
 

6 

 

Proc. of The Eighth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2018 

Copyright © Institute of Research Engineers and Doctors, USA. All rights reserved. 

ISBN: 978-1-63248-153-5 doi: 10.15224/978-1-63248-153-5-02 

 

Course keeping Control of Boeing 747 by using  
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Abstract:  In this paper, a state space mathematical model 

of the Boeing 747 was defined, particularly for the lateral 

aircraft motions. A dynamical behavior of the model has been 

analized through numerical and graph-analytical methods. A 

Pole-placement approach of designing the control system was 

applied. A minimum-observer state based feedback controller 

was discussed. The whole model was developed by using 

Matlab and simulated by Simulink. A full-order observer was 

proposed because of its less sensitivity on measurement errors 

than the minimum-order (or reduced-order) observer (or state 

estimator).  In the extreme cases, where the output noise  is a 

significant problem, then an application of Kalman filter was 

suggested.   

Keywords— Boeing 747, course keeping control, pole-

placement, minimum-order observer, state controller, Matlab, 
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I.  Introduction  
 There are not many papers dealing with the plane control 

systems, mainly because a full  information about them is 
usually classified, especially military ones. 
The Boeing 747 is a large wide-body commercial plane. The 
equations of the body motion for the Boeing 747 are of 
eighth order, but they can be separated (decoupled) into two 
fourth-order sets, one of them representing the perturbations 
in longitudinal and another one lateral motions. The 
longitudinal motion defines the altitude movements of a 
plane, where the control system is especially critical during 
a take-off or landing. On the other hand, the lateral motions 

consist of two main parameters: rolling (, p) and yawing (r, 
β) movements, [7]. In this paper, only the lateral motion will 
be discussed.  
The whole plane coordinates are shown on the Fig.1. 

    

 

 

      Fig.1. Definition of plane coordinates 
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II.  Mathematical Model 

A. Dynamical Equations 
Based on Fig.1, the non-linear equations of motions 

(dynamical model), including forces and moments that 
acting on the plane body, under proper assumptions [7], can 
be derived as in (1): 

         

(1)   

     Linearization of those equations can be carried out by 
neglecting some of nonlinear terms in (1), i.e. by assuming a 
small movements, as well as steady-state flight conditions 
with constant speed and attitude. Then, decouple two sets of 
equations (longitudinal and lateral, as mention before). 

B. State-Space Mathematical Model             
The modern trend in engineering systems is toward 

greater complexity, due mainly to the requirements of 
complex tasks and good accuracy. Complex systems, as it is 
an airplane, usually have multiple inputs and multiple 
outputs (MIMO), and may be time varying [1, 3, 4].  

 

  Fig.2. State space model in a general form 

                                                               (2)    

where:  
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For linearized lateral motion of (1), the results are in the 

state-space form [7], as in (3): 

     (3) 

In the case of lateral-perturbation equations of motion for 
Boeing 747 in horizontal flight at 40,000 ft and the nominal 
forward speed of 774ft/sec (Mach 0.8), equation (3) 
becomes: 

 

  (4) 

Note: Rudder (δr) is the input and yaw-rate (r) is the output 

of the system. 

 

In the traditional control, system is usually represented by 

transfer function, which can be derived from the state space 

model (4) in the form as in (5): 

 

                    
(5)                       

 

From the transfer function (particularly from denominator), 

it  can be seen that system itself is unstable, and of course, a 

response to the step function of such open loop system will 

be unstable, too.  

However, before applying a negative feedback, as well as a 

controller to that system, it will be good trying to make 

some modification of the system for better understanding the 

system itself.    

C. Re-modifying System 
As stated before, the output of the system is yaw-rate (r), 

with dimension in degree per second, and input (rudder 

movement, δr) in degree. For a better understanding, output 

could be modified to yaw angle (course of the plane) also in 

degree as the input.  

The new modified system becomes fifth order with matrices 

shown in (6). 

 

                                                      (6) 

 
 

Note: a new output is ѱ (yaw angle or course). 

 

 And, a new transfer (output over input), [2, 5] is in (7): 

 

        
(7) 

   

Note: A very small number (7.772e-016) in the numerator 

gives a very big positive zero (6.2e012), which ultimately 

gives unstable pole in the closed loop system for any gain (it 

was checked by Root Locus method), which leads to 

unstable system. 

