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Abstract-The parameters of shear strength, even 

within the same soil layer, will vary from point to 

point as a result of the natural heterogeneity of the 

materials. Stochastic methods have been 

introduced to calculate the uncertainty and spatial 

variability of soil parameters [1]. As opposed to 

deterministic methods, probabilistic methods allow 

the selection, based on the specifications of each 

project, of an acceptable risk level. Moreover, such 

methods are consistent with the concept of risk 

parameters of soil vibration and constitute their 

extension at the fault indicators level, being directly 

related to the performativity of constructions [2]. 

The main objective of this paper is to investigate 

the effect of spatial variability of soil, the slope of 

the banks and of seismic excitation on permanent 

seismic displacements [3]. The calculation of 

permanent displacements within probabilistic 

frames is achieved by combining the Local Average 

Subdivision (LAS) algorithm introduced by Fenton 

and Vanmarcke in 1990 [4] and finite difference 

software FLAC (Fast Lagrangian Analysis of 

Continua) used in this paper [5].  
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1. INTRODUCTORY NOTIONS 

This paper investigates the effect of spatial 
variability of soil properties, the incline of the 
slopes, as well as the intensity and content of 
seismic frequency excitation on developing 
permanent displacement. For this purpose, static 
and dynamic simulations of a significant number 
of slopes with spatial variability of properties are 
analyzed and the results are compared with their 
equivalent of homogeneous slope analyses. The 
performance criterion under dynamic conditions 
is the residual displacement of the mass of the 
slopes at the end of seismic vibration. Based on 

experimental results of soil characteristics from 
the bibliography and use of the LAS 
methodology and the Mathematica program [6] , 
an extensive range of random fields was created 
via an automated process to express the spatial 
variability of soil properties with the desired 
characteristics. Then, by using the random fields 
territorial properties, a new automated process 
was created through which a large number of 
numerical simulations for the seismic analysis of 
slopes was carried out. The spatial variation of 
properties, as demonstrated through numerical 
simulations, significantly impacts the values of 
permanent displacements that appear when the 
slope is stimulated with a series of historical 
recordings of seismic vibrations as shown below.  

2. EFFECT OF SPATIAL VARIABILITY OF 

SOIL PROPERTIES OF SLOPES IN SEISMIC 

DAMAGE 

The parameters examined with regard to their 

impact on permanent seismic displacement are as 

follows: 

1. Spatial variability of properties. 

2. The characteristics of autocorrelation 

lengths xl  and yl  

3. Slope of the bank  

4. The magnitude of the maximum seismic 
acceleration.  

5. The characteristics of seismic excitation 
(frequency content). 

2.1 Data of parametric analysis 

Initially we present the parametric analysis data 
used for the resolutions. Taken into account are 
average values and variances of spatially-varying 
standard variables like: cohesion c, internal 
friction angle φ, density ρ, modulus of elasticity 
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Young E, while for the sake of simplicity the 
values of the diastolic angle ψ and Poisson's ratio 
ν, are taken as constants. Average values μ and 
standard dispersions σ of soil properties, and the 
σ/μ ratio are given in Table 1.                                                                                                                                                                                                

In table 2 the values of correlation coefficients 

ij  between i and j parameters based on 

published experimental data are presented. 
Correlation coefficients values for which no 
experimental data have been found, such as 

between E  and  , are taken as equal to zero.  

Table 3 gives the values of spatial variability 

(autocorrelation) lengths ,x yl l  in the horizontal 

and vertical directions respectively 

TABLE 1. AVERAGE VALUES AND STANDARD 

DISPERSION OF SPATIALLY-VARYING VARIABLES 

OF SOIL SLOPES. [7] 

Parameter μ 

Average 
value 

σ 

typical 
dispersion 

σ/μ 

coefficient 
of variation 

 

c, kPa 

30 

40 

50 

9 

12 

15 

0.3 

0.3 

0.3 

 

φ°, degrees 

 20° 

30 

35 

4° 

6 

7 

0.2 

0.2 

0.2 

ψ°, degrees 0° 0° 0 

 

ρ, kg/m3 

1800 

2000 

2200 

180 

200 

220 

0.1 

0.1 

0.1 

 

Ε, kPa 

40000 

60000 

80000 

8000 

12000 

16000 

0.2 

0.2 

0.2 

v 0.3 0 0 

 

TABLE 2. CORRELATION OF SOIL PARAMETERS 

Correlation factor 
ij  

Parameter c 
(KPa) 

φ° ρ 
(KN/m3) 

Ε(K
Pa) 

v 

c 1 -0.5 0.5 0.2 0 

 φ° -0.5 1 0.5 0.2 0 

ρ 0.5 0.5 1 0 0 

Ε 0.2 0.2 0 1 0 

v 0 0 0 0 1 

  

TABLE 3. PAIRS OF AUTOCORRELATION VALUES 

USED IN THE RESOLUTIONS. 

