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Abstract—The problem of constructing one-sided exact 
statistical tolerance limits on the kth order statistic in a future 
sample of m observations from a distribution of log-location-
scale family on the basis of an observed sample from the same 
distribution is considered. The new technique proposed here 
emphasizes pivotal quantities relevant for obtaining tolerance 
factors and is applicable whenever the statistical problem is 
invariant under a group of transformations that acts 
transitively on the parameter space. The exact tolerance limits 
on order statistics associated with sampling from underlying 
distributions can be found easily and quickly making tables, 
simulation, Monte Carlo estimated percentiles, special 
computer programs, and approximation unnecessary. Finally, 
numerical examples are given, where the tolerance limits 
obtained by using the known methods are compared with the 
results obtained through the proposed novel technique, which 
is illustrated in terms of the extreme-value and two-parameter 
Weibull distributions. The aim of this technique is to develop 
and publish original scientific contributions and industrial 
applications dealing with the topics covered by Prognostics and 
Health Management (PHM) of complex systems. PHM is a set 
of means, approaches, methods and tools that allows 
monitoring and tracking the health state of a system in order to 
detect, diagnose and predict its failures. This information is 
then exploited to take appropriate decisions to increase the 
system's availability, reliability and security while reducing its 
maintenance costs. The proposed technique allows one to 
construct developments and results in the areas of condition 
monitoring, fault detection, fault diagnostics, fault prognostics 
and decision support. 

Keywords—future outcome, extreme-value distribution, 
two-parameter Weibull distribution, parametric uncertainty, 
Type II censored data, statistical tolerance limits, prognostics 
and health management of complex systems. 

I.  Introduction 
The logical purpose for a statistical tolerance limit 

(where the coverage value   is the percentage of the future 
process outcomes to be captured by the prediction, and the 
confidence level (1) is the proportion of the time we hope 
to capture that percentage ) is to predict future outcomes 
for some production process which is treated as process, say, 
with stochastic variation of a product lifetime. The 
applications of tolerance limits (intervals) are varied. They 
included clinical and industrial applications, including 

quality control, applications to environmental monitoring, to 
the assessment of agreement between two methods or 
devices, and applications in industrial hygiene. For example, 
such tolerance limits are required, when planning life tests, 
engineers may need to predict the number of failures that 
will occur by the end of the test or to predict the amount of 
time that it will take for a specified number of units to fail. 
Tolerance limits of the type mentioned above are considered 
in this paper, which presents a new technique for 
constructing exact statistical (lower and upper) tolerance 
limits on outcomes (for example, on order statistics) in 
future samples. Attention is restricted to the extreme-value 
and two-parameter Weibull distributions under parametric 
uncertainty (when both parameters are unknown). The 
technique used here emphasizes pivotal quantities relevant 
for obtaining tolerance factors and is applicable whenever 
the statistical problem is invariant under a group of 
transformations that acts transitively on the parameter space. 
It does not require the construction of any tables and is 
applicable whether the experimental data are complete or 
Type II censored. The exact tolerance limits on order 
statistics associated with sampling from underlying 
distributions can be found easily and quickly making tables, 
simulation, Monte Carlo estimated percentiles, special 
computer programs, and approximation unnecessary. The 
proposed technique is based on a probability transformation 
and pivotal quantity averaging. It does not in need to make 
any assumption concerning the statistical functional form for 
the tolerance limit, is conceptually simple and easy to use. 
The scientific literature does not contain an analytical 
methodology for constructing exact -content tolerance 
limits with expected (1)-confidence on future order 
statistics coming from an extreme-value or Weibull 
distribution. One reason is that the theoretical concept and 
computational complexity of the tolerance limits is 
significantly more difficult than that of the standard 
confidence and prediction limits. However, in the literature 
there are several known methods for constructing (1)-
prediction limits (in terms of this paper, tolerance limits with 
expected (1)-confidence) on future order statistics coming 
from the two-parameter Weibull distribution.  Therefore, 
finally, we give numerical examples, where the (1)-
prediction limits obtained by using the known methods are 
compared with the results obtained through the proposed 
analytical methodology, which is illustrated in terms of the 
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extreme-value and two-parameter Weibull distributions. 
Analytical formulas for the tolerance limits are available in 
the scientific literature for only simple cases, for example, 
for the upper or lower tolerance limit for a univariate normal 
population. Thus it becomes necessary to use new methods 
in order to derive exact statistical tolerance limits for many 
populations. The proposed, in this paper, technique of 
intelligent constructing exact statistical -content tolerance 
limits with expected (1)-confidence, which are obtained 
here in terms of the two-parameter Weibull and extreme-
value distributions, represents a novelty in the theory of 
statistical decisions. 

II.  Background 
 In this paper, two types of statistical tolerance limits are 

defined: i) -content tolerance limits with expected (1)-
confidence on future outcomes, ii) tolerance limits with 
expected (1)-confidence on future outcomes. To be 
specific, let  denote a proportion between 0 and 1. Then 
one-sided statistical -content tolerance limit with expected 
(1)-confidence is determined to capture a proportion  or 
more of the population, with a given expected confidence 
level 1. For example, an upper statistical -content 
tolerance limit with expected (1)-confidence on future 
outcomes from a univariate population is such that with the 
given expected confidence level 1, a specified proportion 
 or more of the population will fall below the limit. A lower 
statistical -content tolerance limit with expected (1)-
confidence satisfies similar conditions. An upper statistical 
tolerance limit with expected (1)-confidence is 
determined so that the expected proportion of the population 
failing below the limit is (1). A lower statistical tolerance 
limit with expected (1)-confidence satisfies similar 
conditions.  The statistical -content tolerance limit with 
expected (1)-confidence seems to be more useful than the 
statistical tolerance limit with expected (1)-confidence 
but is relatively difficult to construct.  

The logical purpose for a tolerance limit must be the 
prediction of future outcomes for some (say, stochastic) 
process. Tolerance (prediction) limits enjoy a fairly rich 
history in the scientific literature and have a very important 
role in engineering and manufacturing applications. Patel [1] 
provides a review (which was fairly comprehensive at the 
time of publication) of tolerance intervals (limits) for many 
distributions as well as a discussion of their relation with 
confidence intervals (limits) for percentiles. Dunsmore [2] 
and Guenther, Patil, and Uppuluri [3] both discuss 2-
parameter exponential tolerance intervals (limits) and the 
estimation procedure in greater detail. Engelhardt and Bain 
[4] discuss how to modify the formulas when dealing with 
Type II censored data. Guenther [5] and Hahn and Meeker 
[6] discuss how one-sided tolerance limits can be used to 
obtain approximate two-sided tolerance intervals by 
applying Bonferroni's inequality. In Nechval et al. [7-15], 
the exact statistical tolerance and prediction limits are 
discussed under parametric uncertainty of underlying 
models.  

In contrast to other statistical limits commonly used for 
statistical inference, the -content tolerance limits with 
expected (1)-confidence (especially for the order 
statistics) are used relatively rarely. One reason is that the 

theoretical concept and computational complexity of the -
content tolerance limits with expected (1)-confidence is 
significantly more difficult than that of the standard 
confidence and prediction limits. Thus it becomes necessary 
to use the innovative approaches which will allow one to 
construct tolerance limits on future order statistics for many 
populations.  

III.  Focus of the Paper  

A. Problem Statement 
The problem can be stated more formally as follows. Let 

X1  ...  Xr be the first r ordered observations of a random 
variable X from a sample of size n  from a distribution with 
a probability density function ( )f x

(distribution function 

( ),F x  
survival function ( ) 1 ( ))F x F x   and S be any 

statistic (say, sufficient statistic or maximum likelihood 
estimator) obtained from the experimental random sample 
X1  ...  Xr, and let a random variable Y (in a future random 
sample Y1, …, Ym) has the same distribution with the 
probability density function ( )f y

(distribution function 

( ),F y
 survival function ( ) 1 ( )),F y F y   where a 

parameter  (in general, vector) is common to both 
distributions and it is assumed that some or all numerical 
values of components of the parametric vector  are 
unspecified.  