Ignoring that small number and change the sign in the 

numerator (which indicates only different orientation of 

rudder and yaw angle), transfer function becomes: 

 

 

         
(8) 

 

Transfer function (8) has five poles and three zeros (9): 

 

                (9) 

 

Root Locus (checked, but not shown in this paper) indicates 

that system is always stable for any given gain.  

Poles have an acceptable values, but their damping ratio 

(damping factor) is very small (ζ = 0.03), which is far short 

of requirements for a good control (ζ ≥ 0.5). 

 

Specifications for the acceptable plane control conditions 

are: 

natural frequency,  n ≤ 0.5 and damping ratio, ζ ≥ 0.5. 

Aircrafts with dynamics that violate those guidelines are 

generally considered fatiguing to fly and highly undesirable. 

Thus, our system specifications are to achieve lateral 

dynamics that meet those conditions.                                     
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D. Selecting the right Poles  
     In addition of the above mentioned specifications, we 

would like that aircraft has also a good response 

characteristics, with: 

 Overshoot less than 10% 

 Rise time less than 10 seconds 

 Settling time less than 20 seconds 

 Steady-state error less than 2% 

 

Based on natural frequency,  n =0.5, as well as a damping 

ration, ζ =0.7 and by using “standard” formula (10), it is 

possible to calculate two dominant poles [1, 3, 4]. 
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                                     (10) 

 

 Desired (dominant) poles are complex poles: 

 

                        p1 = - 0.35 + 0.357i 

           p2 = - 0.35 – 0.357i 

 

    Because our system is the fifth order, thus we need to 

derive additional three poles. We could also try to introduce 

a pole that cancels one of our zeros (p3 = -0.498), which will 

not be so close to the imaginary axis (i.e. non-dominant 

pole). 

Same for another two poles, they need to be placed further 

away from the dominant poles, as well as on the LHS (Left 

Hand Side of the “s-plane” to avoid affecting the stability of 

the system. After a few randomly chosen those two poles, 

we found that the best dynamical behaviour of the system is 

with a double real pole (p4 = p5), which does not introduce 

extra oscillation in the system: 

 

  p4 = p5 = -1 

                      

III. Design of Control System in 
State Space 

A. Pole-Placement (Pole-Assignment) 
     One of designing methods applied in this paper is, so  

called the Pole-placement or Pole-assignment technique. We 

assume that all state variables are measurable and are 

available for feedback. For checking those requirements, the 

system has to be completely observable (observability 

matrix, 

Oobsv) and completely state controllable (controllability 

matrix, Cctrb), [4]: 

 

                   Oobsv = [C  CA  CA
2
 … CA

n-1
]
’ 

                      (11)

      Cctrb = [B  AB … A
n-1

B] 
 

Both of those matrices have rank 5 (as it is our order of the 

modify system), which guarantees both:  observability and 

controllability of the system. In that case, we can place our 

closed-loop poles at any desired locations by means of state 

feedback through an appropriate gain matrix, K.  

Then, our state-space model can be transformed as in Fig.3: 

 

        
     Fig.3 State-space model with feedback gain matrix (K) 

    

     In the conventional approach to the design of a single 

input single output (SISO) control system, only dominant 

closed-loop poles have desired  n and ζ. The pole-

placement approach specifies all closed-loop poles and 

because of that requires successful measurement of all state 

variables, or else requires the inclusion of the state observer 

(or the state estimator), which will be discussed later on.  

Note: Control signal is u = -Kx. That means that closed loop 

system has no input and its objective is to maintain zero 

output.  

                             
(12) 

    The stability and transient response characteristics are 

determined by the eigenvalues of (A-BK), [3, 4].  

Note: eigenvalues are called in state space model (time 

domain) and poles in transfer function model (frequency 

domain), but the values are the same. 

     The pole-placement can be solved with Matlab by using 

“Ackerman formula” and its instruction (“acker”): 

 

    K = acker (A,B,[p1 p2 p3 p4 p5])                                 (13) 

    K = [-2.2105  1.2275  -5.4935  -0.3671  -0.2063]         

(14) 

 

By using a linear simulation model, the output is shown on 

Fig.4: 

 

                 
      Fig.4 Output with state feedback gain matrix, K 

 

As we can see from the linear response graph (above), 

output (yaw angle, ѱ) met all our criteria: with small 

overshoot, relatively small settling time, as well as no 

steady-state error (finishes in zero). 