Lengths of spatial correlation 

   
xl , m 

20 40 20 

yl , m 
2 2 4 

 

TABLE 4. GEOMETRIC ELEMENTS OF SLOPES 

 Inclination 
of a slope 

Slope 
height 

Gradient 
slope angle 

Geometry A.  2:1 20 m 26.56 ο 

Geometry B 1:1 30 m 45ο 

Geometry C 4:3 30 m 36.87 ο 

Table 4 gives the characteristics of the three 
different slope geometries used in the analyses. 
The corresponding numerical discrepancies of 
the geometry for cases A, B and C of Table 4 are 
shown in Figures 1, 2 and 3. In each cross-
section of the slopes, a few characteristic points 
(A, B, and C) are given in which the seismic 
response time has been calculated for further 
processing. 

 

Figure 1. Geometry A: Discrimination of slope geometry 
with a 2:1 slope. 

 

Figure 2. Geometry B: Discrimination of slope geometry 
with 1:1 slope. 

 

Figure 3. Geometry C: Discrimination of slope geometry 
with 4:3 slope. 
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2.2 Seismic stimulation  

Seismic stimulation for the following analyses 
uses five historical acceleration recordings from 
the earthquakes of Kalamata (1986), Lefkada 
(2003), Kobe (1995), Northridge (1994) and 
Friuli (1976) [8]. Table 5 provides the key 
elements of historical records. Also, Figure 4 
shows the Eurocode 8 spectrum calibrated for a 
maximum acceleration of 0.3g.  

TABLE 5. HISTORICAL SEISMIC EXCITEMENT 

RECORDS 

Earthquak
e  

Mag
nitu
de 
Mw 

Concen
tric 

Distanc
e 

R (km) 

Recor
ding  

Comp
onent 

PGA 

(g) 

Kalamata 
(1986) 

6.0 12 Prefect
ure 

Hor. 0.25g 

Lefkada 
(2003) 

6.4 10 Lefkad
a 

Trans. 0.60g 

Kobe 
(1995) 

7.2 20 Port 
Island 

horizo
ntal 

0.57g 

Northridge 
(1994) 

6.7 30 Rinaldi  Hor. 
318 

0.47g 

Friuli 
(1976) 

6.5 19 Friuli  Hor.  0.35g 

 

 

Figure 4. Sequencing responses of modified seismic stimuli 
and rock design according to the Eurocode 8. The stimuli 

were modified so that the acceleration spectrum would 
approach that of Eurocode 8. 

3. REPRESENTATIVE RESULTS OF 
PARAMETRIC ANALYSES 

This section presents representative results of 
seismic response and permanent displacements 
of extremities, on the three geometry cases given 
in figures 1, 2 and 3, by mutual stimulation based 
on the Lefkada earthquake (2003). Aiming for 
comparable results of parametric analyses, we 
used geometry extremities and combinations of 
strength parameters that approximately lead to a 
minimum safety factor under the FS = 1.5. 
Despite this, it is evident that there are 
significant fluctuations in the response and 
permanent displacement of the slopes due to the 
spatial variability of the soil properties. 

 

 

Figure 5.  Geometry A: (a) horizontal and (b) vertical 
displacement at point A. 

TABLE 6.   PERMANENT DISPLACEMENT OF SLOPES. 

 

Geometry  

(incline) 

 

Homogen
eous soil 

(m) 

Spatial soil variability 

Minim
um 
value 
(m) 

Maxim
um 
value 
(m) 

Maxim
um 
deviati
on (%) 

Α
 (

2
:1

) 

Horizo
ntal 

1.04 0.97 1.92 84.6 

Vertica
l 

1.04 0.94 1.42 36.5 

Β
 (

1
:1

) 

Horizo
ntal 

0.45 0.51 1.5 233.3 

Vertica
l 

0.38 0.36 1.73 355.3 

C
 (

4
:3

) 