On the basis of the experimental random sample X1  ... 
 Xr we wish to make a prediction about a future outcome of 
Yk (kth order statistic, 1  k  m, in a future random sample 
of m ordered observations Y1 … Ym), usually in the form 
of one-sided statistical tolerance limits on future outcomes 
of Yk (lower -content tolerance limit Lk with expected 
(1)-confidence and upper -content tolerance limit Uk 
with expected (1)-confidence). That is, if Lk and Uk are 
functions of S, then Lk  Lk (S) is a lower statistical -content 
tolerance limit with expected (1)-confidence on future 
outcomes of the kth order statistic Yk if   

( )

Pr ( )
k

k k

L S

E g y dy  
   

   
   

  

  Pr ( ( )) 1 ,kE G L S            (1) 

and Uk  Uk (S) is an upper statistical -content tolerance 
limit with expected (1)-confidence  on future outcomes of 
the kth order statistic Yk if  

     ( )

0

Pr ( )
kU S

k kE g y dy  
   

   
   

  

    

  Pr ( ( )) 1 ,kE G U S         (2) 

where 

11
( ) [ ( )] [1 ( ) ( )

( , 1)
k m k

k k k kg y F y F y f y
k m k   

  
    

(3) 

       is the probability density function of the kth order statistic 
Yk, 
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1
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k m k d

k m k



    
  

 
(4) 

is the probability distribution function of the kth order 
statistic Yk. It can be shown that  

   

( )
( ).k

k
k

dG y
g y

dy




 
(5) 

Further, ( )k kL L S  is a lower statistical tolerance limit with 

expected (1)-confidence on future outcomes of the kth 
order statistic Yk from a set of m future ordered observations 
Y1…Ym if it satisfies  

  
( )

Pr ( ) ( )
k

k k k k

L S

E Y L S E g y dy  

  
   

  
  

   

 ( ( )) 1 .kE G L S    

 

(6) 

( )k kU U S  is an upper statistical tolerance limit with 

expected (1)-confidence on future outcomes of the kth 
order statistic Yk from a set of m future ordered observations 
Y1…Ym if it satisfies  

  
( )

0

Pr ( ) ( )
kU S

k k k kE Y U S E g y dy  

  
   

  
  

    

 ( ( )) 1 .kE G U S      (7) 

In this paper, a new technique for intelligent constructing the 
statistical -content tolerance limits with expected (1)-
confidence as well as the statistical tolerance limits with 
expected (1)-confidence on order statistics in future 
samples is proposed. For illustration, the extreme-value and 
Weibull distributions are considered. 

B. Extreme-Value Distribution 
This distribution is used in many research fields 

including, among others, life testing and water resource 
management. This is the so-called first asymptotic 
distribution of extreme values, hereafter referred to simply 
as the extreme-value distribution. The distribution is 
extensively used in a number of areas as a lifetime 
distribution and sometimes referred to as the Gumbel 
distribution, after E. J. Gumbel, who had pioneered its use 
(Gumbel [16]). 

Let X1  ...  Xr be the first r ordered observations of a 
random variable X  from a sample of size n from an 
extreme-value distribution with the pdf (probability density 
function), 

1 1

2 2 2

1
( ) exp exp exp  ,

x x
f x

 

  

     
     

     
 

  

 < ,x  

 

(8) 

and cdf (cumulative distribution function), 

1

2

( ) 1 exp exp  ,    < ,
x

F x x





  
       

     

(9) 

indexed by location and scale parameters 1   and 2 ,  where 

1 2( , ).   It is assumed that the parameters 

1 1 (  )       and 2 0   are unknown.  

In Type II censoring, which is of primary interest here, 
the number of survivors are fixed and Xr is a random 

variable. The MLE’s 1 and 2 of the parameters 1 and 2 ,  
respectively, are solutions of

 

  

2

1
1

1 2 2

ln exp ( )exp ,
r

i r

i

x x
r n r




 





     
        

      


 

(10) 

2
1 2 2

exp ( ) exp
r

i r
i r

i

x x
x n r x

 

    
      
     
  

 

1

1 12 2

1
exp ( )exp .

r r
i r

i
i i

x x
n r x
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(11) 

In terms of the extreme-value distribution variates, we have 
that 

1 1
1

2

,W
 




    2

2
2

,W



    1 1

3

2

W
 






   
(12) 

are pivotal quantities. The probability density functions of 
the pivotal quantities do not depend on the parameters. It 
can be shown that the joint pdf of the pivotal quantities  

     

1 1
1

2

,W
 




    2

2
2

,W





    
(13) 

conditional on fixed 

   S(r) = (Si, …, Sr), (14) 

where 

  

1

2

,    1,  ...,  ,i
i

X
S i r






 

 
(15) 

are ancillary statistics, any r2 of which form a functionally 

independent set, 1  and 2 are the maximum likelihood 

estimates for 1 and 2 , respectively, based on the first r 

ordered observations (X1 ... Xr) from a sample of size n 
from the extreme-value distribution (8), which can be found 
from solution of (10) and (11), is given by 

1
( )

1 2 2 2
1

( )
( , | ) exp( ) ( )exp( )

( )

rw r r
r

n i r
i

e
f w w s w n r s w

r 

  
       

s  
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1
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1

exp exp( ) ( )exp( )
r

w
i r

i

e s w n r s w
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2 2( )
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1
exp( )

( )
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2 2
1
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i r
i

s w n r s w




 
       
  

( ) ( )
1 2 2( | , ) ( | ),r r

n nf w w f w s s  

    1 ( , ),w     2 (0, ),w      (16) 

where 

1
( )

1 2 2 2
1

( )
( | , ) exp( ) ( )exp( )

( )

rw r r
r

n i r
i

e
f w w s w n r s w

r 

 
     

s  

1
2 2

1

exp exp( ) ( )exp( )
r

w
i r

i

e s w n r s w


  
     

  
 , 

    1 ( , ).w     (17) 
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2 2 2( )

1

1
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( )

r
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n ir
i
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 s
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2 2
1
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i r
i
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2 (0, ),w    (18) 
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10
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1
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i r
i
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(19) 

is the normalizing constant. If a pivotal quantity is given by 

   

1
2 2

1

exp( ) ( )exp( ) ,
r

W
i r

i

W e S W n r S W


 
   

 


 
(20)

 

it follows from (17) that 

11
~ ( ) exp( ),

( )
r

rW g w w w
r

 


   w(0, ).      (21) 

C. Two-Parameter Weibull 
Distribution 
The two-parameter Weibull distribution is one of the 

most widely used life distributions in reliability analysis. 
This distribution is very flexible, and can, through an 
appropriate choice of parameters, model many types of 
failure rate behaviors. It has wide applications in diverse 
disciplines.  

Let 1 ... rX X  be the first r ordered observations of a 
random variable X from a sample of size n from a two-
parameter Weibull distribution with the pdf, 

1

( ) exp  ,   0,   0,   0,
x x

f x x
 




 

  

     
        

       

(22) 

and cdf, 

( ) 1 exp  ,   0,   0,   0,
x

F x x


  


  
       

         

(23) 

indexed by scale and shape parameters  and , where 
( , ).    It is assumed that the parameters  and   are 

unknown. This distribution is directly related to the extreme-
value distribution by the easily shown fact that if X  has a 
Weibull distribution (22), then  X = ln X has an extreme-

value distribution with 1 ln   and 1
2 .    In analyzing 

data it is often convenient to work with log times, the 
extreme-value distribution arises when lifetimes are taken to 
be Weibull distributed. The MLE’s of the Weibull 

parameters  and  are 1exp  and 1
2 .    If desired, 

the maximum likelihood equations (10) and (11) can be 
written in Weibull form and solved directly from the start. 
The equations are   

 

1/

1

1

( ) ,
r

i r
i

r x n r x


  



  
    

  


 

(24) 

 

1

1

1
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i i r r
i
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i i

x x n r x x

x n r x x
r

 

 









 

  
   

  
 
 

     
   



   

(25) 

In terms of the Weibull variates, we have that 

1 ,V







 
  
 

   2 ,V



    3V







 
  
    

(26) 

are pivotal quantities. The probability density functions of 
the pivotal quantities do not depend on the parameters. It 
can be shown that the joint pdf of the pivotal quantities  
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conditional on fixed 

    Z(r) = (Zi, …, Zr), (28) 

where 

    
,    1,  ...,  ,i

i

X
Z i r





 
  
