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Abstract— This paper proposes an observer design for 

piecewise nonlinear systems via observer linearization. The 

model is a piecewise multi-linear (PML) system, a nonlinear 

approximation, and fully parametric. Feedback linearization is 

applied to stabilize PML control system. However, since exact 

observer linearized conditions are more conservative than 

exact feedback linearized ones, the exact observer linearization 

can be applied to only a few nonlinear systems. This paper 

shows the PML model based linearized observer can be applied 

to a wider system than the conventional one. We apply the 

proposed method to TORA (Translational Oscillator with 

Rotating Actuator) system which is one of the benchmark 

problem for nonlinear control. Example is shown to confirm 

the feasibility of our proposals by computer simulation. 

Keywords—observer linearization, piecewise multi-linear 

model, nonlinear control, feedback linearization 

I.  Introduction 
Piecewise linear (PL) systems which are fully parametric 

have been intensively studied in connection with nonlinear 
systems [1], [2], [3], [4]. We are interested in the parametric 
piecewise approximation of nonlinear control systems based 
on the original idea of PL approximation. The PL 
approximation has general approximation capability for 
nonlinear functions with a given precision.  

Sugeno suggested to use the piecewise multi-linear 
(PML) approximation [5]. PML approximation also has 
general approximation capability for nonlinear functions 
with a given precision. We note that a multi-linear function 
as a basis of PML approximation is, as a nonlinear function, 
the second simplest one after a linear function. The PML 
model has the following features. 1) The PML model is 
derived from fuzzy if-then rules with singleton consequents. 
2) It is built on piecewise hyper-cubes partitioned in the 
state space. 3) It has general approximation capability for 
nonlinear systems. 4) It is a piecewise nonlinear model, the 
second simplest after a PL model. 5) It is continuous and 
fully parametric. The authors of this paper have been 
researching the PML systems [6-7], [9-12], [15-18].  

This paper proposes an observer design for piecewise 
nonlinear systems via observer linearization. Feedback 
linearization can be applied to stabilize PML control system. 
However, since the observer linearized conditions are more 
conservative than feedback linearized ones the observer 
linearization can be applied to only a few nonlinear systems.  

Tadanari Taniguchi 

IT Education Center, Tokai University,  

Hiratsuka, Kanagawa, 2591292 JAPAN 

Michio Sugeno 

Tokyo Institute of Technology 
JAPAN 

In comparison with the other observer designs [11], [12], 
this paper deals with the necessary and sufficient conditions 
for observer linearization. We show the PML model based 
linearized observer can be applied to a wider system than the 
conventional one. We apply the proposed method to TORA 
system which is one of the benchmark problem for nonlinear 
control.  

This paper is organized as follows. Section II introduces 
the canonical form of PML models. Sections III and IV 
briefly present feedback linearization and observer 
linearization. Sections V and VI represent TORA system 
and the PML model. Sections VII and VIII propose the 
controllers and the observers of TORA system. Section IX 
shows an example demonstrating the feasibility of the 
proposed methods. Finally, section X summarizes 
conclusions.  

II. Canonical Forms of 
Piecewise Multi-Linear Models 
We introduce PML models suggested in [5]. We deal 

with the n-dimensional case of a nonlinear control system. 

Define vector 1( , , )nd    and rectangle 
1 n

R   in n-

dimensional space as  1 1 1( , , ) ( ( ), , ( ))T

n n nd d d    , 

 1 1 1 1 1 2 2 2 2[ ( ), ( 1)] [ ( ), ( 1)]

[ ( ), ( 1)],

n

n n n n

R d d d d

d d

     

 

   

 
   

where i  is integer: i    , ( ) ( 1)i i i id d      and  

1 2(0) ( (0), (0), , (0))T

nd d d d . Superscript 
T
 denotes a 

transpose operation. 

We consider an n-dimensional nonlinear control system. 

( ) ( ) ( )

( )

x f x g x u x

y h x

 



    (1) 

For 
1 n

x R  , the PML model (2) is constructed from 

the  nonlinear system (1).  