Note: the output starts from value 1, because we set initial 

values:       x(0) = [1  0  0  0  0]’ 
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B. Observer Design 
As it was mentioned before, a pole-placement approach 

assumes that all state variables are available for feedback. 

However, in practice, it is not the case. Then, we need to 

estimate those inaccessible state variables. A device (or a 

computer programme) that estimates or observes the state 

variable is called a state observer, or simply an observer. 

If the observer observes all variables, then it is called a full-

state observer. On the other hand, if observer observes some 

of state variables, then it is a reduced-order observer. A 

minimum-order observer observes only minimum possible     

variables, [4, 8, 9]. 

C. Minimum-Order Observer  
If only yaw angle (ѱ) is accessible for measurement, 

then 

we have to estimate (observe) all other state variables for a 

feedback state controller. In that case Fig.3 has to be 

replaced, as it is shown on Fig.5. 

Then, the state vector (x) has to be partitioned into xa and 

xb, since state variable xa is equal to output y, which can be 

directly measured, and xb is the un-measured state vector: 

 

     

        
Comparing those matrices with (6), yield [5]: 

       
And, by performing some necessary transformations: 

 

 
 

As well as, previously found the gain matrix K, partitioned: 

 
With all above transformations, our model becomes (Fig.5): 

      
      Fig.5 System with a minimum-order observer 

                  state feedback. 

D. Finding Minimum-Observer Gain 
Matrix (Ke) 
The error equation for the minimum-order observer, [4]: 

 

                                                   
(15)  

If expressing state vector dynamics (12) and error dynamics 

(15) into one (augmented, 2n order) matrix form, then: 

                                    
(16) 

As a general rule, the error dynamics has to be 2-5 times 

faster than controller’s dynamics. That means: its poles have 

to be selected 2-5 times bigger than controller’s poles, to 

make sure that observation error converges to zero quickly.                      

If selected poles are 2 times faster: 

 

       L= [-0.70+0.7142i   -0.70-0.7142i   -0.99    -2.00] 

       Ke = acker(Abb’,Aab’,L)’= [5.47  3.76  -32  148]’ 
         

Then, by performing linear simulation, state variables and 

errors graphs are in Fig.6: 

 
      Fig.6 State variables (x) and errors (e) response 

                    (2 times faster observer poles) 

 

If selected poles are 5 times faster: 

 

      L= [-1.75+1.75i   -1.75-1.75i   -2.49    -5.00]   

      Ke=acker(Abb’,Aab’,L)’= [-53   10  -2225  8464]’       

 
For selecting 5 times faster observer’s poles, responses for 

errors are much faster, but the other hand, the amplitudes for 
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errors (especially at the beginning) are very high due to very 

high gain constants in Ke, (Fig.7): 
 

      
     Fig.7 State variables (x) and errors (e) response 

                    (5 times faster observer poles) 

 

A complete Simulink block diagram [5, 8] for the course 

keeping control system with a minimum-order observer is 

on the Fig.8, as well and all relevant responses in Fig.9. 

 

          Fig.8 
Simulink diagram for the whole system 
 

        

       
Fig.9 Responses for x, xhat, errors (e) and output (y) 

From those responses, it can be seen that although we set 

initial value only for yaw angle, all five state variables are 

affected (they are intertwined). In addition, the observer 

gives reasonable estimation for x, as well as for e and y. 

IV. Conclusion 
Based on mathematical model in the state space and the 

transfer function, this paper analysed dynamics of the 

Boeing 747 aircraft, especially a lateral motion. The original 

model was re-modified and the proper selection of the poles 

found. 

Based of desired dynamics, by using Pole-placement 

method, a feedback gain matrix (K) was defined. A 

minimum-order observer was applied to the system to 

estimate immeasurable state variables. An observer gain 

matrix (Ke) has been calculated by using Ackerman 

formula. The whole system: 

aircraft, controller and minimum-order observer has been 

simulated by Simulink. The responses for state variables (x), 

observer variables (xhat), errors (e) and output (y) are shown 

on the separate graphs. Although, fast observer dynamics 

and high feedback gain would seem to give us all we asked 

for, such a combinations is sensitive to noise. In that case, a 

usage of less sensitive full-order observer or even Kalman 

filter is suggested. 
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