
Two-Stage Algorithm for Data Compression

Prof. Nirali Thakkar
Department of Computer Engineering,

Madhuben & Bhanubhai Patel Women’s Institute of
Engineering

New V. V. Nagar, India
thakkarniralis@gmail.com

Prof. Malay Bhatt
Department of Computer Engineering, Dharamsinh Desai

University
Nadiad, Gujarat, India

malaybhatt202@yahoo.com

Abstract— This paper proposes two stage algorithm that carries
advantages of PDLZW and Arithmetic coding and compares its
performance with deflate which is a well-known two-stage
algorithm that combines the features of LZ77 and Huffman
Coding. The PDLZW is designed by partitioning the dictionary
into several dictionaries of different address spaces and sizes.
With the hierarchical parallel dictionary set, the search time
can be reduced significantly since these dictionaries can operate
independently and thus can carry out their search operations in
parallel. Arithmetic coding replaces a stream of input symbols
with a single floating-point output number.
Keywords—Arithmetic Coding, Lossless Data Compression,
Lossy Data Compression, Parallel Dictionary LZW (PDLZW).

I. INTRODUCTION

Data compression is a method of encoding rules that
allows substantial reduction in the total number of bits to
store or transmit a file [1]. It is a way to eliminate the
unwanted redundancy. Data compression technique can be
divided into two major families: lossless data compression
and Lossy data compression.

Deflate is two-stage lossless data compression algorithm
that uses the combination of LZ77 and Huffman coding. This
will take advantage of both the algorithms. It is a popular
compression method that was originally used in the well-
known Zip and Gzip software and has since been adopted by
many applications. The following figure shows the block
diagram of deflate. At encoder side, the row data are
compressed by LZ77 encoder. The output of LZ77 is Literals
and length/distance. It is processed by Huffman Encoder
which results in compressed bit stream. At decoder side,
compressed data is decoded in the Huffman Decoder to
construct a stream of symbols required by the LZ77 decoder.
The LZ77 decoder operates reconstruct the original data.

Figure 1 Block diagram of deflate

Huffman codes have to be an integral number of bits long,
and this can sometimes be a problem. If the probability of a
character is 1/3, for example, the optimum number of bits to
code that character is around 1.6 bits. Huffman coding has to
assign either one or two bits to the code and either choice
lead to a longer compressed message than is theoretically
possible. This non optimal coding becomes a noticeable
problem when the probability of a character is very high [2].
Thus the Huffman coding always produces rounding errors
while Arithmetic coding replaces a stream of input symbols
with a single floating-point output number.

One of the most widely used compression methods for
lossless compression is LZ77. LZ77 encoder maintains a
window to the input stream and shifts the input in that
window from right to left as strings of symbols are being
encoded. This method is based on a sliding window. The
window below is divided into two parts. The part on the left
is called the search buffer. This is the current dictionary, and
it always includes symbols that have recently been input and
encoded. The part on the right is the look-ahead buffer,
containing text yet to be encoded. An LZ77 token has three
parts: offset, length, and next symbol in the look-ahead
buffer. The main disadvantage of LZ77 is the size of both the
buffers is very small. Increasing the sizes of the two buffers
also means creating longer tokens. These will produce the
higher compression ratio but it will reduce the compression
efficiency [5].

LZW is a dictionary based compression, which encodes
input data through establishing a string table and searching
the table to identify the longest possible input data string that
exists in the table. The encoded output is a sequence of the
matching string’s address and length. It can typically
compress large English texts to about half of their original
sizes. However, conventional LZW algorithm requires large
amount of processing time for adjusting and searching
through the dictionary [3].

The dynamic LZW (DLZW) and word-based DLZW
(WDLZW) algorithms were proposed to improve searching
efficiency. In DLZW, the dictionary has been initialized with
different combinations of characters. It is organized in
hierarchical string tables. The baseline idea is to store the
most frequently used strings in the shorter table, which
requires fewer bits to identify the corresponding string. The
tables are updated using the move-to-front and weighting
system with associated frequency counter. During the
compression time, after the longest matching string is
recognized in the table, it is moved to the first position of its
block. The table updating process is based on the least
recently used (LRU) policy to ensure that frequently used
strings are kept in the smaller tables. This is to minimize the

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering
Editor In Chief Dr. R. K. Singh. Copyright © 2012 Universal Association of Computer and Electronics Engineers.
All rights reserved. ISBN: 978-981-07-1847-3
doi:10.3850/978-981-07-1847-3 P0850

350

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

average number of bits required to code a string when
compare with a single table implementation [3].

