

Keywords— reinforcement learning, job scheduling , Deep-Q
Network

 Introduction

Resource management has always been a tricky
domain in the field of research and has become
increasingly significant due to the rapid
developments in production technologies. The
problem of optimal allocation and use of resources
has been dealt in the past in several ways [1-5].
Improvement in the classical measures of efficiency
due to periodic rescheduling has already been
addressed in the past alongside the undesirable
effect of compromising stability.

Considering the heuristics on which
Reinforcement Learning (RL) algorithms work, we
believe that RL approaches and methodologies fit
well in the domain of resource management and job
scheduling since they shall allow the machine to
check for the best possible order of scheduling for a
set of jobs, given the resource and burst time
requirements for each job.

Our approach is an extension to the idea of
machines being able to handle resources on their
own in a justified manner. RL has gained attention
in the field of machine learning research. The
concept of decision-making had been introduced
earlier in the research problems of resource
management and job scheduling. RL revolves

around agents which interact with the environment
to accomplish a task. For each action it takes during
its discourse through the environment, the agent
receives a reward -positive or negative, based on the
result of the action it takes. The agent has no prior
knowledge of the task to be performed and learns
based on the reward it receives.

We design and evaluate SchedQRM, an online
multi-resource job scheduler, in our approach to
applying RL for solving the problem of resource
management. A set of jobs are fed into the
scheduler as an input along with their job signature,
and no pre-emption is allowed. The scheduler aims
to optimize average job slowdown or job
completion time by minimizing it.

Related Work

Resource allocation problem has been addressed
in various contexts such as in Radio Networks [1],
Software Defined Networking [2], mobile cloud
computing networks [3] and in wireless
communication networks [4]. Wan et al. [5] in their
paper propose a resource allocation algorithm to
maximize throughput for hybrid Visible Light
Communication (VLC) and Wi-Fi networks. In all
these papers, we observe that increase in the
throughput, whatever the requirement may be, has
been the primary objective.

The objectives while scheduling jobs/tasks at
hand vary in context from minimizing CPU energy
[6] to reducing total completion time on a single
machine [7]. With the advent of Big Data and
Machine Learning approaches, Karim H. and
Ahmed J. in [8] proposed an approach for
scheduling tasks in Big Data Cluster and showed a
comparison with the traditional task schedulers such
as the First-In-First-

52

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

Out (FIFO) scheduler and the Capacity Scheduler.
Fuming et al. in [9] proposed the concept of a
virtual scheduling pool whereas Zhao P. and Huang
T. in [10] incorporated a genetic algorithm to solve
the problem of single resource dynamic Job-Shop
scheduling. Smart manufacturing domain also faces
with a real-time requirement of job scheduling
which has been tackled using a hybrid computing
framework [11].

Resource Isolation Policy (RIP) combined with
static as well as dynamic scheduling strategy was
proposed by Liu et al. [12] to solve the problem of
hard real-time task deadline. In [13], the authors
characterize the performance of scheduling policies
for wireless systems that are based on Cumulative
Density Functions (CDF). Su N. et al. [14]
incorporated genetic programming to propose an
automatic design of scheduling policies which
shows outstanding performance on unseen
simulation scenarios. Particle Swarm Optimization
(PSO) [15] algorithm has also been used for
optimizing task scheduling in the field of cloud
computing.

Survey on the past work is done which shows the
use of reinforcement learning approach to designing
feedback controllers for discrete as well as dynamic
systems [16]. In [17], the authors proposed an
adaptive Neural Net-based controller using RL for a
class of nonlinear systems which does not require
information about the system dynamics. RL has also
been used to solve the problem of resource
allocation [18] where the authors combine the
strengths of RL and queuing models in a hybrid
approach. However, our inspiration has been from

the work of Hongzi M. et al. in [19] where the state
space has been represented pictorially and fed into a
deep reinforcement learning network to find the
optimal scheduling policy for a given job-set.

Background

This section discusses the techniques in brief that
we have worked upon in this paper.

