
Proc. of the Ninth Intl. Conf. on Advances in Computing, Electronics and Communication - ACEC 2019 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN No. 978-1-63248-176-4 DOI : 10.15224/978-1-63248-176-4-02 

4 

 

 

 

 
NUMERICAL SOLUTION OF NON-LINEAR FRACTIONAL 

BURGERS’ EQUATION USING SINC–MUNTZ 

COLLOCATION METHOD 

 
Mahmood Shareef Ajeel, Morteza Gachpazan ∗  , Ali R. Soheili 

Department of Applied Mathematics,faculty of Mathematical Sciences, Ferdowsi 
University of Mashhad, Mashhad, Iran. 

 

Abstract. In this paper a new numerical method is presented for solving 
non-linear fractional Burgers’ equation(FBE). The technique is based on 
the collocation method where the fractional Muntz-Legendre functions in 
time and the Sinc functions in space are utilized, respectively. By using 
these functions, we approximate the unknown functions. The proposed 
approximation together with collocation method reduce the solution of 
the FBE to the solution of a system of nonlinear algebraic equations. 
Finally, some numerical examples show the validity and accuracy of the 
present method. 

 
 
 

 
1. Introduction 

Fractional models are widely used in many physical models and engineering 
research. For this reason, from many years ago researchers have been interested 
in solving these types of equations [1, 2, 3]. Since the fractional equations con- 
tain fractional derivatives, they are unable to get the exact solution in many 
cases. We must resort to numerical method. Recently, several numerical tech- 
niques have been proposed by researchers for solving the fractional ordinary 
differential equations (FODEs) and the fractional partial differential equations 
(FPDEs). For example, Kazem and Abbasbandy [4] used fractional-order Le- 
gendre functions for solving FODEs. Esmaeili, Shamsi, and Luchko [5] applied 
a collocation method bases on Muntz polynomials for solving FODEs. Chen, 
Sun, and Liu [6] used generalized fractional-order Legendre function for solving 
FPDEs. The other numerical method can be found in [7, 8, 9, 10]. 

In this paper, we apply a numerical method for solving non-linear fractional 
Burgers’ equation (FBE) as the following form: 
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∗    1  

 

  
 
 

(1) 
∂αu(x, t) 

∂tα + u(x,t) 
∂u(x, t) 

∂x 
−ϵ 

∂2u(x, t) 

∂x2 = g(x, t), (x, t) ∈  Ω 

with initial condition 

(2) 

and boundaryconditions 

 
u(x, 0) = f0(x), 

u(0,t) = g0(t), u(1, t) = g1(t), 

where Ω = (0, 1)×(0, 1) and 0 < α 1 is the order of the fractional derivatives in 
the Caputo sense, and the continuous functions g and g0 are known and the 
function u(x, t) is unknown. 

The aim of this paper is to apply the Sinc functions and Muntz–Legendre 

polynomials to achieve the numerical solution of problem (1). 
This article is organized as follows: Review of Caputo fractional derivative 

and Review of fractional Muntz–Legendre polynomials is presented in Section 
2. In Section 3, we recall notations of the Sinc functions and their properties. 
In Sections 4 and 5, we discuss the convergence analysis and the approximate 
solution of the FBE using a collocation method based on Sinc functions and 
Muntz–Legendre polynomials. In Section 6, we present some examples of FBE 
to show efficiency and accuracy of the proposed method. Finally a conclusion 
is expressed in Section 7. 

 
2. Preliminaries and notation 

In this section, we give the definition and some properties of Caputo frac- 
tional derivative and fractional-order Muntz–Legendre polynomials. 

2.1. Review of Caputo fractional derivative 

Deftnition 1. The fractional derivative of y(t) in the Caputo sense is defined 
as 

Dαy(t) = ∫ t  (t  −  τ  )m−α−1y(m)(τ  )dτ 

Γ(m − α) 0 
for m − 1 < α < m,m ∈  N, and t > 0. 