Horizo
ntal 

0.45 0.78 1.44 220.0 

Vertica
l 

0.39 0.64 1.27 225.6 

Figures 6, 7, 8 show the results of permanent 
horizontal, vertical and total deformations at the 
end of seismic vibration for the 6 seismic 
intensity levels and the 5 seismic excitements 
examined. The change in the mean value of the 
permanent horizontal displacement can be 
approximated by the equation f[x] = ax

b
 (1) 

where x is the ratio ag/g of the maximal 
acceleration of excitation (αg) to the acceleration 
of gravity (g), while a and b are parameters of 
the equation.   
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FIGURE 6: INFLUENCE OF THE MAXIMUM 
ACCELERATION AND THE FREQUENCY CONTENT 

OF THE STIMULATION ON THE PERMANENT 
HORIZONTAL DISPLACEMENT OF THE SLOPE 
CORNICE WITH A 2: 1 GRADIENT (POINT A) . 

 

FIGURE 7: INFLUENCE OF THE MAXIMUM 
ACCELERATION AND THE FREQUENCY CONTENT 

OF THE EXCITATION ON THE PERMANENT 
VERTICAL DISPLACEMENT OF THE SLOPE CORNICE 

WITH A 2: 1 GRADIENT (POINT A) .  

 

Figure 8: Influence of the maximum acceleration and the 

frequency content of the stimulation on the permanent total 

displacement of the slope with a 2:1 gradient (Point A)  

4. EFFECT OF SLOPE INCLINE 

The results of Table 7 are presented for the 
purpose of investigating the effect of slope 
incline on permanent displacements. 

TABLE 7. SOIL PROPERTIES, STATIC SAFETY 
FACTOR AND MEAN VALUES OF PERMANENT 

DISPLACEMENTS OF HOMOGENEOUS SLOPES FOR 
THE FIVE SEISMIC STIMULI (PGA = 0.30G) 

Inclination 
of a slope  

c , 

kPa 
  

FS 

xu
, m 

yu

, m 

u , m 

2:1 50 30 2.58 0.39  0.35  0.53 

4:3 50 30 1.71 0.41 0.47 0.63 

1:1 50 30 1.45 0.76 0.54 0.94 

The following formulas show the probability 
density functions of the component permanent 

displacement u  for the three slope inclines, 

i.e. 2:1, 4:3 and 1:1. The best-described 

distributions are Weibull, Extreme Value and 
Gamma [9].  

 

FIGURE 9: COMPONENT PERMANENT 
DISPLACEMENT U FOR A 2:1 GRADIENT (PGA = 

0.30G)  

 

FIGURE 10: COMPONENT PERMANENT 
DISPLACEMENT U FOR 4:3 (PGA = 0.30G). 

 

FIGURE 11: COMPONENT PERMANENT 
DISPLACEMENT U FOR A 1:1 GRADIENT (PGA = 

0.30G). 

 

FIGURE 12: PROBABILITY DENSITY FUNCTION OF 
THE COMPONENT PERMANENT DISPLACEMENT U 

FOR SLOPE SLOPES OF 2:1, 4:3 AND 1:1 (PGA = 0.30G). 

5. CONCLUSIONS 

1. The nonlinear variation of the seismic 
slope permanent displacement with the 
magnitude of the seismic intensity (ie 

the maximum acceleration maxga ) can 

be described with an exponential 
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function of the form 
max(a / )b

ga g , 

where ,a b  are stable.  

2. For a fixed value of seismic intensity, 
distribution of permanent displacement 
resulting from different seismic 
excitations follows an approximately 
uniform distribution. The effect of the 
frequency content of seismic excitation 
is important as it generates a range of 
variation of results equal to  40% in 
the case of horizontal displacement and 

 20% in the case of vertical 
displacement.  However, it is desirable 
to increase the number of seismic 
stimuli with different frequency content 
for a better statistical description of the 
effect of the seismic excitation 
characteristics. 

3. Regarding the effect of slope incline, 
the results show that, as slope incline 
increases, the mean and standard 
dispersion of permanent seismic 
displacement significantly increase.  

4. The present investigation has shown 
that the calculation of rates of 
movement of slopes under seismic 
loading can be carried out pragmatically 
with probabilistic and stochastic 
methods. Differences in the response 
due to spatial variability of soil 
properties are quite significant. It is 
desirable for the parametric 
investigations of this research to be 
further extended in order to best 
describe the uncertainties and the 
overall conclusions to be reassessed in 
order to be taken into account in long-
term regulatory provisions.  
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