    

(29) 

are ancillary statistics, any r2 of which form a functionally 
independent set,   and  are the maximum likelihood 

estimates for  and , respectively, based on the first r 
ordered observations 1 ... rX X   from a sample of size n 
from the two-parameter Weibull distribution (22), which can 
be found from solution of (24) and (25), is given by 
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(33) 

is the normalizing constant. If a pivotal quantity is given by 

  

2 2
1

1
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r

V V
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i

V V Z n r Z


 
   

 


 
(34)

 

it follows from (31) that 

   

11
~ ( ) exp( ),

( )
r

rV g v v v
r

 


 (0, ).v   (35) 

IV. Constructing Statistical -
Content Tolerance Limits with 

Expected (1)-Confidence 

A. Constructing Lower Statistical -
Content Tolerance Limit with 
Expected (1)-Confidence 
Theorem 1. Let X1  ...  Xr be the first r ordered 

observations of a random variable ( ln )X X  from a 
sample of size n from an extreme-value distribution defined 
by the probability density function (8). Then a lower 
statistical -content tolerance limit with expected (1)-
confidence, Lk   Lk (S), on future outcomes of the kth order 
statistic ( ln )k kY Y from a set of m future ordered 

observations Y1 … Ym also from the distribution (8), which 
satisfies (1) is given by 

       1 2 ln ln ,
kk L kL L    

 
(36) 

where 
kL is a tolerance factor determined by 
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(37) 

the maximum likelihood estimates 1 and 2  of the 

parameters 1   and 2   are determined from (10) and (11), 
respectively; the ancillary statistics Si, i=1, …, r, are given 
by (15); 1q   is a quantile of the beta distribution satisfying 

1

1

0

1
(1 ) 1 .

( , 1)

q

k m k d
k m k



   


   
  

    
(38) 

Proof. It follows from (3) and (4) that 
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Using pivotal quantity averaging, it follows from (1) and 
(39) that  
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It follows from (40) that 
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(41)

 

Assuming that  

   

1
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exp ,
k

k
L
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(42) 

we have (36). This completes the proof. 

Theorem 2. Let 1 ... rX X  be the first r ordered 

observations of a random variable ( exp )X X  from a 
sample of size n from a two-parameter Weibull distribution 
defined by the probability density function (22). Then a 
lower statistical -content tolerance limit with expected 
(1)-confidence, ( ),k kL L S  on future outcomes of the 

kth order statistic ( exp )k kY Y from a set of m future ordered 

observations 1 ... mY Y  also from the distribution (22), 
which satisfies (1) is given by  

  
1 exp ,

kk L kLL   
 

(43) 

where 
kL is a tolerance factor determined by 
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(44) 

the maximum likelihood estimates  and   of the 

parameters  and  are determined from (24) and (25), 
respectively; the ancillary statistics Zi, i=1, …, r, are given 
by (29); 1q   is a quantile of the beta distribution satisfying 

(38). 

Proof. The proof is similar to that of Theorem 1 and so it 
is omitted here. 
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Inference 1 (for the tolerance factors 
kL and ).

kL  It 

follows from (42) and (43) that 

21/

1

1 2

exp
exp .

expk k

k k k
L L

L L L



 

  

    
      
       

(45) 

B. Constructing Upper Statistical -
Content Tolerance Limit with 
Expected (1-)-Confidence 
Theorem 3. Let X1  ...  Xr be the first r ordered 

observations of a random variable ( ln )X X  from a 
sample of size n from an extreme-value distribution defined 
by the probability density function (8). Then an upper 
statistical -content tolerance limit with (1)-confidence, 
Uk  Uk (S), on future outcomes of the kth order 
statistic ( ln )k kY Y  from a set of m future ordered 

observations Y1  …  Ym also from the distribution (8), 
which satisfies (2) is given by 

  1 2 ln ln ,
kk U kU U    

 
(46) 

where 
kU is a tolerance factor determined by 
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(47) 

the maximum likelihood estimates 1 and 2  of the 

parameters 1   and 2   are determined from (10) and (11), 
respectively; the ancillary statistics Si, i=1, …, r, are given 
by (15); q  is a quantile of the beta distribution satisfying 

(38). 

Proof. The upper statistical -content tolerance limit with 
expected (1)-confidence, Uk Uk (S), is obtained from a 
lower statistical -content tolerance limit with expected 
(1)-confidence, Lk Lk (S), by replacing   by 1, and 
1  by . This completes the proof. 

Theorem 4. Let 1 ... rX X  be the first r ordered 

observations of a random variable ( exp )X X  from a 
sample of size n from a two-parameter Weibull distribution 
defined by the probability density function (22). Then an 
upper statistical -content tolerance limit with (1)-
confidence, ( ),k kU U S  on future outcomes of the kth 

order statistic ( exp )k kY Y  from a set of m future ordered 

observations 1 ... mY Y  also from the distribution (22), 
which satisfies (2) is given by 

     
1 exp ,

kk U kU U  
 

(48) 

where 
kU is a tolerance factor determined by 
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(49) 

Proof. The upper statistical -content tolerance limit with 
expected (1)-confidence, ( ),k kU U S  is obtained from a 

lower statistical -content tolerance limit with expected 
(1)-confidence, ( ),k kL L S by replacing   by 1, and 

1  by . This completes the proof. 

Inference 2 (for the tolerance factors 
kU and ).

kU   It 

follows from (46) and (48) that  

21/

1
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exp
exp .
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(50) 

V. Constructing Statistical 
Tolerance Limits with Expected 

(1)-Confidence 

A. Constructing Lower Statistical 
Tolerance Limit with Expected 
(1)-Confidence 
Theorem 5. Let X1  ...  Xr be the first r ordered 

observations of a random variable ( ln )X X  from a 
sample of size n from an extreme-value distribution defined 
by the probability density function (8). Then a lower 
statistical tolerance limit with expected (1)-confidence, 

( ),k kL L S  on future outcomes of the kth order statistic 

( ln )k kY Y from a set of m future ordered observations 

Y1 …  Ym also from the distribution (8), which satisfies (6) 
is given by 

1 2 ln ln ,
k

k kL
L L    

 
(51) 

where 
kL

 is a tolerance factor determined by 
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(52)

 
Proof. It follows from (3) and (4) that 
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Using pivotal quantity averaging, it follows from (6) and 
(53) that  
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It follows from (54) that 
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(55) 

Assuming that  
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exp ,
k

k

L
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(56) 

we have (51). This completes the proof. 
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Theorem 6. Let 1 ... rX X  be the first r ordered 

observations of a random variable ( exp )X X from a 
sample of size n from a two-parameter Weibull distribution 
defined by the probability density function (22). Then a 
lower statistical tolerance limit with expected (1)-
confidence, ( ),k kL L S  on future outcomes of the kth order 

statistic ( exp )k kY Y  from a set of m future ordered 

observations 1 ... mY Y  also from the distribution (22), 
which satisfies (6) is given by 

 
1 exp ,
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where 
kL

 is a tolerance factor determined by 
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(58)

 

Proof. The proof is similar to that of Theorem 5 and so it 
is omitted here. 

Inference 3 (for the tolerance factors 
kL

 and ).
kL

  It 

follows from (56) and (57) that 
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(59) 

B. Constructing Upper Statistical 
Tolerance Limit with Expected (1-
)-Confidence 
Theorem 7. Let X1  …  Xr be the first r ordered 

observations of a random variable ( ln )X X from a sample 
of size n from an extreme-value distribution defined by the 
probability density function (8). Then an upper statistical 
tolerance limit with expected (1)-confidence, 

( ),k kU U S  on future outcomes of the kth order statistic 

( ln )k kY Y from a set of m future ordered observations 

Y1 …  Ym also from the distribution (8), which satisfies (7) 
is given by 

 
1 2 ln ln ,
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(60) 

where 
kU

 is a tolerance factor determined by 
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(61)

 Proof. The upper statistical tolerance limit with expected 
(1)-confidence, ( ),k kU U S  is obtained from a lower 

statistical tolerance limit with expected (1)-confidence, 
( ),k kL L S  by replacing 1 by . This completes the 

proof. 

