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Abstract—In the present study, singular stress fields in 

three-dimensional piezoelectric bonded joint with two-real 

singularities are investigated at a vertex and along a free edge 

(a singular line) of an interface. A conservative integral 

formulation is developed for calculating the intensity of 

singularity at a point located on the singular line of three-

dimensional piezoelectric bonded joint. The intensities of the 

singularities at several positions along the singular line of the 

interface are determined. The relationships between singular 

stress fields at the vertex and along the singular line are 

considered.  
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I.  Introduction 
      Piezoelectric materials have been frequently used in 

numerous engineering and technology products, e.g., sensors 

or actuators. Piezoelectric bonded joints have singularities 

created by discontinuities in material properties across 

interfaces. The stress singularities caused from mechanical 

or electric inputs may lead to fracture and failure, so the 

investigation of singular stresses in the piezoelectric bonded 

joints is important. 

      In the present study, singular stress fields in three-

dimensional piezoelectric bonded joints are investigated. 

The singular stress fields in three-dimensional bonded joints 

are more complicated than those in two-dimensional joints. 

In three-dimensional bonded joints, singular stresses are 

generated not only at the vertices but also along the free 

edges of the interface. Three-dimensional conservative 

integral developed by Luangarpa and Koguchi [1],[2] is 

extended to the intensity of singularity at a point located on 

the singular line (along a free edge) of three-dimensional 

piezoelectric bonded joint. Eigenanalysis formulated by a 

three-dimensional FEM (Islam and Koguchi [4]) is used for 

calculating orders of stress singularity, angular functions of 

displacements and stresses.  

     The intensities of singularity along the singular line of 

the bonded joints with one-real singularity were investigated 

by Luangarpa and Koguchi [2]. They proposed that the 

intensities of the singularities along the singular line could 

be described as a function of the distance from the vertex 

and the singular stress at the vertex. We are studying further  
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in case of multi-term of singularities. To our knowledge, no 

study in case of multi-term of singularities has been 

conducted. Hence, in this study, the piezoelectric bonded 

joint with multi-term of singularities is investigated; and the 

intensities of singularities at several positions along the 

singular line of the interface are examined. 

II. Analytical Formula 
      A conservative integral along a singular line in three-

dimensional piezoelectric bonded joints is developed using 

Betti’s reciprocal principle as follows: 

    .    (1) 

      For any contour S,  and (i =1, 3) are tractions, and 

ui and u’i are displacements of the singular and 

complementary fields, respectively. For piezoelectric 

material, additional terms related to electric properties are 

added; T4
and ¢T4

 are the electric displacement with the 

outward unit vector ( T4 = s 4 jn̂ j ), and u4 and u’4 are the 

electric potentials. This principle is extended to solve the 

three-dimensional bi-material model as shown in Fig. 1. 

Equation (1) is rewritten as an integral with respect to the 

closed area shown in Fig. 2 as follows: 

    .

    

(2) 

     The contour, S, is chosen as S = S0+S1+S2+S3, where S2 

and S3 are on free-surfaces, then the traction is free on these 

surfaces so that 

    

.  (3) 

     Modifying the form of traction to be , where  

is the outward unit vector to the closed surface, S. Let  be 

the unit vector in the reversed direction of , such that 

    .  (4) 

     Equation (4) proves that the integral is area-independent. 

     The H-integral at the vertex in 3D dissimilar materials is 

defined as follows: 

    ,    (5) 

where is an arbitrary area enclosing the singular point 

(Fig. 3). 

Ti ¢Ti
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     The asymptotic stresses around the singular point in 

spherical coordinate system can be described as follows: 

    s ij (r,q ,f) = Kn
r

L

æ

èç
ö

ø÷

-ln

fij
(n)(q ,f)

n=1

m

å ,  (6) 

where r is the radial distance from the singular point, m is 

the number of singularity term; i, j = r, , , and λ, K, and fij 

are the order of the stress singularity, the intensity of 

singularity, and angular functions, respectively. 