Burst Time Classification: Prior knowledge
of the burst time of a job helps exceptionally well in
resource allocation and job scheduling. In a few
cases, the burst time (run time) of a job is known,
but mostly an approximation needs to be made. We
divide the burst time of every job into a certain
number of classes based on the job environment.
Every job has a signature/set of attributes. These are
fed to a neural net classifier to classify jobs and
approximate the burst time.

Reinforcement Learning: Consider a
scenario where there is an agent which interacts
with an environment. The agent observes a state st
and chooses an action at at each time step t, from
the set of possible actions. Once the action is taken,
a state transitions takes place from st to st+1,
following which a reward rt is given to the agent.
The state transitions and rewards are assumed to
have the Markov property; i.e., the action to be
taken by the agent in the current state st is
independent of the states that preceded st.

Note that the agent has no prior knowledge of
which state of the environment would it transition to
or what reward it may receive, once it chooses to
take action at. It is while interacting with the

Figure 1: Flow of data in our proposed model.

53

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

environment, during training, that the agent will be
able to observe the value of these quantities. The
expected cumulative discounted reward:
 [∑

], where (] is the discount factor
for future rewards, needs to be maximized through
learning.

Deep Q-Network (DQN): DQN is a type of
Temporal Difference (TD) learning method. With
the use of TD learning methods, the estimate of the
final reward calculated at every step for each state
can be formally expressed as:

 () () [() ()].
 (1)

Where, V(st) represents the utility value of state st,
is the learning rate, is the discount factor and
is the observed reward at time . Compared to
Monte Carlo methods [20], where the Q values are
updated after the end of an episode; here, the Q
values are updated after ever action. This helps in
guiding the agent to the goal state more efficiently.
The agent uses DQN because of the advantages that
it offers in solving the scheduling problem through
Experience Replay. Experience Replay is a circular
queue which stores agent’s experiences in form a

tupple et=(st, at, rt, st+1). Here, the agent takes an
action at to move from state st to st+1 and gains a
reward rt. This helps reducing correlation between
transitions when the neural network has to be
updated. The learning speed of the model increases
with mini-batches that are made by DQN to update
the neural network being employed. It also reuses
past transitions to avoid catastrophic forgetting
which speeds up learning and also breaks
undesirable temporal correlations. Thus, DQN is
believed to achieve stable training.

Figure 2: Pictorial representation of a sample state in SchedQRM.

Design

In this section, we present the design of
SchedQRM. We describe the problem and also its
formulation as an RL task. We then explain our
solution to this problem based on the techniques
described in the previous section.

Model

As shown in Figure 1, we divide our model into
2 sections- Section A and Section B.

Section A takes job signature as an input and
predicts the burst time for the job using a Deep
Neural Network (DNN). Resource requirements
along with the burst time for the job are sent as an
input to the waiting queue.

Section B consists of the DQN model which
outputs a scheduling policy for a given job set. All
the jobs from the waiting queue are fed into the
environment as a starting state.

We consider a cluster with k resource types (e.g.
CPU, I/O, memory) and it is treated as a single
collection of resources. Jobs arrive at the cluster in
discrete timestamps. One or more of the waiting
jobs are chosen to be scheduled by the scheduler at
each timestamp. The resource requirement of each
job j is given by the vector (),
where ri represents the number of instances of
resource i required by the job and []. We
define Tj as the duration/execution time of the job.
Given the above information, the DNN correctly
places each job into a class from the set
(), where ci represents a class of jobs

54

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

that requires resources for i timestamps. The jobs
are assumed to be non-preemptive for the sake of
simplicity. Also, rj must be allocated to the job j
continuously from the time that the job starts
execution until completion.

The simplicity of the model can allow it to
be used in other domains of application where a

similar type of input is provided containing a set of
jobs along with their resource requirements. Given
this information, our design of the model will
identify the execution time requirement of the job
by learning from the experience. This information
shall further be passed to the DQN agent which will
schedule these jobs.