Theorem 8. Let 1 ... rX X  be the first r ordered 

observations of a random variable ( exp )X X  from a 
sample of size n from a two-parameter Weibull distribution 
defined by the probability density function (22). Then an 
upper statistical tolerance limit with expected (1)-
confidence, ( ),k kU U S  on future outcomes of the kth 

order statistic ( exp )k kY Y  from a set of m future ordered 

observations 1 ... mY Y  also from the distribution (22), 
which satisfies (7) is given by 

1 exp ,
k

k kU
U U  

                        
(62) 

where 
kU

 is a tolerance factor determined by 
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(63)

 

Proof. The upper statistical tolerance limit with expected 
(1)-confidence, ( ),k kU U S  is obtained from a lower 

statistical tolerance limit with expected (1)-confidence, 
( ),k kL L S  by replacing 1 by . This completes the 

proof. 

Inference 4 (for the tolerance factors 
kU

 and ).
kU

   It 

follows from (60) and (62) that 

21/

1

1 2

exp
exp .

expk k

k k k

U U

U U U



 

  

    
      
         

(64) 



 

19 
 

Proc. of the Ninth Intl. Conf. on Advances in  Computing, Communication and Information Technology - CCIT 2019 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN No. 978-1-63248-181-8 DOI : 10.15224/978-1-63248-181-8-03 
 

VI. Numerical Examples 

A. Numerical Example 1 
For the Weibull case, Lawless [17] discusses an example 

with 10 items, which are put on test simultaneously; the life 
test is terminated at the time of the fifth failure, whence 
n=10, r=5, in our notation here; 1 50.5X  hours, 

2 71.3,X  3 84.6,X  4 98.7,X  5 103.8;X  the maximum 

likelihood estimates of  and  are, respectively, 
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(66) 

Based on these data, a lower 90% prediction limit (in terms 
of this paper, a lower statistical tolerance limit with expected 
(1)-confidence, where =0.1) is to be constructed for the 
minimum of 40 independently, identically distributed 
lifetimes. Lawless [17] reports a conditional lower 90% 
prediction limit of 8.8 hours for this example. Based on a 
simulation of 50 000 samples, the lower prediction limit 
obtained by Mee and Kushary [18] is 8.73 hours. 

Lower statistical tolerance limit with expected (1)-
confidence. Taking 1 = 0.9 and k=1, with n=10, r=5 and 
m=40, we have from (57) that the lower statistical tolerance 
limit with expected (1)-confidence, ( ),k kL L S  on the 

minimum  Y1 of independent lifetimes in a group of m=40 

components which are to be put into service, is given by  

 1
1 2exp exp ln 8.7941146,

k k
k kL L

L L         (67) 

where, as it follows from (58) and (59), the tolerance factor 

kL
 is given by 
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5.1052 ./10
kL

 

                          

(68) 

Statistical inference 1. It is easy to see that the 
conditional lower 90% prediction limit of 8.8 hours of 
Lawless [17] on the minimum  Y1 of independent lifetimes 

in a group of m=40 components, which are to be put into 
service, and the lower statistical tolerance limit of 
8.7941146 hours with expected 0.9-confidence, which is 

obtained in this paper by using the proposed technique, are 
practically the same. 

Lower statistical -content tolerance limit with 
expected (1)-confidence. In the above case (if =0.9), it 
follows from (43) that the lower statistical -content 
tolerance limit with expected (1)-confidence, ( ),k kL L S  

on the minimum  Y1 of independent lifetimes in a group of 

m=40 components which are to be put into service, is given 
by 

 1
1 2exp exp ln 3.7,

k kk L k LL L        
     

(69) 

where, as it follows from (44) and (45), the tolerance factor 

kL is given by 
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75.5451/10 ,
kL 

                        
(70)

 

1 0.002631q   is a quantile of the beta distribution 

satisfying (38). 

Statistical inference 2. Thus, the manufacturer has 90% 
assurance that no failures will occur in the proportion =0.9 
or more of the population of m=40 components, which are to 
be put into service, before 3.7kL  hours.  

Others have computed approximate 90% prediction 
limits for a single future lifetime for this example. Fertig, 
Meyer and Mann [19] computed a lower prediction limit of 
56.98 hours, using best linear invariant estimators and a 
Monte Carlo estimated percentile. Engelhardt and Bain [20] 
proposed two approximations; for this example they 
obtained 56.8 (via a procedure requiring iterative solution of 
a nonlinear equation) and 59.1 (via a simpler approximation). 
Based on a simulation of 50 000 samples, the 90 % lower 
prediction limit obtained by Mee and Kushary [18] for a 
single future observation is 56.6 hours. 

Lower statistical tolerance limit with expected (1)-
confidence. Taking 1 = 0.9 and k=m=1, with n=10 and 
r=5, we have from (57) that the lower statistical tolerance 
limit with expected (1)-confidence, ( ),k kL L S  on a 
single future observation is given by 

 1
1 2exp exp ln 56.641,

k k
k kL L

L L        
  

(71) 

where, as it follows from (58) and (59), the tolerance factor 

kL
 is given by 
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Statistical inference 3. Based on a simulation of 50 000 
samples, the 90 % lower prediction limit obtained by Mee 
and Kushary [18] for a single future lifetime is 56.6 hours, 
which is slightly smaller than 56.641 hours (see (71)). 
Engelhardt and Bain [20] proposed the first approximate 
lower prediction limit of 56.8 hours and Fertig, Meyer and 
Mann [19] computed the lower prediction limit of 56.98 
hours for a single future lifetime, which are slightly larger 
than 56.641 hours (see (71)). The second approximate lower 
prediction limit of 59.1 hours proposed by Engelhardt and 
Bain [20] for a single future lifetime is larger than 56.641 
hours (see (71)).   

B. Numerical Example 2 
Consider the following results given by Lieblein and 

Zelen [21] of test of endurance, in millions of revolutions, of 
n=23 ball bearings: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 
48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 
The maximum likelihood estimates of  and  are, 
respectively, 
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(74) 

Numerous authors have used these data as illustrative of a 
sample from a two-parameter Weibull distribution. Using 
20000 simulated samples of size n=23, Mee and Kushary 
[18] obtained a 90% lower prediction limit for the fifth 
failure out one hundred ball bearings equal to 10.11 million 
of revolutions, which is slightly smaller than the two 
approximate prediction limits 10.27 and 10.59 reported by 
Engelhardt and Bain [20].   

Lower statistical tolerance limit with expected (1)-
confidence. Taking 1 = 0.9 and k=5, with r=n=23 and 
m=100, we have from (57) that the lower statistical tolerance 
limit with expected (1)-confidence, ( ),k kL L S  for a 
fifth failure out one hundred ball bearings is given by  

 1
1 2exp exp ln 10.35206,

k k
k kL L

L L        
  

(75) 

where, as it follows from (58) and (59), the tolerance factor 

kL
 is given by 
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0.0129452.
kL

 

                         

(76) 

Statistical inference 4. Thus, it follows from (75) that 
the lower statistical tolerance limit with expected confidence 

of 0.9 ( 10.35206kL   million of revolutions) is between the 
two approximate prediction limits 10.27 and 10.59 reported 
by Engelhardt and Bain [20]. 

Lower statistical tolerance limit with expected (1)-
confidence. Taking 1 = 0.9 and k=1, with r=n=23 and 
m=100, we have from (57) that the lower statistical tolerance 
limit with expected (1)-confidence, ( ),k kL L S  for a first 
failure out one hundred ball bearings, is given by  

 1
1 2exp exp ln 2.083,

k k
k kL L

L L        
   

(77) 

where, as it follows from (58) and (59), the tolerance factor 

kL
 is given by 
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0.00044503.
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(78) 

Statistical inference 5. Lawless [17] obtained for this 
example (via conditional approach in terms of a extreme-
value (Gumbel) distribution) the lower 90% prediction limit 
of 2.08 million of revolutions for a first failure out one 
hundred ball bearings, which is slightly smaller than 2.083 
(see (77)). 

C. Numerical Example 3 
 Consider the data in an example discussed by Mann and 

Saunders [22]. They regard the data coming from the 
Weibull distribution as the results of full scale fatigue tests 
on a particular type of component. The data are for a 
complete sample of size n=3, with observations 

45.952,X 1 54.143,X 2 and 65.440,X 3 results being 
expressed here in number of thousands of cycles. On the 
basis of these data it is wished to obtain the lower statistical 
tolerance limit with expected (1)-confidence for the 
minimum  Y1 of independent lifetimes in a group of m=500 

components which are to be put into service. 