Deftnition 2. Let α > 0. The Riemann–Liouville fractional integral operator 
Jα, defined on L1[a, b] by 

∫ t 

J αy(t) = 1 (t − τ )α−1y(τ )dτ. 
t Γ(α) a 

Some properties of the Riemann–Liouville fractional integral operator Jα 
and the Caputo fractional derivative operator Dα, which will be used later, are 

∗  

as follows; 

1) DαC = 0, where C is a constant. 
∗  
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n 
 
 

i=1 

, 

 
  

 

 

 
(3) 

2) 

 
Dαtv = 

∗  

 
where α is the smallest integer greater than or equal to α and α is 
the largest integer less than or equal to α. Also N0 = 0, 1, . . . . 

3) Caputo fractional derivative is a linear operation, 

) 
α aiyi(t) = 

 
4) 

∑ 
 
i=1 

 
aiD

αyi(t) 

J α(J βy(t)) = J β(J αy(t)) = J α+βy(t), α, β > 0. 
t t t t t 

5) 

J αtv = 
Γ(v + 1) tα+v . t Γ(α + v+ 1) 

6) 
Dα(J αy(t)) = y(t). 

∗     t 

7) 

∑
n−1  i 

(4) J α(Dαy(t)) = y(t) − 
(i) (0)

t 
n − 1 < α ≤ n, t > 0. 

i! 
 

 

For more details about the properties of Caputo fractional derivative oper- 
ator and Riemann–Liouville fractional integral operator see [2]. 

2.2. Review of fractional-order Muntz polynomials 

Deftnition 3. (see [9]) The fractional-order Muntz–Legendre polynomials on 

the interval [0, T ] are represented by the formula 
n 

(5) Ln 

 
where 

(t; α) = 
 
C 

 
 
 
 

 
k=0 

n,k 
( t )kα, 

C = 
( 1)n−k 

n,k 
αnk!(n −k)! 

n−1 
 
 

v=0 

) 
(k + v)α+ 1  . 

The function Lk(t; α), k = 0, 1,..., n forms an orthogonal basis for Mn,α = 
Span{1, tα, . . . , tnα}, t ∈  [0, T ]. Also is satisfies 

L0(t; α) = 1, 

L (t; α) = 
( 1 

+ 1
)( t )α 

−
 1 

, 

b1,nLn+1(t; α) = b2,n(t)Ln(t; α) − b3,nLn−1(t; α), 

   Γ(v+1) tv−α, 
Γ(v+1−α) 

0, 

v , v α , or v , v > α , 

v ∈  N0, v < ⌈  α⌉  
, 

D ∗  
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k=1 

 

  
 

where  

b1,n 

 
 

 
2,n 

 
 

 
1 
α 

2,n 

 
t 

2( ) 
T 

 
) 

α − 1 , b 3,n 

aα,β = 2(n + 1)(n + α + β + 1)(2n + α + β), 

aα,β(x) = (2n + α + β + 1)[(2n + α + β)(2n + α + β + 2)x + α2 − β2], aα,β = 

2(n + α)(n + β)(2n + α + β + 2). 

Theorem 2.1. Let Ln(t; α) be a fractional-order Muntz–Legendre polynomials, 
then we have the following Caputo fractional derivative of the functions Ln(t; α): 

n 

(6)  
 

where 

DαLn (t; α) = Dn,k
( t )(k−1)α, 

 
Γ(1 + kα) 

Dn,k  = 
Γ(1 + kα α)Tα 

Cn,k, 

and Cn,k is defined in Ln(t; α). 

Proof. It is the result of the equations (3) and (5). □ 

Theorem 2.2. Let α > 0 be a real number and t ∈  [0, 1]. Then 
L (t; α) = P (0,

 1 −1)
(2tα − 1). 

n n 

where P (α,β) are the Jacobi polynomials with parameters α, β > −1, [14, 15]. 

Proof. (see [5]). 