TABLE I: INPUT DATASET TO THE NEURAL NET CLASSIFIER

 interp gnu.hash dynsym dynstr rela.dyn rela.pit pit text rodata eh_frame_hdr eh_frame got got.pit bss symtab strtab filesize time

0 28 0 5 2 0 4 1 645 32064 1 0 0 1 0 1 764 49768 1.0

1 28 0 5 2 0 4 1 645 32072 1 0 0 1 0 1 764 49768 1.0

2 28 0 5 2 0 4 1 645 32080 1 0 0 1 0 1 764 49768 1.0

Objective: Similar to the prior work shown in
[19], we use the average job slowdown as the
primary objective for our agent. Formally, the
slowdown for each job i is given by ,
where Cj is the completion time and Tj is the burst
time of the job. Completion time of a job is the time
between arrival and completion of execution; note
that . If the completion time of the job is not
normalized by the job's duration, the solution will
be biased towards large jobs.

Burst Time Classificaion

Dataset creation: To create the dataset for
burst time prediction, we use C++ object files for
four programs to generate job signatures, namely:
Matrix multiplication, Quicksort, Fibonacci series
generator, and a random number generator. A script
is deployed to create Executable and Linkable
Format (ELF) files with various input sizes, and it
collects the job signatures through the readelf bash
command. We run this script until 100,000 data
points are created. File size and run time are also
stored for every ELF file along with the signature.
Table I represents 3 out of the total data points/rows
of the data-set that are fed into the neural network
classifier for training. This dataset was created on
an Intel core i7-6700 quad-core, 64-bit x86
processor and 8+8GB DDR4 3000mhz Corsair
RAM.

RL formation

State Space: We represent a pictorial
representation of a single state of the system as
shown in Figure 2. This state contains information

regarding the current resources' allocation, the jobs
in the waiting queue and the jobs present in the
backlog. The left-most clusters represent the
allocation of resource instances to jobs which have
been scheduled for service as of the current
timestep. Here we have assumed two types of
resources with three instances available for each of
them. The resource allocation shown is present
starting from the first timestamp till t timestamps,
each row representing a timestamp. Jobs in the
waiting queue belong to one of the time slots
belonging to the vector (),
where i refers to the number of timestamps required
by a job to complete its execution; for example, the
job in time slot T2 requires one instance of resource
A and zero instances of resource B for two
timestamps. The different numbers within the
resource clusters represent different jobs belonging
to the respective time slots that have already been
assigned resources and are undergoing or are about
to begin execution; for example, 2 represents that a
job belonging to T2 has currently been assigned two
instances of Resource A and three instances of
Resource B for two timestamps. The first job of a
certain burst time is represented in it's appropriate
job slot while others wait for their turn in the
backlog. The tth box in the backlog stores the
number of jobs with burst time t. For example, in
Figure 2, there is one job of burst time 1 and two
jobs of burst time 2 in the backlog.

Our state representation is a modified version of
the state representation shown in [19], unlike which,
we have a fixed representation of jobs based on
their burst time. This fixed representation allows us

55

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

to represent a state as an array of numbers and
obviates the need for pictorial representation of a
state and involvement of lofty convolutional neural
networks. Hence, our input to the model is a
flattened array representation of Figure 2.

Note: By having a fixed time representation, only
a single job of a particular burst time can be
represented in a state. Multiple jobs of same burst
time have to wait in the waiting queue which might
hinder the learning of the agent. However, it helps
significantly in an optimized representation of any
arbitrary job set which makes our algorithm very
robust.

Action Space: We choose the action space to
be simple, and it is given by at ∈ {1, 2,..,i,.., N},
where N is the maximum burst time and at = i
means that the agent should schedule the job at the
ith slot, which, because of our fixed time state
representation, has a burst time of i. A valid
decision is one in which the agent chooses to
schedule a job at the non-empty slot. An invalid
decision is the one where the agent selects an action
corresponding to an empty slot as it makes no sense
to schedule a job which does not exist. Once the
agent takes a valid decision, a job is scheduled in
the first possible timestamp of the resource clusters
in which the resource requirements of the job can be
completely satisfied till completion. A state
transition is then observed: the scheduled job is
allocated it’s appropriate position in the resource
clusters.