     The displacement fields are given by 

    ui (r,q ,f) = Kn
r1-ln

L-ln

æ

èç
ö

ø÷
gi
(n)(q ,f)

n=1

m

å .   (7) 

     The electric displacement and electric potential can be 

written as follows: 

    s 4 j (r,q ,f) = Kn
r

L

æ

èç
ö
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n=1

m

å ,   (8) 

    u4 (r,q,f) = Kn
r1-ln

L-ln

æ

èç
ö

ø÷
g4

(n)(q,f)
n=1

m

å ,        (9) 

where and u4 are the electric displacement and the 

electric potential, respectively. 

     Determination of each intensity of singularity is obtained 

by calculated the stresses for each order of singularity as 

follows: 

     s ij (r,q,f) = K
r

L

æ

èç
ö

ø÷

-l

fij (q,f),   (10) 

     The displacement field is of the following form: 

    

ui(r,q,f) = K
r1-l

L-l

æ

èç
ö

ø÷
gi(q,f).   (11) 

     The primed solution is a complementary solution with an 

order of singularity of λ`= 3-λ (Lee and Im [6]). The stress 

components and the displacements are 

    

¢s ij (r,q,f) =C
r

L

æ

èç
ö

ø÷

- ¢l

¢fij (q,f) ,   (12) 

    

¢ui(r,q,f) =C
r1- ¢l

L- ¢l

æ

èç
ö

ø÷
¢gi(q,f).   (13) 

    Finally, the intensity of singularity can be obtained from 

    

,   (14) 

where SΓ is an arbitrary surface around the singular point. 

III. Numerical Analysis 

A. The Model for Analysis 
 

The model used for the analysis is illustrated in Fig. 1. 
The model is a bi-material bonded joint that consists of 
PZT-4 as an upper material and PZT-5H as a lower material. 
Mechanical loading, a uniform tensile stress ( s 0 =10 MPa), 

is applied to the top surface. The model is fixed on the 
bottom surface. The length, L, is fixed at 5 mm. Dimensions 

and boundary conditions are shown in Fig. 1, and the 
material properties are listed in Table 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Analytical model and boundary conditions 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 A specific closed area for integral 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 A small circle area, SΓ 
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TABLE I.  MATERIAL PROPERTIES 

  PZT-4 PZT-5H 

Elastic Constant, GPa 

C11 139 126 

C12 77.8 55 

C13 74.3 53 

C33 113 117 

C44 25.6 35.3 

Piezoelectric Constant, 

C/m2 

e31 -6.98 -6.5 

e33 13.8 23.3 

e15 13.4 27.0 

Dielectric Constant, 10-10 

C/Vm 

χ11 60.0 151 

χ33 54.7 130 

 

TABLE II.  THE ORDERS OF STRESS SINGULARITIES 

 λvertex λline 

(1) 0.587 0.458 

(2) 0.313 0.312 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Angular function of stresses;        
( ) (   ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Mesh model for FE analysis (d =2 mm) 

B. Orders of Singularity and Angular 
Functions 

      Eigenanalysis formulated by a three-dimensional FEM 

(Islam and Koguchi [4]) is used to calculate orders of stress 

singularity. The eigenequation derived by the principle of 

virtual work for calculating the eigenvalue, p, is expressed 

as follows: 

    ,                    (15) 

where [A], [B], and [C] are matrices composed of the 

material properties, p = 1-, and {u} is the eigenvector of 

displacement (refer to Pageau and Bigger [5] for details). 

     The results for the orders of the singularity at the vertex, 

λvertex, and the orders of the singularity along the singular 

line, λline are presented in Table 2. This model consists of 

multi-term of singularities. In this study, we have considered 

two-major terms of singularities, and defined λ
(1)

 to be the 

largest order of singularity. As shown in Table 2, the 

magnitude of λvertex
(1)

 is larger than that of λline
(1)

. However, 

the magnitude of λvertex
(2)

 and λline
(2)

 are nearly the same 

value. 