The WDLZW algorithm is a modified version of DLZW
that focuses on text compression by identifying each word in
the text and make it a basic unit (symbol). The algorithm
encodes the input word into literal codes and copy codes. If
the search for a word has failed, it is sent out as a literal code,
which is its original ASCII code preceded by other codes for
identification. The copy code is the address of the matching
string in the string table. However, both algorithms are too
complicated. To improve this, parallel dictionary LZW
(PDLZW) was proposed. Since not all entries of the DLZW
dictionary contains the same word size, this leads to the need
of the entire dictionary search for every character.
Consequently, the PDLZW has designed to overcome this
problem by partitioning the dictionary into several
dictionaries of different address spaces and sizes. With the
hierarchical parallel dictionary set, the search time can be
reduced significantly since these dictionaries can operate
independently and thus can carry out their search operation in
parallel [3].

II. PRAPOSED APPROCH

In this section, a new two-stage algorithm is
proposed. In this approach, the row data is given to
the PDLZW encoding algorithm. The output of the
PDLZW is given to the Arithmetic coding for
further compression. The decompression process is
totally reverse. Figure 2 shows the block diagram
of this new two-stage algorithm.

Figure 2 Block diagram of a new two-stage algorithm

A. PDLZW Encoding Algorithm

As shown in figure 2, the row data is given to PDLZW
encoding algorithm. PDLZW algorithm is a LZW based
implementation using a parallel dictionary set. It partitions
one large dictionary into several small variable-word-width
dictionaries. Searching in parallel through small dictionaries
would require less amount of processing time than searching
sequentially through one large-address-space dictionary.

The PDLZW encoding algorithm is based on a parallel
dictionary set that consists m of small variable-word-width
dictionaries, numbered from 0 to m-1, each of which
increases its word width by one byte. More precisely,
dictionary 0 has one byte word width, dictionary 1 two bytes,
and so on. The following show the detailed operation of the
PDLZW encoding algorithm. PDLZW dictionary initialized
with the input symbols. ∑ represents the set of input symbols
and |∑| indicate the number of input symbols. The PDLZW
compression and decompression algorithms are shown in [1]
and [4].

Figure 3 Dictionary Structure of PDLZW Algorithm

351

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

The table I shows the example of the PDLZW Encoding
Algorithm. Assume that the alphabet set ∑ is {a, n, ∟} and
the input file contains anan∟aanann∟an. The number of
input symbols is 3. The dictionary set initially contains only
all single character: a, n and ∟. Here for convince we will
use ‘∟’ to indicate space.

TABLE I
ENCODING PROCESS OF PDLZW ALGORITHEMS

Input In dictionary? New Entry Output

a T

an F an – 3 a – 0

n T

na F na – 4 n – 1

a T

 an T

an∟ F an∟- 12 an – 3

∟ T

∟a F ∟a – 5 ∟ – 2

a T

aa F aa – 6 a – 0

a T

an T

ana F ana – 13 an – 3

a T

an T

ann F ann – 14 an – 3

n T

n∟ F n∟– 7 n – 1

∟ T

∟a T

∟an F ∟an – 8 ∟a – 5

n T n – 1

B. Arithmetic Encoding

Arithmetic coding bypasses the idea of replacing an input
symbol with a specific code. More bits are needed in the
output number for longer, complex messages.

The output of the PDLZW encoding algorithm is
{0, 1, 3, 2, 0, 3, 3, 1, 5, 1} and the corresponding
ASCII characters of these values are {NULL, SOH,
ETX, STX, NULL, ETX, ETX, SOH, ENQ, SOH}.
As shown in figure 2, the output of the PDLZW is
given to the Arithmetic encoder as an input. The
output from an arithmetic coding process is a
single number less than 1 and greater than or equal
to 0. This single number can be uniquely decoded
to create the exact stream of symbols that went into

its construction. To construct the output number,
the symbols are assigned set probabilities.

Now next step is to find out the probability and
range of each symbol. Table 2 shows the
probability and range calculation of each symbol.
The table also shows the ASCII value of each
character. These values are used by the arithmetic
encoding algorithm to calculate the low and high
values of the symbols. The characters shown in
table are non-printable characters. So it can be
represented by some special name.

TABLE III
PROBABLITY AND RANGE OF THE

ASCII Value Character Probability Range

0 NULL 2/10(= 0.20) 0.00 ≥ r > 0.20

1 SOH 3/10(= 0.30) 0.20 ≥ r > 0.50

2 STX 1/10(= 0.10) 0.50 ≥ r > 0.60

3 ETX 3/10(= 0.30) 0.60 ≥ r > 0.90

5 ENQ 1/10(= 0.10) 0.90 ≥ r > 1.00

The following table shows the encoding process of
arithmetic coding. Initially, the low value is 0.0 and high
value is 1.0. The range is difference between high and low
values. Arithmetic encoding algorithm is shown in [2]. Next
step is to calculate the low and high values as per the
algorithm.