Rewards: Since DQN is a TD learning method,
we have crafted a dynamic reward system that will
guide our agent to the optimal policy by giving an
appropriate reward at every time step. We do this by
maintaining a counter c for the current time in the
environment. If the agent decides to take action at,
then it is given a reward rt = - (at + c/at). If no job
exists at the chosen time slot, then a very high
negative reward is given. We set the discount factor
 = 1 so that the cumulative reward of an episode
equates the negative of the sum of job slowdown.
This way, maximizing the cumulative reward over
an episode is equivalent to minimizing the average
slowdown.

Evaluation

We evaluate SchedQRM to answer the following
questions:

1. How accurately does the DNN time classifier
predict the burst time of incoming jobs?

2. How does SchedQRM compare with state-of-
the-art heuristics when scheduling online
jobs having multiple resource requirement?

Classifier Training and Testing: Before
training the agent for job scheduling, we train a
DNN classifier over the job signature to predict the
burst time. Rather than using burst time as a
continuous variable, we classify it into ten equally
spaced classes. This classification helps
significantly in our RL formulation. Data points
with outliers and large burst times are discarded to
keep the classes

TABLE II: CLASSIFICATION REPORT FOR DNN TIME CLASSIFIER

 Precision Recall F1-Score

Class 1 1.00 0.99 1.00

Class 2 0.95 0.99 0.97

Class 3 0.99 0.96 0.97

Class 4 0.94 0.93 0.93

Class 5 0.89 0.86 0.88

Class 6 0.88 0.95 0.91

Class 7 0.94 0.90 0.92

Class 8 0.92 0.98 0.95

Class 9 0.98 0.81 0.89

Class 10 0.83 1.00 0.90

Figure 3: Training loss curve of the classifier.

56

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

balanced. A simple DNN classifier with 100 hidden
layers, 10 output layers and a learning rate of
0.0001 is trained over 70,000 data points. Rest of
30,000 data points are used to test our model. Our
model efficiently converges after 120 iterations by
using Adam optimizer [22].

Given the signature of a job, the classifier can
predict the burst time class of that job with high
accuracy, and this can be seen from Table II. The
table shows the values of three evaluation metrics
we have calculated for each class 1-10, namely-
Precision, Recall, and F1-Score. The classifier can
yield satisfying results for each of the classes.
Figure 3 shows the training loss curve of the
classifier and it’s convergence.

DQN Training and Testing: We create a
complete job scheduling environment with custom
states, actions, and rewards. Our agent explores this
environment and learns an optimal policy with the
help of two neural networks and a replay memory as
used in the DQN algorithm. To implement
Experience Replay, we have used a circular
memory buffer called replay memory which stores
new transitions by overwriting the previous ones.
The purpose of using a replay memory is:

1. Remembering experience: By storing and
sampling transitions from experience replay,
our agent gets exposed to a broader set of
experience and knowledge that helps the
agent learn more efficiently.

2. De-correlation: If we merely train our agent
in sequential order, we risk getting our agent
influenced by the correlation between
consecutive states. By randomly sampling
transitions from the experience replay, we
enable learning from an independent and
identically distributed experience.

Job signatures are picked at random from the
dataset and fed to the system in an online fashion.
This way SchedQRM is trained for arbitrary jobsets
and is expected to optimally schedule any set of
jobs. which makes it very robust. The cluster load or
the number of jobs selected are varied as a
percentage of the number of time classes from 10%
(1 job for 10-time classes) to 200% (20 jobs for 10-

time classes). This set of job is then passed to the
DNN classifier to estimate the time of each job. On
random, for every job, a dominant or both equally
dominant resources are chosen.

In the case of dominant resource, it's resource
requirement is chosen between 50% and 100% of
maximum resource instances while for the other
case, it is chosen in between 0% and 50%. In the
case of equally dominant resources, the resource
requirement for both the resources is chosen
randomly between 10%-100% of total instances.
Such job sets are then used to train the SchedQRM.

Every new job set is loaded into the
environment's initial state. DQN trains on these job
sets to finally converge and form an optimal policy
which can be used to determine a scheduling policy
for any new arbitrary job set. As stated earlier, we
have used two neural networks namely the evaluate
network and the train network for our learning
algorithm.