Lower statistical tolerance limit with expected (1) 
confidence. The maximum likelihood estimates of the 
unknown parameters  and , computed on the basis of 

,( , ,)X X X1 2 3  are 7.726  and 58.706,   respectively. 

Taking 1 = 0.8 and k=1, with r=n=3 and m=500, we have 
from (57) that the lower statistical tolerance limit with 
expected (1)-confidence, ( ),k kL L S  on the 

minimum  Y1 of independent lifetimes in a group of m=500 

components which are to be put into service, is given by 

 1
1 2exp exp ln 5.527411,

k k
k kL L

L L        
 
(79) 

where, as it follows from (58) and (59), the tolerance factor 

kL
 is given by  
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(80) 

Statistical inference 6. Lawless [17] obtained for this 
example (via conditional approach in terms of the extreme-
value (Gumbel) distribution) the lower 80% prediction limit 
of 5.623, which is slightly larger than 5.527411(see (79)). 
The resulting lower 80% prediction limit of Mee and 
Kushary [18] for this example (obtained via simulation of 
100 000 samples) was 5.225, which is slightly smaller than 
5.527411(see (79)). The Mann and Saunders [22] result for 
this example was only 0.766. All results are expressed here 
in the number of thousands of cycles.  

Lower statistical -content tolerance limit with 
expected (1)-confidence. Taking =0.8, 1 = 0.8 and 
k=1, with r=n=3 and m=500, we have from (43) that a lower 
statistical -content tolerance limit with expected (1)-
confidence, ( ),k kL L S  on the minimum  Y1 of 

independent lifetimes in a group of m=500 components 
which are to be put into service, is 

 
 1

1 2exp exp ln ,4.082282
k kk L k LL L        

 
(81) 

where, as it follows from (44) and (45), the tolerance factor 

kL is given by  
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z  

91.135 /10 ,                               (82) 

1q 
 is a quantile of the beta distribution satisfying (38). 

Statistical inference 7. Thus, the manufacturer has 80% 
assurance that no failures will occur in the proportion =0.8 
or more of the population of m=500 components, which are 
to be put into service, before 4.082282kL   thousands of 
cycles.   

VII. New Technique of Invariant 
Statistical Embedding and Pivotal 
Quantity Averaging to Construct 

Effective Statistical Decisions 
under Parametric Uncertainty 
Analytical formulas for the tolerance limits are available 

in the scientific literature for only simple cases, for example, 
for the upper or lower tolerance limit for a univariate normal 
population. Thus it becomes necessary to use new methods 

in order to derive exact statistical tolerance limits for many 
populations. The proposed, in this paper, technique of 
Invariant Statistical Embedding and Pivotal Quantity 
Averaging (ISE & PQA) for constructing exact tolerance 
limits to predict future outcomes coming from log-location-
scale distributions under parametric uncertainty represents a 
novelty in the theory of statistical decisions. This simple and 
computationally attractive statistical method is based on the 
constructive use of the invariance principle in mathematical 
statistics. It allows one to improve the decision-making 
process under parametric uncertainty by removing unknown 
parameters from the problem and using the past data as 
completely as possible. The technique of ISE & PQA 
includes the following 3 steps:  

Step 1. Invariant embedding of a sample statistic in the 
decision criterion to construct a pivotal quantity (or simply a 
pivot) to isolate the unknown parameter (where the 
pivot's probability distribution does not depend on the 
unknown parameter);  

Step 2. The decision criterion is averaged over the 
pivotal quantities to exclude the unknown parameters from 
the problem;    

Step 3. When the unknown parameters are excluded 
from the decision criterion, then it can be found an effective 
statistical decision rule. 

A. Numerical Example 4 
Consider, for example, the problem of estimating a 

quantile u of an exponential distribution on the basis of a 
random sample X1, …, Xn of size n  2. The exponential 
distribution is often used for length of life data. The 
exponential probability density function (pdf) is given by 

1
( ) exp ,    0,    0.

x
f x x 

 

 
    

 
 

(83) 

The cumulative distribution function (cdf) is given by  

( ) 1 exp ,    0,    0.
x

F x x 


 
     

 
 

(   84) 

Quantile estimation, particularly for the exponential 
distribution, is important in reliability theory, life testing, 
and so on. Also, in statistical decision theory it is of interest 
to find out if the best equivariant estimator or the maximum 
likelihood estimator of quantile is admissible. 

Thus, the problem is to estimate the  pth  quantile u=  
of the exponential distribution, where 0 <  =  ln(1p); 0 < 
p < 1. The loss function is taken as 

  
 

2
( , ) ( ) ,L d F d p  

 
(85) 

where d is an estimator (decision rule) for estimating the 
quantile u. We evaluate the performance of an estimator for 
quantile with the help of the risk function (decision 
criterion). 

 
 ( , ) ( , ) .R d E L d 

     
(86) 

Assuming that the parameter  is unknown, we find the 
maximum likelihood estimator (MLE) of   given by 

 1

.
n

i
i

X n



 

(87) 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Parameter
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It is known that 

1~ ( ) exp ,    0,    0,
( )

n
n

n

n n
s

n


    




 

    
  

 

(88) 

where   

     

V     (89) 
represents a pivotal quantity with the probability density 
function 

     

 1( ) exp ,    0.
( )

n
nn

v v nv v
n

   


 

(90) 

To solve the above problem, the technique of invariant 
statistical embedding and pivotal quantity averaging, 
proposed in this paper, can be used. 

Using the technique of ISE & PQA, we have the 
following:  

Step 1. Invariant embedding of MLE   in the decision 
criterion to construct the pivotal quantity V: 

    2
( , ) ( , ) ( )R d E L d E F d p       

2 2

1 exp 1 exp
d d

E p E p 
 

            
                

            

 

2 2
(1 ) 2(1 )exp exp

d d
E p p

 

    
          

    
 

2 2
(1 ) 2(1 )exp exp

d d
E p p

 

  

     
          

     

 

    2(1 ) 2(1 )exp exp 2 ,E p p V V       
   

(91) 

where 

    

.d    (92) 

 Step  2. Averaging of decision criterion over the pivotal 
quantity V: 

    2( , ) (1 ) 2(1 )exp exp 2R d E p p V V          

   2

0

(1 ) 2(1 )exp exp 2 ( )p p v v v dv  
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(93) 

Step 3. Process of finding the optimal statistical 
decision rule:  

If p=0.8, n=2 and 10,    it can be shown that   

argmin ( , )R d    

2 1
arg min (1 ) 2(1 )

(1 / )n
p p

n


   


 

1

(1 2 / )
4.89598,

nn


 

 
                    

(94) 

The optimal estimator (statistical decision rule) d for 
estimating the quantile u is given by 

4.89598 10 48.9598,d                   (95) 

and the risk function is equal to 

 ( , ) ( , ) 0.035121.R d E L d  
            

(96) 

For comparison, the maximum likelihood estimator 

MLd for estimating the quantile u is given by  

ML ln(1 )d p     

1.609438 10 =16.09438, 
                    

(97)  

and the risk function is equal to 

 ML ML( , ) ( , ) 0.064049.R d E L d  
          

(98) 

The index of improvement percentage of accuracy in 
estimating the quantile u by d as compared with accuracy of 
estimating the quantile u by MLd is given by 

ML
imp.per. ML

ML

( , ) ( , )
( , ) 100%

( , )

R d R d
I d d

R d

 




  

0.064049 0.035121
45.16531%.

0.06404
1

9
00% 



       

(99) 

B. Characterization of Uniformly Non-
Dominated Statistical Decision 
Rules 
A decision rule d is said to be uniformly non-dominated 

if there is no decision rule uniformly better than d. The 
conditions that a decision rule must satisfy in order that it 
might be uniformly non-dominated are given by the 
following theorem. 

