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Abstract —Computer technology these days is most 

focused on storage space and speed. Considerable 

advancements in this direction can be achieved through 

the usage of digital image compression techniques. In this 

paper, well studied singular value decomposition based 

JPEG Image Compression Technique is presented. 

Singular Value Decomposition is a way of factorizing 

matrices into a series of linear approximations that 

expose the underlying structure of the matrix. SVD is 

extraordinarily useful and has many applications such as 

data analysis, signal processing, pattern recognition, 

objects detection and weather prediction. An attempt is 

made to implement this method of factorization to 

perform second round of compression on JPEG images to 

optimize storage space. Compression is further enhanced 

by the removal of singularity after the initial compression 

performed using SVD. MATLAB R2010a with image 

processing toolbox is used as the development tool for 

implementing the algorithm. 

Keywords—Singular Value Decomposition, JPEG images, 

Compression factor, Compression ratio, Rank, Eigen 

values, Eigen vectors, Singular value. 

 

I.  INTRODUCTION 

 
Image Compression, an important area in the field 

of digital image processing, deals with techniques for 

reducing the storage required for saving an image or 

the bandwidth required for transmitting it [1]. The 

objective of Image Compression is to reduce 

irrelevance and redundancy of the image data thereby 

optimizing the storage space and increasing the 

transmission rate over WebPages.  Image compression 

enables image reconstruction. The amount of 

compression achieved depends on the contents of 

image data. A typical photographic image can be 

compressed to about 80% of its original size without 

experiencing noticeable degradation in the quality. The 

technique of image compression finds applications in 

various fields such as Medical Imaging, Museums and 

Galleries, Web Applications, Telecommunication, 

Facsimile and Security Industry to name a few. 

 

To date different algorithms have been developed 

for image compression. These include Predictive 

Coding, Fractal Compression, Burrows-Wheeler 

Transform, Wavelet Compression and Embedded Zero 

Tree Wavelet. Predictive coding refers to the de-

correlation of similar neighbouring pixels within an 

image to remove redundancy. An example of this type 

is Huffman Coding which is a statistical compression 

method that converts characters into variable length bit 

strings. Transform coding includes Burrows-Wheeler 

transform which is a preprocessing technique which is 

useful for improving lossless compression. Delta 

encoding aids in compression of data in which 

sequential data occurs frequently. Fractal compression 

is a method used to compress images using fractals. 

Fractal algorithms convert these parts into 

mathematical data called fractal codes which are used 

to recreate the encoded image.Wavelet compression is 

a form of data compression well suited for image and 

audio compression. The entire image is treated as a 

series of wavelets which are the changes from pixel to 

pixel as measured by the deviation of an individual 

pixel from zero. EZW is a progressive encoding to 

compress an image into a bit stream with increasing 

accuracy. This may be lossy compression. Vector 

quantization is a technique often used in lossy data 

compression which requires the development of an 

appropriate codebook to compress data. 

 

This paper focuses on Singular Value 

Decomposition (SVD) which is a way of factorizing 

matrices into a series of linear approximations that 

expose the underlying structure of the matrix. SVD is 

commonly used in Object detection, Face recognition, 

Field matching techniques and Meteorological and 

Oceanographic data analysis.  

 

Rest of the paper is constituted as follows: Section 

II deals with Image Compression, section III comprises 

of Image File Formats, section IV describes the 

Procedure of SVD, section V deals with Application of 

SVD in Image Compression followed by Methodology 

Used in section VI, section VII elaborates the Flow of 

the Process, Results Obtained is shown in section VIII 

and finally Conclusion of the paper is presented in 

section IX. 
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II. IMAGE COMPRESSION 

 

The term Compression refers to the process of 

reducing the amount of data required to represent a 

given quantity of information. Image Compression 

aims to reduce the number of bits required to represent 

an image by removing the redundancies which makes 

it one of the most useful and commercially successful 

technologies in the field of Digital Image Processing. 

 

Three principle types of data redundancies[1],[4] that 

can be identified are: 

 

A. Coding redundancy: Coding redundancy consists 

of variable length code words selected as to match 

the statistics of the original source. In the case of 

Digital Image Processing, it is the image itself or 

the processed version of its pixel values. Examples 

of image coding schemes that explore coding 

redundancy are the Huffman codes and the 

Arithmetic coding technique. 

 

B. Spatial redundancy: Spatial reduncancy is 

sometimes called Interframe redundancy, 

Geometric redundancy or Interpixel redundancy. 