( ) ( ) ( )

( ),

p p

p

x f x g x u x

y h x

 



  (2) 

where 
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
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

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

 (3) 

and 1( , )nf i i , 1( , )ng i i , 1( , )nh i i , and 1( , )nd i i  are 

the vertices of the nonlinear system (1). The membership 
functions are  

1

( 1)
( ) ,

( 1) ( )

( )
( ) ,

( 1) ( )

j

j

j j j

j j

j j j j

j j j

j j

j j j j

d x
x

d d

x d
x

d d








 




 



 


 


 
  

 

1, ,j n  , ( ) [0 1]i

j jx  , and 1( , , )T

nx x x  . In the 

above, we assume  (0,0) 0f   and (0,0) 0d   to guarantee 

0x   for 0x  . 

 

 
Figure 1: A piecewise region of f1(x) in 2D case 

 

We explain the modeling procedure of PML system in 

two-dimensional case.  

1) Assign vertices 1 2( , )d i i  for 1 1 1( )x d  , 1 1( 1)d   , 

2 2 2( )x d  , 2 2( 1)d    of state vector x , then 

partition state space into piecewise regions (see Fig. 1). 

2) Compute vertices 1 2( , )f i i , 1 2( , )g i i  and 1 2( , )h i i  in 

equation (3) by substituting values of 1 1 1( )x d  , 

1 1( 1)d    and 2 2 2( )x d  , 2 2( 1)d    into original 

nonlinear functions ( )f x , ( )g x  and ( )h x  in the 

system (1). Fig. 1 shows the expression of  1( )f x and

1 2
x R  . 

The overall PML model is obtained automatically when 

all vertices are assigned. Note that ( )f x , ( )g x  and ( )h x  in 

the PML model coincide with those in the original system at 

vertices of all regions.  

III. Feedback Linearization 
This section deals with a feedback linearizing controller 

for PML model. Since the stabilizing conditions are 
represented by bilinear matrix inequalities (BMIs) [8], it 
requires a long computing time to obtain a stabilizing 
controller. To overcome the difficulty, we derived the 
stabilizing conditions [9], [10] based on feedback 
linearization approaches.  

First we give a brief introduction to the feedback 

linearization [13] of nonlinear systems. We consider the  

nonlinear system (1), where ( )f x , ( )g x  and ( )h x  are 

assumed to be sufficiently smooth in a domain nD R . The 

mappings : nf D R  and 
nD R  are called vector fields 

on D . The time derivatives of the output y are calculated 

until the input u appears. Then the controller is obtained as 
1( ( ) ) / ( )f g fu L h x v L L h x    . 

The controller reduces the input-output map to 
( )y v  , 

which is a chain of   integrators. In this case, the integer 

  is called the relative degree of the system.  

Definition 3.1: The nonlinear system is said to have relative 

degree  , 1 n  , in a region 0D D  if 

( ) 0, 0, 2

( ) 0, 1

i

g f

i

g f

L L h x i

L L h x i





  

  
   

for all 0x D . The feedback linearized system can be 

formulated as 

,

,

A Bv

y C

 



  



    (4) 

where 

2

1

0 1 0 0 0 1

0 0 1 0 0

, , , .0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

T

f

f

f

h

L h

A B C

L h

L h










       
       
       
          
       
       

      
      

  □ 

The stabilizing linear controller v F  of the 

linearized system (4) can be obtained so that the transfer 

function 
1( )G C sI A B   is Hurwitz. Due to lack of space, 

this paper only deals with the case of n  . 

IV. Observer Linearization 
We consider the nonlinear system (1). If there exists a 

coordinate transformation ( )x   such that the system (1) 

can be transformed into the following system: 

0

0

( ) ( )A k y r y u

y C

 



  


 

with 0 0( , )C A observable and , : nk r  then it would be 

possible to build a full order state observer: 
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0

0

ˆ ˆ ˆ( ) ( )

ˆˆ

A k y H y y

y C

 



   



 

The estimation error ˆe    satisfies the linear 

differential equation: 0 0( )e A HC e  . The estimation state 

is 1 ˆˆ ( )x   . This problem is referred to as the observer 

linearization problem. The following theorem [13] gives a 
necessary and sufficient condition for the solution of the 
observer linearization problem. 

Theorem 4.1: The observer linearization problem [13] is 

solvable if and only if there exists the neighborhood V of 

an initial condition 0x  satisfies the following two 

conditions.  

C1: 
1dim(span{ ( ), ( )})n

fdh x dL h x n  ,where x V  .  

C2: [ ( ), ( )] 0i j

f fad x ad x   ,where 0 1i n   , 

0 1j n   , x V .  