Theorem 9 (Uniformly non-dominated decision rule). 
Let ( ( ); 1,2,...)     be a sequence of the prior 

distributions on the parameter space  . Suppose that 

( ; 1,2,...)d   and ( ( ( ), ); 1,2,...)R d     are the 

sequences of Bayes decision rules and posterior risks, 
respectively. If there exists a statistical decision rule d such 
that its risk function ( , ),  ,R d    satisfies the 

relationship 

 
lim[ ( ( ), ) ( ( ), )] 0,R d R d  


    

 
 

          
(100) 

where a posterior risk (obtained through the posterior pdf 
( )  of   is given by 

  

( ( ), ) ( , ) ( ) ,R d R d d       



 
 

(101) 
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then d is a uniformly non-dominated decision rule. 
Proof. Suppose d is uniformly dominated. Then there 

exists a decision rule d   such that ( , ) ( , )R d R d    for all 

.   Let 

inf[ ( , ) ( , )] 0.R d R d


   


  

              
(102) 

Then 

( ( ), ) ( ( ), ) .R d R d        
            

( 103) 

Simultaneously, 

( ( ), ) ( ( ), ) 0,R d R d        
             

(104) 

1,2,  ...,   and 

 
lim[ ( ( ), ) ( ( ), )] 0.R d R d  


     

 
 

        
(105) 

On the other hand,  

( ( ), ) ( ( ), )R d R d         

[ ( ( ), ) ( ( ), )]R d R d       
 

[ ( ( ), ) ( ( ), )]R d R d       
 

[ ( , ) ( , )]R d R d       
                

(106) 

and 

 
lim[ ( , ) ( , )] 0.R d R d  


   

 
 

             
(107) 

This contradiction proves that d is a uniformly non-
dominated decision rule. 

C. Bayes Estimator of the pth Quantile 
Let X1,…,Xn be identically and independently distributed 

random variables taken from one-parameter exponential 
distribution (83). The likelihood function is given by  

 
1

1

exp /
(  ,...,  | )

n
i

n
i

X
L X X







  

 exp /
,

n

S 






                          

(108) 

where 

1

.
n

i
i

S X



                              

(109) 

Considering the inverted gamma prior, the prior pdf  
(probability density function) of   is given by 

, 1

exp( / )
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where  
1

a b


 

                               

(111) 

and 
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The joint pdf of X1, …, Xn  and   is given by 

, 1 1

exp( [ ] / )
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b
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(113) 

The marginal pdf of X1, …, Xn  is given by 

, 1 , 1
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Now the posterior pdf of  is given by 
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It follows from (115) that 
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Thus, it can be shown that  

, 1

0

( , ) ( | ,  ...,  )a b nR d f x x d  
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It follows from (118) that 
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It follows from (119) and (120) that 
argmin ( , )R d      
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It follows from (122) and (123) that 

 
lim ( , ) ( , ) 0.R d R d  


  

 
   

              
(124) 

Statistical inference 8. Thus, the optimal estimator 
(decision rule) d for estimating the quantile u, obtained 
through the proposed, in this paper, novel technique of 
invariant statistical embedding and pivotal quantity 
averaging (ISE & PQA)), is uniformly non-dominated. 

VIII. Future Research Directions 
Predictive inferences (via tolerance limits) for future 

outcomes on the basis of the past and present knowledge 
represent a fundamental problem of statistics, arising in 
many contexts and producing varied solutions. In this paper, 
new-sample prediction (via tolerance limits) based on a 

previous sample is considered (i.e., when for predicting the 
future outcomes in a new sample there are available the 
observed data only from a previous sample). It is interesting 
to consider within-sample prediction (via tolerance limits) 
based on the early data from a current experiment (i.e., when 
for predicting the future outcomes in a sample there are 
available the early data only from that sample), and new-
within-sample prediction (via tolerance limits) based on 
both the early data from that sample and the data from a 
previous sample (i.e., when for predicting the future 
outcomes in a new sample there are available both the early 
data from that sample and the data from a previous sample), 
where it is assumed that only the functional form of the 
underlying distributions is specified, but some or all of its 
parameters are unspecified.  

A. Applications of Exact Statistical 
Tolerance Limits to Predict Future 
Random Quantities for Prognostics 
and Health Management of Complex 
Systems 
Prognostics and Health Management (PHM) is a set of 

means, approaches, methods and tools that allows 
monitoring and tracking the health state of a system in order 
to detect, diagnose and predict its failures. Topics of interest 
include, but are not limited to: 

(1)  Prognostics and Health Management in Cyber-
Physical Systems; (2) Fault detection, diagnostics and 
prognostics (data-driven, model-based and hybrid methods); 
(3) Remaining Useful Life (RUL) computation and 
prediction; (4) Post-diagnostics and post-prognostics 
decision; (5)  Condition monitoring and sensors placement 
and optimization; (6) Feature extraction and selection, 
Health Indicators construction; (7) Modelling and simulation 
of interdependent failure mechanisms; (8) Advanced 
computation and simulation methods; (9) Industrial 
applications. 

Prognostics and Health Management (PHM) aims at 
development and publishing original scientific contributions 
and industrial applications dealing with the topics covered 
by PHM in the areas of condition monitoring, fault 
detection, fault diagnostics, fault prognostics and decision 
support. The results obtained are then exploited to take 
appropriate decisions to increase the system's availability, 
reliability and security while reducing its maintenance costs.   

B. Development of Novel Technologies 
of Prognostics and Health 
Management (PHM) for l-out-of-m 
Systems on the Basis of the Exact 
Statistical Tolerance Limits 
Many technical systems or subsystems have l-out-of-m 

structure. These so-called l-out of-m systems consist of m 
components of the same kind. The entire system is working 
if at least l of its m components are operating. It fails if m − l 
+ 1 or more components fail. Hence, a l-out-of-m system 
breaks down at the time of the (m − l + 1)th component 
failure. Since all components start working at the same time, 
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this approach leads to a kind of redundancy called active 
redundancy of m− l components. Important particular cases 
of l-out-of-m systems are parallel and series systems 
corresponding to l = 1 and l = m, respectively. Practical 
examples of l-out-of-m systems are, e.g., an aircraft with 
four engines which will not crash if at least two out of its 
four engines remain functioning, or a satellite which will 
have enough power to send signals if not more than four out 
of its ten batteries are discharged. 

Prediction problems come up naturally in several real 
life situations. For example, they can be broadly classified 
under two categories: (i) the variable to be predicted comes 
from the same experiment or sample so that it may be 
correlated with the observed data, (ii) it comes from an 
independent future experiment. Both of these situations do 
arise in the context of reliability and life testing. Formally 
the problems in the first category are known as one-sample 
(or within-sample) problems and those in the latter 
constitute two-sample (or new-sample) problems as well as 
multi-sample problems. 

Suppose a system consists of m components and fails 
whenever l of these components fail. Such a system is 
referred to as l-out-of-m system. Suppose our observations 
consist of the first k failure times, and the goal is to predict 
the failure time of the system. Assuming that the 
components’ life lengths are identically and independently 
distributed, we have a prediction problem involving a Type 
II censored sample, and it falls into category (i). Formally, 
the problem is to predict Yl having observed (Y1 …  Yk), k 
< l. A popular choice for the lifelength of the components is 
the exponential distribution. Thus, one can think of a point 
predictor or an interval predictor for the lifelength of the 
system as one-sample (or within-sample) problem. 

Consider the third situation where a manufacturer of 
certain equipment is interested in setting up a warranty for 
the equipment in a lot being sent out to the market. Using 
the information based on a small sample, possibly censored, 
the goal is to predict and set a lower prediction limit for the 
weakest item in a future sample. Typical assumption here is 
that the two samples are independent. This fails into 
category (ii), and we call it a two-sample (or new-sample) 
problem. One may be interested in the lifelength of the l-th 
weakest item and the average lifelength simultaneously. 
Then our focus will be on a prediction region for the two 
variables of interest. While several researches have 
concentrated on the above problems there are some papers 
dealing with special prediction situations involving several 
independent random samples. These belong to category (ii) 
and can be taken into account. 