3. Sinc function and its properties 

In this section, we recall notation and properties of the Sinc function, and 
derive useful formulas that will be used in this paper. The Sinc function is 

defined on R as [11] 
 

Sinc(x) = 
sin(πx) 

πx , x 0, 

1 , x = 0. 

Let g(x) be a function defined on R, and let h > 0 be a step size. Consider the 

Whittaker cardinal function of g is defined by the series 

 
C(g, h)(x) = 

∑∞ 

 
k=−∞ 

 
g(kh)Sinc( 

x − kh 
).

 

h 

This series converge (see [11]), and the kth Sinc function is defined on R as 

S(k, h)(x) = Sinc( 
x − kh 

). 
h 

Now, for positive integer N , the function g can be approximated by trun- 
cating as follows: 

= a , b 0, −1 1 
α 

1,n 

1 
α 

3,n 
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CN(g, h)(x) = 

∑ 
 

k=−N 

g(kh)Sinc( 
x − kh 

). 
h 

The properties of the Whittaker cardinal expansion have been extensively 
studied in [11] . These properties are derived in the infinite strip DS-plane of 
the complex ω-plane, where, for d > 0, 

DS = {w = u + iv : |v| < d ≤ π/2}. 

To construct approximations on the interval [a,b], which is used in this paper, 
the eye-shaped domain in the z−plane (see [11]), 

D = {z = u + iv : |arg( 
x − a 

)| < d ≤ π/2}, 
 

is mapped conformally onto the infinite strip DS via: 

ω = ψ(z) = ln( 
x − a 

) 

b − x 

The basic functions on [a, b] are taken to be translated Sinc functions 

(7) S (x) ≡ S(k, h) ◦ ψ(x) = Sinc( 
ψ(x) − kh

), 

where S(k, h) ψ(x) is defined by S(k, h)(ψ(x)). The inverse map of ω = ψ(z) 
is 

z = ψ−1(ω) = 
a + beω 

1 + eω 
.
 

Thus we may define the inverse images of the real line and of the evenly spaced 

nodes 
a + bekh 

xk  = ψ−1(kh) =  , k = 0, ±1, ±2, . . . . 
1 + ekh 

Deftnition 4. (see [12]) Let B(DE) be the class of functions g that are analytic 
in DE, and they satisfy 

where 

L = {iy : |y| < d ≤ π/2}, 

and those on the boundary of DE satisfy 
∫ 

 
∂DE 

|g(z)|dz < ∞. 

g(z) dz 0, x 
ψ−1(x+L) 
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n 

2 

2 

 

  
 

4. Convergence analysis 

The following expressions show that the Sinc interpolation on B(DE) con- 
verges exponentially. 

Theorem  4.1.  (see  [11, 12]) Assume that gψ′ B(DE); then, for all x in 
[a, b], 

∑
  

2N (gψ′) 

 

 
−πd/h 

|g(x) −  
k=−∞ 

g(kh)S(k, h) ◦ ψ(x)| ≤ e . 

Moreover, if |g(x)√| = Ceγ |ψ(x)|, x ∈  Γ for some positive constants C and γ, and 

 
 
 

dng(x) 
  | − 

dx 

∑ 
 
k=−N 

 
g(kh) 

dn 

dxn 

 
S(k, h) ◦ ψ(x)| ≤ kN(n+1)/2e− 

for all n = 0, 1, 2, . . . , m. 

Also, the nth derivative of the function g at some points xk can be approx- 

imated (see [13] ), as follows: 

 
δ(0) = [S(k, h) ◦ ψ(x)]|x=x = δk,j , 

where 

 

 
It has been shown that 

 d 

 

δk,j 

 
= 

1 ,   j = k, 

0 ,    j  = k. 
 

{ 

δ(1) = [S(k, h) ◦ψ(x)]| = 
1 0 , j = k, 

 

and 

k,j dψ x=xj 
h (−1)(j−k) 

j−k 
, j = k, 

 
δ(2) = d [S(k, h) ◦ ψ(x)]|x=x 

 

 1 −π2 
(j−k) 

, j = k, 
k,j dψ2 j h2 −2(−1)  

(j−k) , j = k. 