The weights of the train network are transferred
to the evaluate network after every 1000
timestamps, and this helps in stabilizing the DQN
algorithm. Each neural network has a single fully
connected hidden layer and 20 output layers, one
each for an action. The replay memory is a buffer of
length 2000. We set the learning rate α = 0.01, ε =

0.9 and = 1 for training our agent.

Figure 4 represents the plot of the burst time of a
job belonging to one of the classes from Class 1 to
Class 10 versus the average job slowdown time
measured over different jobsets. The extended line
shows the maximum slowdown time that was
observed for a job belonging to any class.

57

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

Figure 4: Performance of SchedQRM in terms of average job slowdown.

Figure 5: Job slowdown at different levels of load.

A general trend of longer jobs having higher
slowdown is observed. This indicates that the agent
is withholding longer jobs to make space for shorter
jobs which helps in reducing the overall job
slowdown.

Figure 5 illustrates a comparison between state-
of-the-art Packer (the packing heuristic in [21]),
Tetris [21], DeepRM [19] and SJF (Shortest Job
First) algorithm with our proposed SchedQRM. For
all cluster load values, SchedQRM performs either
better or equivalent to the existing heuristics. The
plot is made by averaging 100 arbitrary job sets at
average cluster load value and observing the
average job slowdown of all these jobs.

Conclusion

This paper presents our proposed approach for
automating an end-to-end process from predicting
the burst time of tasks and/or jobs until scheduling
them. To achieve this, we present a 2-section model
each of which performs one of the tasks stated
above. Our RL agent focuses on the criterion of
average job slowdown. The experiments show that
our scheduler SchedQRM outperforms the ad-hoc
heuristics. There are certain limitations faced by our
model. Firstly, SchedQRM, when trained for
average job slowdown, performs not as good as the
DeepRM scheduler because of fixed time
representation used by the authors in [19]. Our
agent is unable to choose two jobs of the same burst
time together; instead, it selects one of them and
keeps the other in the backlog. However, such a
representation makes SchedQRM much more robust
and optimized, and SchedQRM is both trained and
capable of working over arbitrary job sets. The
second challenge is to interpret the policy used by
the agent to reach an optimal goal. In general, it
holds longer jobs to allow shorter jobs to schedule
first, but interpreting the complete policy remains a
challenge. We believe these challenges would
further motivate research directions in the future.

References

[1] Min Z., Guodong Z., Shibing Z. and Zhihua B., “An Optimized Resource

Allocation Algorithm in Cooperative Relay Cognitive Radio Networks,” 2017
Signal Processing Symposium (SPSympo).
[2] Feng T., Bi J. and Wang K., “Allocation and Scheduling of Network

Resource for Multiple Control Applications in SDN,” China
Communications, Volume: 12, Issue: 6, June 2015, pp. 85 – 95.
[3] Weiwei X. and Lianfeng S., “Joint Resource Allocation Using

Evolutionary Algorithms In Heterogeneous Mobile Cloud Computing
Networks,” China Communications, Volume: 15, Issue: 8, Aug. 2018, pp.
189 – 204.
[4] F.A. Cruz-Perez and L. Ortigoza-Guerrero, “Equal resource sharing
allocation with QoS differentiation for conversational services in wireless
communication networks,” IEE Proceedings - Communications, Volume:
150, Issue: 5, 14 Oct. 2003, pp. 391.
[5] Tian W., Liu L., Zhang X. and Jian C., “A Resource Allocation Algorithm

Combined with Optical Power Dynamic Allocation for Indoor Hybrid VLC
and Wi-Fi Network,” 2016 8th International Conference on Computational
Intelligence and Communication Networks (CICN), Dec. 2016.
[6] Frances Y., Alan D. and Scott S., “A Scheduling Model for Reduced CPU

Energy,” Proceedings of IEEE 36th Annual Foundations of Computer
Science, Oct. 1995.
[7] Yarong C., Ling-Huey S., Ya-Chih T. Shenquan H. and Fuh-Der C.,
“Scheduling jobs on a single machine with dirt cleaning consideration to
minimize total completion time,” IEEE Access, Volume: 7, Feb. 2019.
[8] Karim H. and Ahmed J., “A New Approach for Scheduling Tasks and/or