In reliability theory, the lifetime of a l-out-of-m system is 
usually described by the (m − l + 1)th order statistic 1m lY    

from the sample 1  ... ,mY Y   where the random variable 

iY  represents the lifetime or failure time of the ith 
component of the system, 1 ≤ i ≤ m. In the conventional 
modelling of these structures, the component lifetimes are 
supposed to be independent and identically distributed 
random variables. Translating this approach back into the 
technical sphere, it reflects the assumption that the failure of 
any component does not affect the remaining ones. 
However, the supposition that the breakdown of some 
component will have no impact on the system parts at work 
will generally not be fulfilled in practice. In some systems, a 

component failure will more or less strongly influence the 
remaining parts of the system. For example, the breakdown 
of an aircraft’s engine will increase the load put on the 
remaining engines such their lifetimes tend to be shorter. 
Thus, a more flexible model, which is therefore more 
applicable to practical situations, must take some 
dependence among the system components into account. 

Prognostics and Health Management (PHM) offers 
several benefits for predictive maintenance. It predicts the 
future behavior of l-out-of-m system as well as its 
Remaining Useful Life (RUL). This RUL is used to plan the 
maintenance operation to avoid the failure, the stop time and 
optimize the cost of the maintenance and failure. However, 
with the development of the industry the assets are 
nowadays distributed, this is why the PHM needs to be 
developed using the new Information Technologies. In this 
paper, we propose a PHM solution based on the exact 
statistical prediction and tolerance limits on future random 
quantities (for example, future order statistics coming from 
Log-Location-Scale Distributions). These statistical limits 
will be constructed via the Pivotal Quantity Averaging 
Approach (PQAA), which represents the conceptually 
simple, efficient and useful method for constructing exact 
statistical prediction and tolerance limits on future outcomes 
under parametric uncertainty of underlying models.  

Nechval et al. [23-24] discuss some of the problems 
described in this section. 

C. Development of Novel Technologies 
of Prognostics and Health 
Management (PHM) for Fatigued 
Structures on the Basis of the Exact 
Statistical Tolerance Limits 
From an engineering standpoint the fatigue life of a 

fatigued structure consists of two periods: (i) crack initiation 
period, which starts with the first load cycle and ends when 
a technically detectable crack is presented, and (ii) crack 
propagation period, which starts with a technically 
detectable crack and ends when the remaining cross section 
can no longer withstand the loads applied and fails statically. 
The main aim of this paper is to present more accurate 
innovative stochastic fatigue model for adaptive planning 
inspections of fatigued structures in damage tolerance 
situations via observations of crack growth process during a 
crack propagation period. A new crack growth equation is 
based on this model. It is attractively simple and easy to 
apply in practice for effective in-service inspection planning 
(with decreasing intervals between sequential inspections as 
alternative to constant intervals often used in practice for 
convenience in operation). During the period of crack 
propagation (when the damage tolerance situation is used), 
the proposed crack growth equation, based on the innovative 
model, allows one to construct more accurate and effective 
reliability-based inspection strategy in this case. 

Prognostics and Health Management (PHM) is a 
technology to enhance the effective reliability and 
availability of a fatigued structure in its life cycle conditions 
by detection of current and approaching failures and by 
providing for mitigation of the structure risks.   

Prognostics is the real-time enhancement of reliability 
and availability and the prediction of the remaining useful 
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life of the structure by assessing the extent of deviation or 
degradation of the monitored parameters of the structure 
from its expected normal operating conditions. Prognostics 
can yield an advance warning of impending failure in a 
structure, thereby enabling more efficient and effective 
maintenance and corrective actions.  Prognostics help in 
preventing catastrophic failures and can reduce unscheduled 
maintenance expenses.  The outputs of a prognostic 
assessment of a structure are the failure risk, time to failure, 
remaining useful life, and a prognostic distance within 
which maintenance and repair actions can be planned, in 
order to minimize their impact on system availability.   

Health Management is the process of using diagnostic 
and prognostic information to intelligently manage the use 
and maintenance of a system. The ultimate result is 
increased effective reliability, availability, and safety with 
reduced logistics and support costs. 

Prognostics and Health Management (PHM) can be used 
to solve the service problems of the following important 
engineering structures: (1) Transportation Systems and 
Vehicles – aircraft, space vehicles, trains, ships; (2) Civil 
Structures − bridges, dams, tunnels; (3) Power Generation – 
nuclear, fossil fuel and hydroelectric plants; (4) High-Value 
Manufactured Products  launch systems, satellites, 
semiconductor and electronic equipment; (5) Industrial 
Equipment − oil and gas exploration, production and 
processing equipment, chemical process facilities, pulp and 
paper.  

Nechval et al. [25-26] discuss some of the problems 
described in this section. 

D. Development of Novel Technologies 
of Prognostics and Health 
Management (PHM) for a New 
Product in Systems of Lifetime 
Testing on the Basis of the Exact 
Statistical Tolerance Limits 

A new product lifetime testing represents the problem 
that can be stated as follows. A new product is submitted for 
lifetime testing. The product will be accepted if a random 
sample of n items shows r or fewer failures in performance 
testing. We want to know whether to stop the test before it is 
completed if the results of the early observations are 
unfavourable. A suitable stopping decision saves the cost of 
the waiting time for completion.  

On the other hand, an incorrect stopping decision causes 
an unnecessary design change and a complete rerun of the 
test. It is assumed that the redesign would improve the 
product to such an extent that it would definitely be accepted 
in a new lifetime testing. The paper presents a stopping rule 
based on the statistical estimation of total costs involved in 
the decision to continue beyond an early failure. Sampling is 
both expensive and time consuming. Hence, there are 
situations where it is more efficient to take samples 
sequentially, as opposed to all at one time, and to define a 
stopping rule to terminate the sampling process.  

At the planning stage of a statistical investigation the 
question of sample size (n) is critical. For such an important 
issue, there is a surprisingly small amount of published 

literature. Engineers who conduct reliability tests need to 
choose the sample size when designing a test plan. The 
model parameters and quantiles are the typical quantities of 
interest. The large-sample procedure relies on the property 
that the distribution of the t-like quantities is close to the 
standard normal in large samples. To estimate these 
quantities the maximum likelihood method is often used. 
The large-sample procedure to obtain the sample size relies 
on the property that the distribution of the above quantities 
is close to standard normal in large samples. The normal 
approximation is only first order accurate in general. When 
sample size is not large enough or when there is censoring, 
the normal approximation is not an accurate way to obtain 
the confidence intervals. Thus sample size determined by 
such procedure is dubious. Therefore, it may be considered 
the problem of constructing a test which minimizes the 
maximum expected sample size under some constraints. 
Stopping rules in sample testing can save substantial time 
and resources, when the case is clear-cut. 

Prognostics and Health Management (PHM) is essential 
in guaranteeing the safe, efficient, and correct operation of 
complex of detection, isolation and identification of faults; 
and prognosis, which consists of prediction of the remaining 
useful life (RUL) of components, subsystems, or systems, 
constitutes system health monitoring. PHM aims to provide 
users with an integrated view of the health state of 
equipment or overall system.  

Nechval et al. [27] discusses some of the problems 
described in this section.  

IX. Conclusion 
In this article, we construct the following one-sided 

statistical tolerance limits: i) one-sided statistical tolerance 
limit that covers at least 100% of the measurements with 
expected 100(1)% confidence, ii) one-sided statistical 
tolerance limit determined so that the expected proportion of 
the measurements covered by this limit is (1).   

Tolerance limits have important role in application of 
statistical methods in technical practice, especially in 
statistical quality control. Inherent in every phase of 
industrial quality control is the problem of comparing some 
quality characteristic or measurement of a finished product 
against given specifications. Sometimes the specifications, 
or tolerance limits, are so stated by the customer or by 
design engineer that any appreciable departure will make the 
product unusable. There remains, however, the problem of 
producing the part so that an acceptably high proportion of 
units will fall within tolerance limits specified for the given 
quality characteristic. Also, if a product is made without 
prior specifications, or if modifications are made, it is 
desirable to know within what limits the process can hold a 
quality characteristics a reasonably high percentage of the 
time. We thus speak of natural tolerance limits; that is, we 
let the process establish its own limits which, according the 
experience, can be met in actual practice.   