Here, because the pixels of most 2-D intensity 

arrays are correlated spatially that is each pixel is 

similar to or independent on neighbouring pixels, 

information is unnecessarily replicated in the 

representation of the correlated pixels. Examples of 

this type of redundancy include Constant area 

coding and many Predictive coding algorithms. 

 

C. Irrelevant information: Most 2-D intensity arrays 

contain information that is ignored by the human 

visual system. Image and video compression 

techniques aim at eliminating or reducing any 

amount of data that is psycho visually redundant. 

Most of the image coding algorithms in use today 

exploit this type of redundancy, such as the discrete 

cosine transform based algorithm at the heart of the 

JPEG encoding standard. 

 

The usual steps involved in compressing an image 

are [5], specifying the rate and distortion parameters 

for the target image, dividing this image data into 

various classes, based on their importance. Then 

dividing the available bit budget among these classes, 

such that the distortion is minimum. Next step involves 

quantizing each class separately using the bit allocation 

information followed by encoding of each class using 

an entropy coder and write to the file.  

 

There are many approaches to Image Compression 

but they can be categorized into two fundamental 

groups: Lossless and Lossy. 

 

In Lossless Compression, also known as reversible 

compression, the reconstructed image after 

compression is numerically identical to the original 

image on a pixel-by-pixel basis.  

 

In Lossy Compression, also known as irreversible 

compression, the reconstructed image contains 

degradation related to the original image. As a result 

significantly higher compression can be achieved as 

compared to Lossless Compression [2]. 

 

 
 

 

 
 

 

III.  IMAGE  FILE FORMATS 

 

In the context of Digital Imaging, an image file 

format is a standard way to organize and store image 

data. It defines how the data is arranged and the type of 

compression that is used. There are several formats 

using which image files can be compressed [6],[7],[8] 

These include: 

 

A. BMP (Bitmap): Windows Bitmap or BMP files are 

image files within the Microsoft Windows 

Operating System. BMP files are not very popular 

as they do not scale or compress the images well. 

Being oversized, this format is not web friendly.  

 

B. GIF (Graphics Interchange Format): GIF is a 

popular image format on the internet because its 

file size is relatively small compared to other image 

compression types. GIF is most suitable for 

graphics, animations, diagrams and cartoons.  

 

C. PNG (Portable Network Graphics): This format is 

designed specifically for web applications. This 

format is lossless so it does not lose quality and 

detail after image compression. PNG format is not 

suitable for large images because they tend to 

generate a very large file. 

 

D. TIFF (Tagged Image File Format): It is 

recommended especially for text, black and white 

images. TIFF is very flexible; it can be lossy or 

lossless. It is a rich format and is supported by 

many imaging programs. It is the standard format 

for printing, scanned documents and optical 

character recognition since it does not have any 

artifacts. Drawbacks of this format include long 

transfer time, huge disc space consumption and 

slow loading time. 

 

E. PPM (Portable Pix Map): It is a very old image 

format that can represent any ordinary colour 

image. PPM files are basically plain text files 

making it one of the simplest formats. The PPM 

format is not intended to be an archival format, so it 

does not need to be too storage efficient.  
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F. PGM (Portable Grayscale Map): PGM format 

represents a grayscale graphic image. It is designed 

to be extremely easy to learn and write programs. 

 

G. JPEG (Joint Photographic Expert Group): JPEG 

file format differs from other file formats as it is 

lossy. JPEG’s compression technology reduces the 

true quality of the image in order to achieve its 

striking file size reduction. JPEG was designed 

specifically for use with highly detailed or 

photorealistic images, and is typically applied to 

rendered images and digitized photographs. It is not 

suitable for use with rough drafts, line drawings, 

screen captures and other image types which use 

sharply defined lines and coloured images.  

 

In this paper, SVD based image compression on 

JPEG image is proposed to reduce the file size further, 

in addition to the compression already achieved by 

JPEG format which is used as the input for 

compression [9].  

   

IV.   THE SVD PROCESS  

 

In linear algebra, the Singular Value 

Decomposition (SVD) is a factorization of a real or 

complex matrix.  SVD is effective compared to other 

linear approximation techniques [10],[11]. SVD has 

many practical and theoretical applications like 

scientific computing, signal processing, automatic 

control along with Image Compression. One special 

feature of SVD is that it can be performed on any real 

mxn matrix. It factorizes matrix A into three matrices 

U, S and V, such that, 

 

                                    A = USV
T
                           (1) 

 

where, U is a left singular matrix and V is the right 

singular matrix and S is a diagonal matrix. The 

columns of U and V are represented as ui and vi 

respectively and the diagonal elements si of S matrix 

are called singular values. The singular vectors form 

orthonormal basis, and the relation, 

 

                                   Avi = siui                                         (2) 

 

shows that each right singular vector is mapped on to 

the corresponding left singular vector. The singular 

values are arranged on the main diagonal in such an 

order 

 

       σ1 ≥ σ2 ≥ σ3 ≥ σ4........σr ≥ σr+1=....= σp =0,           (3) 

 

where, r is the rank of matrix A, and (p) is the smaller 

of the dimensions m or n. Rank is the number of 

linearly independent rows and columns of the input 

matrix. 