      After calculating the orders of the singularity, the 

angular functions of the displacements and the electric 

potential,   (   ) and    (   ), shown in Eqs. (7) and (9) 

are obtained using eigenvector analysis. The angular 

functions of the displacements and the electric potential are 

then converted to the angular functions of the stresses and 

the electric displacements,    (   ) and     (   ), shown in 

Eqs. (6) and (8) following the stress-strain relation. 

      The angular functions at the vertex are normalized such 

that  

                
( ) ( ) (

 

 
 
 

 
)              

( ) ( )
(
 

 
 
 

 
)   ,  (16) 

      Details of the eigenvalue, the eigenvector analysis and 

the angular functions at the vertex are shown in Luangarpa 

and Koguchi [3]. 

      Next, the angular functions for the point on the singular 

line are normalized such that  

             
( ) ( ) (

 

 
 
 

 
)            

( ) ( )
(
 

 
 
 

 
)   .    (17) 

      For instance, the angular function of stress, 

       
( ) (   ),  is shown in Fig. 4. 

C. Intensities of Singularity at the 
vertex 

      The conservative integral was used to analyse the 

intensity of the singularity at the vertex. The singular 

solutions used in Eq. (14) were obtained using the Marc2015 

finite element (FE) program. Eight-node elements are 

employed. The elements around the vertex are organized to 

be spherical in shape and centred at the vertex. The angular 

dimensions of the element are f  = 15° and   = 15°. The 

size of the smallest element connected to the singular point 

is 0.01 mm in the r-direction. The integral surface area is the 

area with a distance 0.05 mm from the vertex. 

     The results of the intensity of the singularity are; Kvertex
(1)

 

= 1.05 and Kvertex
(2)

 = 0.96. (Details of the conservative 
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integral for the vertex are presented in Luangarpa and 

Koguchi [3].) 

D. Intensities of Singularities along the 
singular line 

 

     The conservative integral is extended to obtain the 

intensity of the singularity at a point on the stress singular 

line. Example of the element model used in the FE analysis 

is shown in Fig. 5 (the model with d = 2 mm). The eight-

node element is used in the same manner as in the analysis 

at the vertex. The elements around the singular point are 

organized to be spherical shape. Similar to the analysis at 

the vertex, the angular dimensions of the element are   = 

15° and   = 15°; and the size of the smallest element 

connected to the singular point is 0.01 mm in the r-direction. 

The integral surface area is the area with a distance 0.05 mm 

from the investigated point.  

     Fig. 6 shows the variations of Kline
(1) and Kline

(2)  with
d

L

æ

èç
ö

ø÷
, 

where d is the distance from the vertex. Both Kline
(1)

 
and Kline

(2)  

approach constant values at a point further from the vertex. 

The values of Kline
(1) are much larger than that of Kline

(2) . That 

means we may predict the singular fields along the singular 

line by considering the first-term of singularity. In addition, 

Kline
(1) increases greatly as the vertex approaches. Fig. 7 shows 

the distributions of stresses, sqq

line , at f = 90° and θ = 90° 

with respect to r for d = 0.1, 0.5 and 1.0 mm. This figure 

also indicated that the magnitude of stress increases at the 

point closed to the vertex, which means that the singularity 

at the vertex may affect the singularity along the singularity 

line. 

IV. Conclusions 
      The conservative integral based on the Betti reciprocal 

principle was developed to calculate the intensity of 

singularity along the singular line in three-dimensional 

piezoelectric-material joints with two-real singularities. The 

results for the intensities of singularities along the singular 

line revealed that Kline
(1)

 
increased as the vertex approaches, 

while Kline
(2)

 
was stable. Relationship between the singularity 

at the vertex and along the singular line should be 

considered. 
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Fig. 6 The intensity of singularity on a singular line with d/L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Distribution of stresses, sqq

line
, at f  = 90° and θ = 90° with r. 
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