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Abstract—In this work, we conduct a theoretical analysis of 
an oscillatory electroosmotic flow in a parallel-plate 
microchannel taking into account slippage at the microchannel 
walls. The governing equations given by the Poisson-Boltzmann 
(with the Debye-Hückel approximation) and momentum 
equations  are nondimensionalized from which four 
dimensionless parameters appear: an Reynolds angular number, 
the ratio between the zeta potentials of the microchannel walls, 
the electrokinetic parameter and the dimensionless slip length 
which measures the competition between the Navier slip length 
and the half height microchannel. The principal results indicate 
that the slippage has a strong influence on the magnitude of the 
oscillatory electroosmotic flow increasing the velocity magnitude 
up to 50% for the numerical values used in this work. 
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I.  Introduction 
Many devices used in microfluidics have attracted 

considerable interest because of their potential for use in novel 
applications in various areas of science and industry. 
Biotechnology is a continuously growing field and has given 
rise to many experiments and applications involving micro-
electro-mechanical systems (MEMSs) [1], such as the 
separation of deoxyribonucleic acids (DNA) [2], the 
separation of proteins [3], mixing processes [4] and the 
detection of bacteria or viruses [5]. Operations involving 
MEMS devices frequently require the pumping, control and 
manipulation of samples. To drive fluids through such devices, 
one can use electrokinetic effects [?] such as electroosmosis, 
which refers to the induction of a liquid flow via the 
application of an external electric field along electrostatically 
charged surfaces. Electroosmotic flows (EOFs) can be used 
for various tasks, such as dispersion control in micromixing 
based on the field effect [?], to create a nonuniform zeta 
potential along the channel walls, thereby achieving improved 
electrokinetic separation [6]. In applications involving 
separation and mixing in microchannels, oscillatory 
electroosmotic flows (EOFs ) driven by alternating currents 
(AC-driven EOFs) have become increasingly popular because 
of their broad applications and marked advantages compared 
with steady EOFs (DC-driven EOFs). Another important 
factor that strongly affects the dynamic behavior of DC- and 
AC-driven EOFs is the fact that microchannels are typically 
fabricated with different wall materials; in practice, diverse 
materials can modify the zeta potentials at the microchannel 
walls [7]. In many of the works cited above, the analysis was 
performed under the assumption of zeta potentials that are 
different at the different walls but uniform in the longitudinal 
direction of the microchannel, a scenario that can be created 
by imposing an external DC electric field. However, there are 
no studies in which an analysis of an EOF has been performed 

for AC-driven EOFs with different wall zeta potentials and 
slippage at the walls. This analysis is expected to serve as a 
benchmark for extending our understanding of the spatio-
temporal analysis of microfluidic devices for which precise 
knowledge of transient transport phenomena is important. In 
addition, this investigation has practical implications for the 
ability to exploit in future works various combinations of 
separation and mixing effects in microchannels.  

II. Mathematical Formulation 

A. Physical Model 
The physical model under study is depicted in Fig. 1. We 

consider the periodic oscillatory electroosmotic flow (OEOF) 
of a symmetric (z:z) electrolyte solution in a parallel-plate 
microchannel of height H and length L, such that L  H; here,   
is the valency of the electrolyte. The origin of the coordinate 
system is defined to lie at the left corner of the lower surface 
of the microchannel. We consider that the walls of the channel 
can have different (asymmetric) zeta potentials, that is, 1≠2, 
and that the high concentration of electric charges is localized 
near the channel walls, within the EDL, whose thickness is 
represented by --1, where ≡(2e2z2n/εkBT)1/2 [8]; here e, n, 
ε, kB and T represent the elementary charge, the ionic number 
concentration in the bulk solution, the dielectric permittivity of 
médium, the Boltzmann constant and the absolute 
temperature. The electroosmotic flow is caused by the 
movement of the electric charges adjacent to the walls of the 
microchannel when an external periodic electric field, given 
by Ex(t )= E0 sin(t), is applied; here, t,  and E0  represent 
time and the angular frequency and amplitude of the 
sinusoidal electric signal, respectively. It is assumed that the 
flow is laminar and that the electric double layers on the inner 
surfaces of the microchannel do not overlap, that is, H --1. 
The ends of the microchannel are assumed to be at the same 
pressure, P0.  
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Fig. 1. Schematic diagram of the physical model under study.  