Jobs in Big Data Cluster,” 2019 4th MEC International Conference on Big
Data and Smart City (ICBDSC), Jan. 2019.
[9] Fuming L., Yunlong Z., Chaowan Y. and Xiaoyu S., “Study on the Job
Shop Fuzzy Dynamic Scheduling Based on Virtual Pre-scheduling,” 2006 6th
World Congress on Intelligent Control and Automation, June 2016.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8047708
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8047708
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245522
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245522
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7122467
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245522
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8438264
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2191
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28024
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8049191
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8049191
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3752
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3752
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8643126
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8643126
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11210
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11210

58

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09

[10] Zhao P. and Huang T., “Research of Multi-resource Dynamic Job-Shop
Scheduling based on the Hybrid Genetic Algorithm,” 2009 Third
International Conference on Genetic and Evolutionary Computing, Oct. 2009.
[11] Xiaomin L., Jiafu W., Hong-Ning D., Muhammad I., Min X. and Antonio
C., “A Hybrid Computing Solution and Resource Scheduling Strategy for
Edge Computing in Smart Manufacturing,” IEEE Transactions on Industrial
Informatics, pp. 1-1, Feb. 2019.
[12] Liu Y., Zhong L., Zhang J. and Fu D., “Resource Isolation Policy for
Task Scheduling Strategy In Open Real-Time Systems,” Proceedings of the
31st Chinese Control Conference, July 2012.
[13] PhuongBang N. and Bhaskar R., “Optimal Scheduling Policies and the
Performance of the CDF Scheduling,” 2014 48th Asilomar Conference on
Signals, Systems and Computers, Nov. 2014.
[14] S N., Mengjie Z., Mark J. and Kay T., “Automatic Design of Scheduling
Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative
Coevolution Genetic Programming,” IEEE Transactions on Evolutionary
Computation, Volume: 18, Issue: 2, April 2014, pp. 193-208.
[15] Wu Q., “Cloud Computing Task Scheduling Policy Based on Improved
Particle Swarm Optimization,” 2018 International Conference on Virtual
Reality and Intelligent Systems (ICVRIS), Aug. 2018.
[16] Frank L., Draguna V. and Kyriakos V., “Reinforcement Learning and

Feedback Control Using Natural Decision Methods to Design Optimal
Adaptive Controllers,” IEEE Control Systems Magazine, Volume: 32, Issue:
6, Dec. 2012, pp. 76-105.
[17] Pingan H. and S. Jagannathan, “Reinforcement Learning Neural-
Network- Based Controller for Nonlinear Discrete-Time Systems With Input
Constraints,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) (Volume: 37 , Issue: 2 , April 2007), pp. 425-436.
[18] Gerald T., Nicholas J., Rajarshi D. and Mohamed B., “A Hybrid

Reinforcement Learning Approach to Autonomic Resource Allocation,” 2006
IEEE International Conference on Autonomic Computing, pp. 65-73.
[19] Hongzi Mao, Mohammad Alizadeh, Ishai Menachey, Srikanth Kandulay,
“Resource Management with Deep Reinforcement Learning,” HotNets
'16 Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp.
50-56.
[20] Tom V., Spyridon S. and Branko S., “On Monte Carlo Tree Search and
Reinforcement Learning”, Journal of Artificial Intelligence Research, Vol 60
(2017)
[21] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
“Multi-resource packing for cluster schedulers”, SIGCOMM ’14, pp. 455–
466, New York, NY, USA, 2014. ACM.
[22] Diederik K. and Jimmy B., “ADAM: A Method For Stochastic
Optimization”, 3rd International Conference for Learning Representations,
San Diego, 2015.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5402741
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5402741
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6373891
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6373891
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7066991
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7066991
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6779627
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8528959
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8528959
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6315752
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6315752
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4126271
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11035
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11035
http://conferences.sigcomm.org/hotnets/2016
http://conferences.sigcomm.org/hotnets/2016