So the approximate of a function u(x) by Sinc axpansion is 

∑N 

(8) uN (x, t) ≃  

i=−N 
ciSi(x), 

where Si(x) is defined in equations (7). Now, for orbitary tj (0, 1) and fix, we 
define u(xk) = u(xk, tj), then, To approximate the first and second derivatives 
at the Sinc nodes xk, we have 

(9) 

∂uN,n(xk,tj) 
= 

du(xk) 
= 

duN (xk) 
+ E = 

∑ 
c 

(  d 
[S (x)]

) 
+ E

 
 

 

πdγN 

= 
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∂2u(x, t) 

∂x2 

h2 

  

  

2 

 
  

= 
∑ 

c 
( d 

[S(i, h) ◦ ψ(x)] 
dψ ) 

+ E 
i 
dψ dx x=xk 

1 
i=−N 

= 
∑N 

c δ(1) 
dψ(xk) 

+ E , 
i  i,k dx 1 

and, 

(10) 
2 

i=−N 

2 2 ∑N (  d 2 ) 
 

 

∂ uN,n(xk, tj) 
= 

d u(xk) 
= 

d uN (xk) 
+ E = c [S (x)] + E i 

∂x2 dx2 dx2 
2 

i=−N 
dx2 i

 x=xk 
2 

∑N ( d ψ2  d 
= c [S(i, h) ◦ ψ(x)] + ( 

dψ    d   2 ) 
) [S(i, h) ◦ ψ(x)] + E 

i 
i=−N dx2 dψ dx dψ2 x=xk 

2 

∑N d ψ2(xk) 
= c ( δ(1) + ( dψ(xk) 

)2δ(2)) + E , 

where 

and, 

i 

i=−N 
dx2 i,k dx i,k 2 

√   

E1 = O(N e− πdγN ) 

3 √     

E2 = O(N 2 e− πdγN ). 

Moreover, the approximation of the first and second derivatives at the vector 
nodes xk can be written as following form (see [16]) 

(11) u ′(x , t ) ≃  
( −1

I(1)D(ψ) + I(0)D( 
ψ ) 

u(x , t ) = A u(x , t ) 
k   j h m m ψ k   j k j 

and, 

(12) u ′′(x , t ) ≃  
( 1 

I(2) + hI(1)D( 
ψ) 

u(x , t ) = B u(x , t ) 

where the m × m, (m = 2N + 1)Toeplitz matrices I(q) = [δ(q)], q = 0, 1, 2. 
i.e.,defined in [16]. By using the matrices in (11) and (12), with the notation 

U = [u(xi, tj)], tt = [g(xi, tj)] and U 0 = [u(xi, 0)], we can writte the equation 

(1) as the following system 

D(α)U + U ◦ AU − ϵBU = tt 

where the symbol ” ” means the Hadamard matrix multiplication. An alterna- 
tive solution is to convert the FBE to an integral equation by operating with 
Jα on both sids of equation (1), and using properties (3)–(4), we have 

 
u(x, t) = 

m−1 
u(i)(x, 0) 

t 
+ 

 

( 
g(x, t) − u(x, t) 

 

∂u(x, t) 
+ ϵ . 

 
i=0 i! Jα ∂x 
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∑ ∑ 

 
∑ ∑ 

∂ uN,n(xk, t) 

∂x2 

dx2 dψ 

2 α 

)] 

2 α 

 

  
 

Since 0 < α ≤ 1, we choose m = 1, then, we obtain the following system 

0 α 
t 

Now, for the convergence proof of the soluUtio◦nAfUor+this system can be done 
using fixed point Theory (see [16]–[18]). Thus the approximate solution will 
converge to the exact solution. 

 
5. Approximate solution to the FBE by collocation method 

In this section we approximate the solution of equation (1) by applying the 
Sinc function and fractional Muntz–Legendre polynomials which is discussed 
in the previous sections. 