 

B. Governing Equations 
Electric potential. The electric potential distribution close 

to the inner surface of the capillary is governed by the 
Poisson-Boltzmann equation [8]. Under the Debye-Hückel 
approximation, and considering that L H , such equation 
becomes   

   

        (1) 

Equation (1) is subject to the following boundary 
conditions: 

      at          and           at       (2) 

 

Flow field. To determine the hydrodynamic of the OEOF, 
we assume that the flow is unidirectional and fully developed, 
with u(y,t) representing the velocity in the x direction. In the 
absence of a pressure gradient, we use the modified Navier-
Stokes equation 

 
  

  
  

   

        ( )  (3) 

 
where ρ and  µ are the mass density and viscosity of the fluid, 
respectively. Equation (3) is subject to the following boundary 
conditions:  

    
  

  
              (4) 

In the above equation, b denotes the Navier length. Note 
that we focus the analysis on long times, i.e., when the 
transient stage has elapsed and the flow field is only periodic. 
Therefore, the initial condition is not needed to solve the 
momentum equation. 

C. Non-dimensional formulation and 
analytical solution 

 
We define the dimensionless variables  ̅ ≡ y/H,  ̅ ≡ t/tc,  ̅  

≡ψ/ψc, and  ̅ ≡ u/uHS, where ψc = kBT /ze, uHS = −ζ1E0/µ is 

the Helmholtz-Smoluchowski velocity Masliyah [8], and tc = 
H2

/ν, where ν = µ/ρ represents the kinematic viscosity of the 

fluid. Therefore, the dimensionless Poisson-Boltzmann 
equation, Eq. (1), is given by  

 
   ̅

  ̅   ̅  ̅  
(5) 

where  ̅≡ κH. The boundary conditions associated with 
Eq. (5) are given in dimensionless form as  ̅=   ̅ at  ̅ = 1, and 
 ̅=   ̅  at  ̅ =−1. Here,   ̅   = ζ1ze/kBT and   ̅   = ζ2ze/kBT. The 
solution of Eq. (5), is given by 
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The dimensionless version of the momentum equation, Eq. 

(3), is written as follows:  
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  ̅  
 

   ̅

   ̅  
  ̅  ̅     ̅  (7) 

 
where Reω= ωH

2
/ν represents the angular Reynolds number 

[9] and denotes the competition between the characteristic 
diffusion time and the characteristic time associated with the 
oscillatory electric field. The dimensionless boundary 
conditions needed to solve Eq. (7) are: 
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where s= b/H denotes the ratio between the Navier length and 
the microchannel half height. To obtain the time-periodic 
solution of the velocity, we define the complementary 
complex velocity  ̂  in such a manner that   ̅( ̅  ̅)  
    ( ̅)    (  ̅)  , where Im denotes the imaginary part of the 
complementary complex velocity. Therefore, substituting the 
proposed solution into Eq. (7), and solving the resulting 
differential for F( ̅), we obtain 
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The expressions for B1 and B2 are given by 
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In Eqs. (9)-(11), the parameter A1 and A2 are defined as 

follows: 
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From Eqs. (9)-(11), when     , the dimensionless 
velocity  profile under the no-slip condition is recovered, 
which has been previously published [10]. 

 

 

D. Results 
For all numerical calculations and for estimating the 

dimensionless parameters involved in the analysis, we select a 
suitable combination of typical values of physical parameters 
of EOFs as follows: 0.1 ≤ H ≤ 15 m; 1 ≤ -1 

≤ 500 nm; ~103 
kg m-3; |1|, |2| ≤ 25 mV; and 0.1 ≤  ≤ 100 rad s-1. In what 
follows, dimensionless velocity and concentration profiles are 
shown. 

