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Abstract—In this paper, we present a curvature based 

modification to the existing beam element formulation to model 

cables which undergoes large displacements. The proposed 

approximation is numerically tested against the P-delta 

formulation and true nonlinear formulation of cables. As a 

result, a limiting value for the curvature based stiffness is 

reported. 
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I.  Introduction 
In this paper, we present the numerical study of cable 

finite element using stiffness matrices obtained form beam 
and string type elements. Both stiffness matrices include 
large displacements as a second order effect. In practical 
point of view, cables are modeled with beam elements with 
reduced bending stiffness and P-delta effect [11]. Cables are 
highly flexible structural elements. The deformed shape of 
cables is load dependent. 

In the analysis of cable structures, incremental strain 
formulation with nonlinear capabilities are demanded [1, 3]. 
It requires incremental-iterative procedures which requires 
high computing power and finite element skills. In addition, 
true nonlinear iso-parametric cable elements with three 
nodes were developed with non-incremental forms.  

Theoretically, cables (such as strings) do not show 
significant bending moments. The primary load transfer 
mechanism is through axial deformation that results in 
heavy axial loads. Therefore, using beam element with P-
delta gives limited corrections to the problem considered 
[10, 7]. 

This paper examines the limits of using beam element by 
modifying the bending stiffness into curvature that resulted 
from the kinematic conditions. This method will release the 
bending effect and hence include the large displacements as 
a second order correction. 
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II. Kinematics 

A. Displacement field 
Consider a plane cable that undergoes displacements. In 

this case, assume that material law is linear and small axial 
strains. It is obvious that cable may undergo large rotations 
and displacements but the axial strain may be small. Since 
plane cable is considered, it does not show any torsion in the 
cable. The deformed location (   of material point is given 
by the vector sum of original location (   and displacement 
vector (   

      

The unit tangent vector to the deformed configuration is 
given by the arc-length (  ) derivative of the coordinate 
vector.  

   
  

   
  

We assume that the normal component of the displacement 
vector is    and the strain in the tangential direction is 

   
   

  
 

The normal strain,   is small and higher order terms are 
neglected. 

B. Strain-displacement matrices 
Consider a three node, iso-parametric cable element. The 

coordinates and displacements are approximated by using 
the nodal coordinate vector (    and nodal displacement 
vector (     in the following manner with Einstein 
summation scheme:  

     
  

        

Node numbers are given by          

The tangential component of the displacement vector 
given in the previous section can be written in the following 
form.  

       

The normal strain can now be written as follows: 

   
  

  
     

  

  
 

The arc-length derivative of displacement vector can be 
given in the standard form: 

(1)

(2)

(3)

(4)

(5)

(6)
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We use the Frenet-Serret formula for tangent, normal and bi-
normal vectors and the term 

  

  
    

Where   ccurvature at the specified location. 

Now the normal strain in the cable element can be 
formulated in nodal parameters such that:  

        
        

    
        

  

Therefore, the strain displacement matrix    can be given 
by:  

        
        

It shows that the value of strain at any point is contributed 
from tangential displacement and curvature.  

The curvature can be obtained from beam bending and/or a 
space curve. With usual notations, beam bending curvature 
can be given by  

   
 

  
 

Where     bending moment and  

                flexural stiffness at the location considered. 

When the cable undergoes large displacements, it can 
introduce curvature change in the cable profile and that can 
add additional stiffness to the system. The curvature of 
space curve can be written in the following form:  

   ‖
  

  
‖ 

Since small strain assumption hold, the effect of such 
bending and large displacement can be accommodated by 
denoting 

        

The strain-displacement matrix can now be constructed with 
nodal displacement vectors. 

 

III. Element Stiffness Matrices 
The element stiffness matrix   arise from the virtual 

work form (weak form) or minimum potential energy theory 
can be readily available in the following manner.  

         

where    is the nodal submatrix. 

Nodal submatrices can be estimated using the standard form:  

     ∭   
       

 

   

Numerical computing of the strain-displacement matrix 
requires estimation of unit tangent vector  , unit normal 
vector   and curvature  . 

 

 

 

 

A. Beam with P-Delta stiffness 
Plane beam element can take two degrees of freedom per 

node, namely transverse displacement and rotation. The 
geometric stiffness (P-delta stiffness) can be obtained from 
second order effect in the following form, where   is axial 
load and    element length [11].  