First, we approximate the unknown function u(x, t) as follows: 

∑ ∑ 
(13) uN,n(x,t) ≃ aijSi(x)Lj(t; α) 

i=−N j=0 

where Si(x) and Lj(t; α) are defined in equations (7) and (5), respectively. 
Moreover, let xk be Sinc collocation points. Then we approximate the differ- 

ential ∂ u(x,t) , ∂ u(x,t) and ∂ u(x,t) as follows: 
∂x ∂x ∂t 

N n 

(14) 
∂uN,n(xk, t) 

=
 ∑ ∑ 

a 
( d 

[S (x 
)
 L (t; α) 

 

 
 

  

= 
∑ ∑ 

a  
( d 

[S(i, h) ◦ ψ(x)] 
dψ) 

L (t; α) 

 

 
 
 
 

(15) 

 
= 

i=−N j=0 

δ(1) 
dψ(xk) 

L (t; α), 
aij  i,k dx j 

2 
∑
N 

= 
∑

n 
( d 

2 
) 

a [S (x)] 

 
L (t; α) 

 

 
 

2 2 

= 
∑ ∑ 

a 
( d ψ d 

[S(i, h) ◦ ψ(x)] + ( 
dψ 

)2 d 
[S(i, h) ◦ ψ(x)]

) 
L (t; α) 

 
 

( d
2
ψ(x ) δ + ( dψ(x ) ) δ )L (t; α), 

 
 

and 

= a ij 
i=−N j=0 

 
 

α 

dx2 

 
N 

i,k 
 
 
 

n 

dx i,k j 

(16) 
∂ uN,n(xk, t) 

= 
∑ ∑ 

a S (x)DαL (t; α), 

 

 

N n 
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∗  

dx dx 

 
  

where DαLj(t; α) is defined in Theorem 2.1. 

Substi tuting equations (13)–(16) into the equation (1) and the initial condi- 

tion (2), we get 

∂αuN,n(xk, t) 
 

∂uN,n(xk, t) 
 

∂2uN,n(xk, t) 
(17) 

∂tα + uN,n(xk,t) 
∂x 

−ϵ 
∂x2 = g(x, t), 

(18) uN,n(x, 0) = f0(x). 

Now, To find unknown coefficients aij in equations (17) and (18) , we use 

the collocation method with suitable collocation points (xk, tr), where xk = 

ekh/(1 + ekh), h = πd/(αN ) and d = π/2 for k = N, . . . , N , (see [11]) and tr 
are Chebyshev–Gauss–Lobatto points with the following relation: 

1 1 πr 
tr = 

2 
− 

2 
cos , r = 1, . . . , n. 

n 
Substituting these points into the equations (17) and (18), we get 

∑ ∑ ( ∑ ∑ a S (x )DαL (t ; α) + a S (x )L (t ;α)
)( ∑ ∑

a δ(1) 
dψ(xk) 

L (t ; α)
)
 

ij    i k j r ij    i k j r ij dx j r 
i=−N j=0 i=−N j=0 i=−N j=0 

∑  ∑ (d2ψ(xk) (1) dψ(xk) 2 (2)) 

− ϵ aij 
2 

δi,k + ( ) δi,k Lj(tr; α) = g(xk,tr), 
i=−N j=0 

 

∑ ∑ 
aijSi(xk)Lj(0; α) = g0(xk), 

i=−N j=0 

Now, we have a system of nonlinear algebraic equations with unknown coef- 
ficients aij by using the well known Newton’s method; we can find the approx- 
imate solution 

∑ ∑ 
uN,n(x, t) ≃ aijSi(x)Lj(t; α). 

i=−N j=0 

 
6. Numerical illustration 

In this section, we present some examples of linear and nonlinear of FBE 
to show the efficiency of the proposed method. The results will be compared 
with the exact solutions. The accuracy of present method is estimated by the 

absolute error EN,n, which is given as follows: 

EN,n = |u(xi, tj) − uN,n(xi, tj)|. 