The vector field ( )x  satisfies 

1( ( ) , ( ) , , ( ) ) ( ) (0, ,0,1)T T n T T T

f fdh x dL h x dL h x x 

 □ 

If the nonlinear system (1) is observer linearizable there 

exists a coordinate transformation ( )x   satisfies the 

following condition.  

11( 1)

0,
( )

1,
jj
f

iad

i j
L x

i j



 


  (5) 

The coordinate transformation   can be constructed as  

1 2( ) ( ( ), ( ), , ( ))T

nx x x x       

V. TORA System 
We consider TORA (Translational Oscillator with 

Rotating Actuator) system [14] which is one of the 

benchmark problem for nonlinear control. A coordinate 

transformation is applied to TORA system (Fig. 2) then the 

dynamics [14] is represented as   

2

1 3

4

1

0

sin 0
( )

0

0 1

( )

x

x x
x f x gu u

x

y h x x



    
    

        
   
   
   

  

  (6) 

where 
4x  , y , and the parameter   depends on the 

eccentricity, cart mass, and ball mass. In this paper, we 

apply the proposed methods to TORA system (6).  

 

 

Figure 2: TORA system 

 

VI. PML Model of TORA System 
We construct the PML model of TORA system (6). The 

state variable x is divided by 1 2 3 4m m m m    vertices,  

1 1 1 1{ (1), , ( )}x d d m  , 2 2 2 2{ (1), , ( )}x d d m , 

3 3 3 3{ (1), , ( )}x d d m , 4 4 4 4{ (1), , ( )}x d d m . 

The PML model is expressed as (2), where 
1 4

x R   , 

 

1 4

1 4

1 1 4 4

2 2

1 1
1 1 3 3

1 1 4 4

4 4

1

( )

( ) sin ( )
( ) ( ) ( ) ,

( )

0

0 0 0 1 ,

( ) ( ( 1) ) / ( ( 1) ( )),

( ) ( ( )) / ( ( 1) ( )), 1, ,4.

j

j

i i

p

i i

T

p

j j j j j j j j j

j j j j j j j j j

d i

d i d i
f x x x

d i

g

x d x d d

x x d d d j

 

 






 

   

   

 

 



 
 
  
 
 
 



    

    

 

 

The model is found to be fully parametric and the 

internal model dynamics is described by multi-linear 

interpolation of the vertices: 1 1( )d i  , 2 2( )d i , 3 3( )d i  and 

4 4( )d i  (see Fig. 1).  

Note that there are some modeling errors because the 

PML model is a nonlinear approximation. In proposed 

method the vertices ( )j jd i  of an arbitrary number can be set 

on arbitrary position of the state space. Therefore it is easily 

possible to adjust the approximated error. 

VII. Controller Designs for TORA 
System 

A. Exact Feedback Linearization of 
Original Nonlinear Systems 
We design the controller of TORA system (6) via the 

exact feedback linearization [13]. The time derivatives of 

the output y have to be calculated until the input u appears. 

Then the controller is obtained as  
2

1 3 4 3

3 3

sin sin 1

cos cos

x x x x
u v

x x

 

 

  
     (7) 

where v is the linear controller for the following linearized 

system (4), where 
2 3( , , , )T

f f fh L h L h L h  . The parameters A, 

B, and C are the same as the system (4).  

However, the controller (7) is only well defined at 

3/ 2 / 2x     because the denominator of the controller 

is 3cos x . Hence the rotor 3x  of TORA system can only be 

rotated at 3/ 2 / 2x    .  

B. Exact Feedback Linearization of 
PML Systems 
We design the controller via the exact feedback 

linearization using the PML model (2) of TORA system. 