If the image when considered as a matrix, has low 

rank, or can be approximated sufficiently well by a 

matrix of low rank, then SVD can be used to find this 

approximation, and further this low rank 

approximation can be represented much more 

compatible than original image [12].    

 

The process of Singular Value Decomposition begins 

by selecting the matrix A which has m rows and n 

columns. Now, matrix A is factorized into three 

matrices U, S and V
T
. 

 

Generation of matrix V involves the follows steps: 

 

Pre-multiplying both sides of the equation A = USV
T
 

by A
T 

 yields, 

 

           A
T
A = (USV

T
)

T
 (USV

T
) = VS

T
U

T
USV

T
         (4) 

 

U
T
U gives the identity matrix and S

T
S=S

2
 since S is a 

diagonal matrix. On substituting these values in the 

above equation gives, 

 

                                 A
T
A = VS

2
V

T
                           (5) 

 

Eigen values and Eigen vector of matrix A
T
A are 

needed to find V and S matrices. 

 

The Eigen vectors of a square matrix are the non-

zero vectors that, after being multiplied by a matrix, 

remain proportional to the original vector i.e., they 

change only in magnitude, not in direction. For each 

Eigen vector, corresponding Eigen value is the factor 

by which the Eigen vector changes when multiplied by 

the matrix. The mathematical interpretation of this idea 

is as follows [13],[14]: 

 

If A is a square matrix, of size nxn and λ is an 

associated Eigen value such that 

 

              Avi = λvi         ; i=l, 2, 3, . . . , n                (6) 

 

Then v is called an Eigen vector of matrix A, 

associated with Eigen value λ. 

 

The above equation can be rewritten as  

 

                                    Avi = λIvi                                 (7) 

 

where I is the identity matrix of size nxn. The size of 

this identity matrix has to be the same as that of the 

matrix for which the Eigen values and Eigen vectors 

have to be calculated. Equation (7) reduces to  

 

                                   (A-λI) vi=0                             (8) 

 

The Eigen values λ of matrix A are those real 

numbers for which the homogenous system defined by 
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equation (8) has a non-zero solution and the Eigen 

vector of matrix A associated with λ are the non-zero 

solutions of this system. Equation (8) has a non-zero 

solution if its coefficients’ matrix is noninvertible and 

this is possible if its determinant is equal to zero, i.e.  

                                                                                                    

 (9)                                 0 = ׀A-λI׀                                   

 

The equation (9) is said to be the characteristic 

equation of matrix A. In the context of SVD 

compression, the Eigen values are the square of the 

elements of S (the singular values), and the Eigen 

vector consists of columns of matrix V (the right 

singular vectors). 

 

The next step is to find U: 

 

Post-multiplying both sides of the equation A = USV
T
 

by A
T 

 gives, 

 

         AA
T
 = (USV

T
)(USV

T
)

T
 = USV

T
VS

T
U

T
          (10) 

 

Here V
T
V gives the Identity matrix and S

T
S=S

2
 since S 

is a diagonal matrix. On substituting these values in 

equation (10) yields, 

 

                               AA
T
 = US

2
U

T
                            (11) 

 

Again the Eigen vectors are calculated, but this 

time for the matrix AA
T
. These are the columns of U 

(the left singular vector). The process of calculating 

Eigen values and Eigen vector follow the same steps as 

explained previously in the calculation of matrix V. 

 

Once U, S and V matrices are obtained, matrix A 

can be generated which is represented as the product of 

matrices U, S and V
T
.        

           

        

                           

where, U is m × m matrix, S is m × n matrix and V is  

n × n matrix.  

 

V. SVD IN IMAGE COMPRESSION 

 

The matrix A (m × n) is approximated by using far 

fewer entries than in the original matrix. When the 

rank r < m or r < n, the redundant information is 

removed. Here, rank is the total number of non-zero 

diagonal elements of the S-matrix. These are also 

called as singular values which are arranged in the 

decreasing order along the main diagonal. The values 

which fall outside the required rank are equated to zero 

as shown in equation (12) [15],[16].  