TABLE IIIII
ENCODING PROCESS OF ARITHMETIC ENCODING

Character range Low High

 0.0 1.0

NULL 1.00 0.0 0.2

SOH 0.20 0.04 0.1

ETX 0.06 0.076 0.094

STX 0.018 0.085 0.0868

NULL 0.0018 0.085 0.08536

ETX 0.00036 0.085216 0.085324

ETX 0.000108 0.0852808 0.0853132

SOH 0.0000324 0.08528728 0.085297

ENQ 0.00000972 0.085296028 0.085297

SOH 0.000000972 0.085296222 0.085295514

Now next step is to calculate the tag value of last symbol.
So the final low value is 0.085296222 and high value is
0.085295514. Now find out the tag value for this example.
Tag is the midpoint of the given interval. It forms a unique
representation for the sequence.

Figure 4 Calculation of Tag value.

T = (high + low) ÷ 2
T = (0.085295514 + 0.085296222) ÷ 2

T = 0.085295681

352

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

This tag value is converted into the bits using bitio
functions [2]. This will create the bit file.

C. Arithmetic Decoding Algorithm

After compression, the next step is to decompress the
compressed data to get original one. As shown in figure 2,
first arithmetic decoder will decompress the floating point
number and generate the integer numbers. At decoder side,
first bits are converted to floating point value. The next step
is to convert this floating point value in symbols.

The following table shows the decoding process with
example. Since 0.085295681 falls between 0.0 and 0.2, the
first character must be NULL. The decoding algorithm is
shown in [2].

TABLE IVV
DECODING PROCESS OF ARITHMETIC ENCODING

Encoded Number Output Symbol Low High Range

0.085295681 NULL 0.0 0.2 0.2

0.426481112 SOH 0.2 0.5 0.3

0.75493704 ETX 0.6 0.9 0.3

0.5164568 STX 0.5 0.6 0.1

0.164568 NULL 0.0 0.2 0.2

0.82284 ETX 0.6 0.9 0.3

0.7428 ETX 0.6 0.9 0.3

0.476 SOH 0.2 0.5 0.3

0.92 ENQ 0.9 1.0 0.1

0.2 SOH 0.2 0.5 0.3

0.0

D. PDLZW Decoding Algorithm

As shown in figure 2, the output of the Arithmetic
decoder is given to as an input of PDLZW decoder. The
operation of the PDLZW decoding algorithm can be
illustrated by the following example. Assume that the
alphabet set ∑ is {a, n, ∟} and input compressed codewords
are {0, 1, 3, 2, 0, 3, 3, 1, 5, 1}. Initially, the dictionaries
numbered from 1 to 3 shown in Figure 3 are empty. By
applying the entire input compressed codewords to the
algorithm, it will generate the same content as is shown in
Fig. 1 and output the decompressed substring {a, n, an, ∟, a,
an, an, n, ∟a, n}. It the advantage of PDLZW algorithm is
that there is no need to pass the whole dictionary to the
PDLZW decoder. The dictionary can be built exactly as it
was during the PDLZW encoder using input stream as data.
This will increase the efficiency of the algorithm.

TABLE VI
DECODING PROCESS OF PDLZW ALGORITHEMS

Old_Code New_Code Output Character Dictionary

 a a a

a n n N an – 3

n 3 an A na – 4

3 ∟ ∟ ∟ an∟ – 12

∟ a a A ∟a – 5

a 3 an A aa – 6

3 3 an A ana – 13

3 n n N ann – 14

n 5 ∟a ∟ n∟ – 7

5 n n n ∟an – 15

III. CONCLUSIONS

The two-stage compression algorithm combines
the features of PDLZW algorithm and arithmetic
coding. PDLZW is the better then the other
dictionary based algorithm(LZ77 in deflate) in
terms of dictionary structure and arithmetic coding
produces the better results compare to the Huffman
coding which is used in deflate. So the
combination of both the algorithms will produce
the higher compression-ratio compares to deflate.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers
and the communicating editor for their useful comments
which improved the presentation of paper.

REFERENCES

[1] M. B. Lin, Jang-Feng Lee and Gene Eu Jan, “A Lossless Data
Compression and Decompression Algorithm and Its Hardware
Architecture”, IEEE Transections on VLSI Systems, vol. 14, No. 9, pp.
925-936, Sep. 2006.

353

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

[2] M. Nelson and Jean-Loup Gailly , “The Data Compression Book”,
2nd ed., BPB publications, 1996.

[3] P. Vichitkraivin and O. Chitsobhuk, “An Improvement of PDLZW
Implementation with a Modified WSC Updating Technique on
FPGA”, World Academy of Science, Engineering and Technology,
2009.

[4] M.B. Lin, “A Hardware Architecture for the LZW Compression and
Decompression Algorithms Based on Parallel Dictionary,” Journal of
VLSI Signal Processing 26, pp. 369-381, 2000.

[5] D. Salomon, “Data Compression the Complete Reference”, 4th ed.,
Springer, 2007.

354