   
 

   
[

         
           

           
          

] 

 

IV. Numerical Examples 
In this section we consider a typical example of freely 

hanging cable in vertical plane with unsymmetric loading at 
the mid span. Then the displacements were evaluated using 
standard P-delta method, proposed curvature modification 
method and true nonlinear formulation.  

Initial geometry of the cable is a parabolic curve with the 
coordinates  

Table 1: Nodal coordinates of the model 

Node 1 2 3 4 5 

x-coordinate 0.0 2.0 4.0 6.0 8.0 

z-coordinate 2.0 0.5 0.0 0.5 2.0 

  

Undeformed configuration is given in Figure (1). 

 

Figure 1: Undeformed shape of cable. 

 

Mechanical properties of the cable are given in Table 
(2). 

Table 2: Mechanical properties of cable material 

Property Value 

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)



 

3 

 

                      Proc. of the Eighth International Conference On Advances in Civil and Structural Engineering - CSE 2018 
            Copyright © Institute of Research Engineers and Doctors. All rights reserved.      

             ISBN: 978-1-63248-145-0 doi: 10.15224/ 978-1-63248-145-0-13                                  

 

Area (m
2
) 1.0e-3 

Young’s modulus (GPa) 200e9 

Moment of inertia (m
4
) 1.0e-7 

A vertically downward load of 10kN and horizontal load 
in the negative x-axis is applied at the mid node of the cable. 

 

A. Case 1: Analysis of the system with 
P-delta method. 
P-delta formulation applies a second order correction to 

the standard beam finite element [11]. The procedure is an 

incremental-iterative solution scheme. It is evident that the 

additional bending moment arises from slight change in 

geometry when axial loads are high. Specially in cables, the 

P-delta takes advantage to stiffen the structure if tensile 

force is applied in the axial direction. Cables are of some 

examples. 

 

The stiffness resulted from standard beam will be 

increased by adding appropriate geometric stiffness (    

which depends on axial tension. In the solution process, 

iterative methods are applied until axial loads stabilize. 

 

The problem described in Section IV is modelled by 

using two node geometrically nonlinear beam elements [12]. 

In the subsequent analysis, convergence reached and the 

deformed shape (see Figure 2) and nodal displacement is 

reported. 

 

 
Figure 2: Deformed shape for P-delta analysis 

 

The nodal displacement vector                     
is obtained in the analysis. 

 

 

B. Case 2: Analysis of the system with 
curvature stiffness formulation 
The test problem is analyzed with the curvature based 

stiffness formulation. The strain-displacement array shown 

in Section II(B) shows that tangential and normal 

displacement contribute to the development of axial strain. 

In case of classic beam theory, the curvature is formed by 

bending the material fibres of the cable. In the current 

formulation, cable deforms and form the space curve so that 

the amount of curvature can be estimated for the work done.  

The deformed shape and control node displacement are 

reported below. 

 

 

Figure 3: Deformed shape in curvature based form 

 

Nodal displacement vector of the control node is given 

by  

                     
 

 

C. Case 3: Analysis of the system with 
full nonlinear formulation 
A geometrically nonlinear, iso-parametric cable element 

was developed by considering non-incremental finite 
element procedures [7]. The nonlinear formulations are 
expensive and time consuming. Unless otherwise needed to 
solve for a very complicated problem approximate solution 
with certain accuracy may be useful. For the comparison, 
full nonlinear analysis is done. 
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Deformed shape and nodal displacement vector are 
reported

 

Figure 4: Deformed shape in full nonlinear analysis 

 

 

Nodal displacement vector                     is 

noted. 
 

V. Results and Discussions 
The primary results show that the standard-beam 

formulation with P-delta method looks like a stiff solution. 

The reason is that the kinematic conditions assumed in beam 

formulation does not allow large rotations though strains are 

small.  

In the curvature based formulation, there exist significant 

rotations. It shows that there is some amount of 

improvement in the lateral displacements compared with the 

P-delta formulation.  

The full nonlinear analysis gives exact solution which is 

almost ten times the curvature based formulation. In the 

nonlinear analysis Green-Lagrange strain is used and it is 

capable of capturing large rotations. 

Further study is necessary to understand the limiting 

behavior of the strain in the curvature based formulation. 

The proposed formulation should be checked with different 

curvatures and loading. 
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