 

      A = σ1u1v1
T 

+ σ2u2v2
T
. . . + σrurvr

T 
+ 0ur+1vr+1

T 
+. . 

                                                                ................. (12) 

 

Since the singular values are always greater than 

zero, adding on the dependant terms where the singular 

values are equal to zero does not affect the quality of 

the image. Therefore the terms at the end of the 

equation zero out yielding,      

 

             A= σ1u1v1
T 

+ σ2u2v2
T 

+ . . . + σrurvr
T
         (13) 

 

We can further approximate the matrix by leaving 

off more singular terms of the matrix A [15],[17]. This 

further reduces the amount of space required to store 

the image on a computer hence, optimizing the disc 

space. 

 

VI. METHODOLOGY USED    

Singular Value Decomposition technique discussed 

in the previous section is implemented to compress 

JPEG images further. The process required to 

accomplish this is as follows: 

 

Initially the JPEG image which has to be 

compressed is given as an input to the processor. This 

input image is stored as an array of integers. Before 

getting on with the process of compression, the amount 

of compression that has to be achieved for the input 

JPEG image is specified through the compression ratio. 

Compression ratio is defined as the ratio of file sizes of 

the uncompressed image to that of the compressed 

image. Compression is then achieved by performing 

Singular Value Decomposition on RGB components of 

the input JPEG image [18]. The resultant decomposed 

matrix is regenerated by decoding the bit stream.  
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The next step is to remove singularity if any. 

Removing singularity is nothing but removing the 

redundant pixels having same frequencies. This not 

only helps in reducing the file size but also maintains 

the quality of the image. Finally the reformed RGB 

components are collected and combined to create and 

display the compressed image. 

 

VII.   FLOW DIAGRAM 
 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flow of JPEG image compression using SVD 

technique is as shown above. The input image is read 

by the Matlab software and stored as an array of 

integers. This image is segregated into RGB or red, 

green, blue component matrices. The pixel values of 

these matrices are converted to double data type for 

higher accuracy. After determining the rank of the 

original matrix, compression factor, which is the 

inverse of compression ratio, is specified. The rank 

required for the SVD process is calculated by dividing 

the original rank by the compression factor. In the next 

step, SVD is performed on the component RGB 

matrices using the new rank obtained thus yielding the 

matrices AR, AG and AB [19]. The S matrices of these 

component matrices are approximated by equating the 

values which fall outside the new rank to zero. This 

results in three new S matrices SR
l
,  SG

l
 and  SB

l
 

respectively. Using these S matrices, the RGB matrices 

are regenerated. Suppose there are two consecutive 

values having almost the same frequencies, higher of 

the two values are equated to 1, thus singularity is 

achieved. The next step involves conversion of double 

data type back to integers. The RGB component 

matrices are collected thus yielding AR
l
,  AG

l
 and  AB

l
 

matrices. These matrices are combined to create and 

display the compressed output image. 
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VIII.   RESULTS OBTAINED 

                     

       Original Bitmap                     JPEG Compressed                    

                Image                                      Image          

 

 

                  
 

                CF: 8                                      CF: 12 

 

                  
 

              CF: 15                                      CF: 20 

 
Fig. SVD compressed images. Top right: SVD compressed image 
with a compression factor 8, Top left:  Compressed image with 

compression factor of 12, Bottom left: Compressed image with 

compression factor of 15, Bottom right: Compressed image with 
compressed factor of 20 

 

As shown above, the bitmap image having a file 

size of 768 KB, when compressed to JPEG format, has 

a file size of 99.5 KB. This image after being 

compressed using SVD technique has a file size of 

35.8 Kb for a compression factor of 8; for a 

compression factor of 12, it reduces to 32.8 KB, for a 

compression factor of 15, it comes down to 31.1 KB 

and finally for a compression factor of 20, the file size 

further reduces to 28.5 KB. Thus it can be noticed that 

as the compression factor is increased, the file size of 

the compressed image reduces. Also there is 

considerable degradation in the quality of the image as 

the compression factor is increased. Further an 

optimum value of compression factor should be chosen 

to provide a trade-off between the reduction in file size 

and quality of the image.  

 
 

 

 
 

 

IX. CONCLUSION 

Using SVD, further 25% compression is obtained 

in addition to 40% achieved by JPEG format [20]. 

Higher compression ratio is achieved due to additional 

compression; without compromising much on the 

quality of the image. Hence the image obtained is 

almost indistinguishable from the original image which 

uses only 35% of the original storage space.  
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