Dimensionless velocity profiles  ̅ as a function of the 
dimensionless transversal coordinate  ̅  , and evaluated at 
arbitrary values of the dimensionless time  ̅ are shown in Fig. 
2. Here, in Figs. 2(a) and 2(b) we show velocity fields, for 
  =0 (no slip condition) and for   =0, respectively. We assume 
a relatively small value of the angular Reynolds number 
R=0.1, which means that the inertial effect is small as 
compared against the viscous and electric forces, as can be 
deduced from Eq. (7). It is evident that in this limit, the term 
on the left-hand side of such equation can be neglected, and 
under this condition, the asymptotic behavior of the velocity is 
 ̅  ( ̅)    ( ̅), meaning that the velocity is in-phase with the 
external electric field. This result has been previously 
explained by Peralta et al. [10] and therefore, details are 
omitted. In should be noted that in Ref. [10] the slippage was 
not considered in the analysis. In the present case, by 
comparing Figs. 2(a) and 2(b), is noted that the slippage 
increases the velocity magnitude up to 50% for the assumed 
values of the involved parameters in the analysis. Another 
aspect that should be observed is that using the relatively small 
value of  R=0.1 the velocity profiles are uniform through the 
cross-section of the microchannel, which is typical when the 
mirochannel height is large compared with the Debye length, 
i.e.,  ̅     

 
(a) 

 

 
(b) 

Fig. 2. Dimensionless velocity profiles evaluated at different values 
arbitrary of the dimensionless time   ̅. Here,  R = 1,  ̅ = 50, R = 0.1 with  (a) 
no slip condition,    = 0; and (b) with a value of the dimensionless slip length 

 = 0.01. 
 

In Figs. 3 we show the effect of the parameter R on the 
dimensionless velocity profile for a condition of the slippage 
of    = 0.01. Here, a relatively large value of R=100 is used. 
As can be seen, for this condition, large velocity gradients are 
present only close to the microchannel walls, and they remain 
uniform in the middle part of the cross-section. This means 
that in contrast to Fig. 2, here, the inertial effect is strong and 
confined to a boundary layer close to the walls. It is important 
to mention that the effect of the slip condition at the wall can 
be seen at  ̅    and at  ̅   . 

 
Fig. 3 Dimensionless velocity profiles evaluated at different values 

arbitrary of the dimensionless time   ̅. Here,  R = 1,   ̅= 50, R = 100 and    = 
0.01. 
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In Fig. 4 we show the simultaneous effect of the slip 
condition and the asymmetry of the zeta potentials at the 
walls. In this figure, the asymmetry of the zeta potentials is 
represented by the value of R = -1. This means that one of the 
walls is positively charged and the another with a negative 
charge. In this case, the velocity profiles are asymmetric due 
to the electric force in the electric double layer act in opposite 
direction. We could anticipate that the simultaneous effect of 
the asymmetry of the zeta potentials and the slippage at the 
walls could be used for enhancing micromixing or species 
separation in microchannels if desired. Such a study has been 
previously conducted but with the assumption of a constant 
external electric field [10,11] but no slip condition at the walls. 

E. Conclusions 
In this work, we conducted the theoretical analysis of an 
oscillatory EOF, where slippage at the walls was assumed. In 
addition,  the analysis takes into account asymmetric zeta 
potentials. It is shown that the dimensionless velocity 
magnitude is increased when the slip condition is assumed in 
comparison with the case of no slippage. Also, it was shown 
the effect of the angular Reynolds number on the 
dimensionless velocity profiles, which modifies notably the 
hydrodynamic behavior.  
Future work consists of carrying out a similar analysis to that 
conducted here for non-Newtonian fluids and considering 
different types of the oscillatory electric fields. In addition, the 
transport of a neutral solute under the hydrodynamic 
conditions included in the present work will be carried out. 

 

 
Fig. 4 Dimensionless velocity profiles evaluated at different values 

arbitrary of the dimensionless time   ̅. Here,  Rz=-1, k=50, Rw=100 and 
=0.01. 
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