Example 1. Consider the FBE. 
 

∂αu(x, t) 

∂xα + u(x,t) 
∂u(x, t) 

∂x 
−ϵ 

∂2u(x, t) 

∂x2 = 0, (x, t) ∈  (0, 1) × (0, 1), 
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1 

0.9 

 
Figure 1. The approximate solution with α = 0.7 for Example1. 

 1 ( ( x )) 
u(x, 0) = 1 − tanh , 

 1 ( ( −t )) 
u(0, t) = 1 − tanh , 

 1 ( ( 1 − 0.1t)) 
u(1, t) = 1 − tanh . 

Setting ϵ = 1, the approximate solutions are shown in Figure 1 and Figure 

2 for α = 0.7 and α = 0.7, respectively. The exact solution, for the special case 
α = 1, is given by [16] 

u(x, t) = 
 1 ( 

1 − tanh 
( x − 0.1t)) 

. 

Figure 3 shows comparison between the exact solution and the approximate 
solution for α = 1. From Figure 3, we see that the obtained results are in good 
agreement with exact solution. 

Example 2. Consider the FBE. 
∂αu(x, t) 

∂tα + u(x,t) 

∂u(x, t) 

∂x 
−
 

∂2u(x, t) 

∂x2 = g(x, t), 0 < α ≤ 1, 

 
where 

u(x,0) = x2, u(0,t) = t2, u(1, t) = 1 + t2, 

g(x, t) = 
2t2−α 

Γ(3 − α) 
+ 2(x3 + xt2 − 1). 

The exact solution is u(x, t) = x2 + t2. 

For various values of N,n and α we obtain approximate solution of this equa- 
tion. The absolute error is shown in Figures 4, 5 and 6. Also, Table 1 shows 
the maximum absolute error for the various values of N, n and α. We see that 
the absolute error converges to zero as N, n → ∞. 
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Figure 2. The approximate solution with α = 0.9 for Example1. 

Table 1. The maximum absolute error for the various values 

of N, n, and α, for Example 2. 
 

α n = 6, N = 3 n = 8, N = 4 n = 10, N = 5 

4 8.0677e−05 1.6679e−05 4.97788e −06 

5 1.3901e−03 2.2598e−05 1.9007e−13 

5 1.7979e−05 2.3834e−06 5.1442e−07 
 

 
7. Conclusion 

In this paper, we applied a basis of Sinc function and fractional Muntz– 
Legendre polynomials to obtain the numerical solution of nonlinear FBE. To get 
the unknown coefficients FMLPs, we use the collocation method. The results 
of the numerical examples show the efficiency and accuracy of the proposed 
method. 
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Figure 5. The absolute error function with α = 1 and various 

values of N, n for Example2. 
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Figure 6. The absolute error function with α = 3 and various 

values of N, n for Example2. 

19 

 

 

E
rr

o
r 

E
rr

o
r 

 

  
 
 

x 10
−5

 

 
2 

 
 

1.5 
 

  1 

0.5 
 

0 
1 

 

0.5    
 

t 0 0 

 
 
 
 
 
 

0.2 

 
 
 
 
 

0.4 

 
x 

 
 
 
 

0.6 

 
 
 

1 
0.8 

 
 

 
x 10

−6
 

 
2.5 

 
2 

 
1.5 

 
1 

 
0.5 

 
0 
1 

 

0.5 
 
 

t 

 
 
 
 
 
 

0.2 
0     0 

 
 
 
 
 
 

0.4 

 
x 

 
 
 
 
 

0.6 

 
 

 
1 

0.8 

 
 

 
6 

 
5 

 
4 

 3 

2 
 

1 
 

0 
1 

1 

=3/5 & n=8, N=4 

=3/5 & n=6, N=3 

=3/5 & n=10, N=5 

x 10
−7

 

0.5 
0.8 

0.6 
0.4 

0.2 

E
rr

o
r 