The new analytical technique proposed in this article 
represents the conceptually simple, efficient and useful 
method for constructing exact statistical tolerance limits on 
future outcomes under parametric uncertainty of underlying 
models. It does not in need to make any assumption 
concerning the statistical equation for the tolerance limit. 
This technique, using the experimental complete or type II 
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censored data, is based on the idea of invariant embedding 
of a sample statistic in the underlying model to construct 
pivotal quantities and to eliminate the unknown parameters 
from the problem via pivotal quantity averaging. In this 
case, the exact statistical tolerance limits (under parametric 
uncertainty of underlying models) on future outcomes  (say, 
order statistics)  associated with sampling from 
corresponding distributions can be found easily and quickly 
making tables, simulation and special computer programs 
unnecessary.  

The analytical methodology described in this paper is 
illustrated for the two-parameter Weibull and extreme-value 
distributions. Applications to other log-location-scale 
distributions could follow directly.  

Finally, we give the three illustrative numerical 
examples, where the exact statistical tolerance limits with 
expected (1)-confidence, obtained in this paper in terms 
of the two-parameter Weibull or extreme-value distribution, 
are compared with the known results that are reported in the 
literature and were obtained by using the following: 1) 
tables, 2) simulation, 3) Monte Carlo estimated percentiles, 
4) special computer programs, 5) approximation, 6) 
transformation of the two-parameter Weibull distribution to 
the extreme-value distribution, etc. 

Although the details of the problems addressed in the 
paper can vary significantly from one industry to another, 
the focus is always on making more accurate decisions, 
rather than manually using guesses and intuitions, but rather 
from a scientific point of view using models and 
technologies implemented with disciplined processes and 
systems. 

The methodologies described here can be extended in 
several different directions to solve various problems arising 
in practice. 

References 

[1] J. K. Patel, “Tolerance limits: a review,” Communications in 
Statistics: Theory and Methodology, vol. 15, pp. 2719–2762, 1986. 

[2] J. R. Dunsmore, “Some approximations for tolerance factors for the 
two parameter exponential distribution,” Technometrics, vol. 20, pp. 
317–318, 1978. 

[3] W. C. Guenther, S. A. Patil, and V. R. R. Uppuluri, “One-sided -
content tolerance factors for the two parameter exponential 
distribution, “  Technometrics, vol. 18, pp. 333–340, 1976. 

[4] M. Engelhardt and L. J. Bain, “Tolerance limits and confidence limits 
on reliability for the two-parameter exponential distribution,” 
Technometrics, vol. 20, pp. 37–39, 1978.  

[5] W. C. Guenther, “Tolerance intervals for univariate distributions,” 
Naval Research Logistics Quarterly, vol. 19, pp. 309–333, 1972. 

[6] G. J. Hahn and W. Q. Meeker, Statistical Intervals: A Guide for 
Practitioners. New York: John Wiley & Sons, 1991. 

[7] K. N. Nechval and N. A. Nechval, “Constructing lower simultaneous 
prediction limits on observations in future samples from the past 
data,” Computers & Industrial Engineering, vol. 137, pp. 133-136, 
1999. 

[8] N. A. Nechval and E. K. Vasermanis, Improved Decisions in 
Statistics. Riga: Izglitibas soli, 2004. 

[9] N. A. Nechval and K. N. Nechval, “A new approach to constructing 
simultaneous prediction limits on future outcomes under parametric 
uncertainty of underlying models,“ in IAENG Transactions on 
Engineering Sciences, Ao Sio-long, Chan Alan Hoi-Shou, Katagiri 
Hideki, and Xu Li, Eds. London: Taylor & Francis Group, 2014, pp. 
113. 

[10] N. A. Nechval and K. N. Nechval, “Tolerance limits on order 
statistics in future samples coming from the two-parameter 
exponential distribution,”  American Journal of Theoretical and 
Applied Statistics (AJTAS), vol. 5, pp. 1–6, 2016. 

[11] N. A. Nechval, K. N. Nechval, S. P. Prisyazhnyuk, and V. F. 
Strelchonok, “Tolerance limits on order statistics in future samples 
coming from the Pareto distribution,” Automatic Control and 
Computer Sciences (AC & CS), vol. 50, pp. 423–431, 2016. 

[12] N. A. Nechval, K. N. Nechval, and V. F. Strelchonok, “A new 
approach to constructing tolerance limits on order statistics in future 
samples coming from a normal distribution,” Advances in Image and 
Video Processing (AIVP), vol. 4, pp. 47–61, 2016. 

[13] N. A Nechval, G.  Berzins, S. Balina, I. Steinbuka, and K. N. 
Nechval, “Constructing unbiased prediction limits on future outcomes 
under parametric uncertainty of underlying models via pivotal 
quantity averaging approach,” Automatic Control and Computer 
Sciences (AC & CS), vol. 51, pp. 331–346, 2017. 

[14] N. A. Nechval, K. N. Nechval, and G. Berzins, “A new technique for 
constructing exact tolerance limits on future outcomes under 
parametric uncertainty,” in Advanced Mathematical Techniques in 
Engineering Sciences, M. Ram and J. P. Davim, Eds. London: Taylor 
& Francis Group, 2018, pp. 203226. 

[15] N. A. Nechval, G. Berzins, K. N.  Nechval, and J. Krasts, “A new 
technique of intelligent constructing unbiased prediction limits on 
future order statistics coming from an inverse Gaussian distribution 
under parametric uncertainty,” Automatic Control and Computer 
Sciences (AC & CS), vol. 53, pp. 223–235, 2019. 

[16] E. J. Gumbel, Statistics of Extreme. New York: Columbia University 
Press, 1958. 

[17] J. F. Lawless, “On the estimation of safe life when the underlying life 
distribution is Weibull,” Technometrics, vol. 15, pp. 857–865, 1973. 

[18] R. W. Mee and D. Kushary, “Prediction limits for the Weibull 
distribution utilizing simulation,” Computational Statistics & Data 
Analysis, vol. 17, pp. 327–336, 1994. 

[19] K. W. Fertig, M. E. Meyer, and N. R. Mann, “On constructing 
prediction intervals from a Weibull or extreme-value distribution,” 
Technometrics, vol. 22, pp. 567–573, 1980. 

[20] M. Engelhardt and L. J. Bain,.” On prediction limits for samples from 
a Weibull or extreme-value distribution,” Technometrics, vol. 24, pp. 
147–150, 1982. 

[21] J. Lieblein and M. Zelen, “Statistical investigation of the fatigue life 
of deep-groove ball bearing,” Journal of Research of the National 
Bureau of Standards, vol.  47, pp. 273–316, 1956. 

[22] N. R. Mann and S. C. Saunders, “On evaluation of warranty assurance 
when life has a Weibull distribution,” Biometrika, vol. 56, pp. 615–
625, 1969. 

[23] N. A. Nechval, K. N. Nechval, V. Danovich, and G. Berzins, 
“Predictive inferences for future order statistics coming from an 
inverse Gaussian distribution,” in Lecture Notes in Engineering and 
Computer Science: Proceedings of The World Congress on 
Engineering, London, U.K., 2-4 July, 2014, pp. 888–893. 

[24] N. A. Nechval, K. N. Nechval, and G. Berzins, “A new technique for 
intelligent constructing exact -content tolerance limits with expected 
(1 − )-confidence on future outcomes in the Weibull case using 
complete or Type II censored data,” Automatic Control and Computer 
Sciences (AC & CS), vol. 52, pp. 476–488, 2014. 

[25] N. A. Nechval and  K. N. Nechval, “Improved planning in-service 
inspections of fatigued aircraft structures under parametric uncertainty 
of underlying lifetime models,” in Numerical Methods for Reliability 
and Safety Assessment: Multiscale and Multiphysics Systems, S. 
Kadry and A. El. Hami, Eds. Springer International Publishing, 
Switzerland, 2015, pp. 647674. 

[26] N. A. Nechval, G. Berzins, and K. N. Nechval, “Intelligent planning 
reliability-based inspections of fatigued structures for the crack 
initiation period in the Weibull case under parametric uncertainty,” 
Automatic Control and Computer Sciences (AC & CS), vol. 52, pp. 
184–197, 2018. 

[27] K. N. Nechval, N. A. Nechval, G. Berzins, and M. Purgailis, “Optimal 
statistical decisions in a new product lifetime testing,”  in Proceedings 
of the Fourth International Conference on Maintenance and Facility 
Management, Rome, Italy, April 22-24, 2009, pp. 135–140. 