The time derivatives of the output y also have to be 
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calculated until the input u appears. Then the controller is 

obtained as  

31

31

1 1 3 3

4 3

11

1 1 3 3 1 1 3 3

3 3 3 3 3 3 3 3

3 3 3 3

3 3 3 3

( ) /

( ) ( )( ( ) sin ( ))

(sin ( 1) sin ( )) / ( ( 1) ( ))

( 1) ( )

(sin ( 1) sin ( ))

p p pf p g f p

ii

i i

u L h v L L h u

x x d i d i

d i d i d i d i

d i d i
v

d i d i



 

  







 

  

 


   

 


 

 
 (8) 

where v F    is the linear controller of the linear system 

(4), where 
2 3( , , , )T

f f fh L h L h L h  . The parameters A, B, and 

C are the same as the system (4).  If 3 3 3 3sin ( 1) sin ( )d i d i  ,

3 31,...,i m , there exists a PML controller (8) of TORA 

system (6) at 3x  since 3 0
p pg f pL L h   . Thus we have to 

construct the PML model of TORA system such that

3 3 3 3sin ( 1) sin ( )d i d i  . Therefore the PML model based 

controller (8) can be applied to a wider region than the 

conventional feedback linearized controller (7). 

VIII. Observer Designs for TORA 
System 

A. Exact Observer Linearization of 
Original Nonlinear System 
C1 of Theorem 4.1 is calculated for the original 

nonlinear system (6). 
2 2

1 3det cosD x  , 

where
1

1 ( ( ) ( ) , , ( ) ) .T T n T T

f fD dh x dL h x dL h x The matrix 

1D  is not linear independence at 3 / 2x    . One of the 

condition C2 is also calculated for the original nonlinear 

model as follows: 

0 3 3

2 3

3

2sin
[ ( ), ( )]

cos
f f

x
ad x ad x

x
 


  

The above equation is equal to 0 at 3 0x   and the 

equation cannot be defined at 3 / 2x   . Therefore the 

nonlinear system (6) is not observer linearizable.  

B. Exact Observer Linearization of PML 
System 
C1 of Theorem 4.1 is calculated for the PML system (2) 

of TORA system (6).  
1det( ( ) ( ) , , ( ) ) 0T T n T T

f fdh x dL h x dL h x a   , 

where a is a non-negative constant value. C2 of Theorem 4.1 

is also calculated for the PML model (2) of TORA system 

(6). 

[ ( ), ( )] 0,i j

f fad x ad x    

where 0 3i   , 0 3j  and  ( ) 0 0 0 1/
T

x a   . 

Therefore the PML system (3) is observer linearizable. From 

the conditions (5), the coordinate transformation vector 

 4 3 2 1( )
T

x ax ax x x    can be constructed. We 

can also design the observer gain H such that the estimation 

error system 0 0( )e A HC e   is stable.  

IX. Simulation result 
We design the PML model based linearized controller 

(8) and the observer for TORA system (6) in a computer 

simulation. In this simulation, the state variables 1x , 2x , 3x , 

and 4x of TORA system are divided by the following 

vertices.  

1 { 2.5,0,2.5}x    , 2 { 2.5,0,2.5}x    

3 { , 7 / 8, , }x      , 4 { 10,0,10}x    

The parameter   is 0.5. The control system parameters are 

as follows: the feedback gain is 

 1.000 3.078 4.236 3.078F   , the observer gain is 

 316.2 764.4 765.9 318.6 ,
T

H  and the observer 

system matrices are  

0 0

0 0 0 0 0

1 0 0 0 0
, .

0 1 0 0 0

0 0 1 0 1

T

A C

   
   
    
   
   
   

 

The initial conditions are  (0) 1 0 0 0
T

x  and 

 (0) 0 0 0 0
T

   . Figs. 3 and 4 show the linearized 

observer states and the estimated states. Fig. 5 shows the 

state responses.  
 

 
Figure 3: Linearized observer states ( 1 , 2  ) and the 

estimations of TORA system 
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Figure 4: Linearized observer states ( 3 , 4  ) and the 

estimations of TORA system 

 
Figure 5: State responses of TORA system 

 

X. Conclusion 
This paper has proposed an observer design for 

piecewise nonlinear systems via observer linearization. The 
model is a PML system, a nonlinear approximation, and 
fully parametric. Feedback linearization can be applied to 
stabilize PML control systems. However, since exact 
observer linearized conditions are more conservative than 
exact feedback linearized ones, the exact observer 
linearization can be applied to only a few nonlinear systems. 
This paper has showed the PML model based linearized 
observer could be applied to a wider system than the 
conventional one. We have applied the proposed method to 
TORA system which was one of the benchmark problem for 
nonlinear control. Example has been shown to confirm the 
feasibility of our proposals by computer simulation.  

In future work, we will apply the proposed methods to 
real systems and will design an observer-based feedback 
controller for nonlinear systems using PML models.  
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