
A Sub-pipelined Implementation of AES For All Key
Sizes

P.V.Sriniwas Shastry
Electronics and Telecommunication Department

Cummins College of Engineering for Women
Pune, India

M.S. Sutaone
Electronics and Telecommunication Department

P.I.E.T’s College of Engineering
Pune, India

Abstract— In this paper we have proposed three sub-
pipelined architectures for Encryption, Decryption and Joint
Encryption and Decryption (E/D). These architectures were
implemented on Vertex-4 device. The use of Block RAM
available in the device for key expansion as well as for the S-
Boxes resulted in utilizing less slices and getting higher
throughput in all three cases compared to the literature available
till date. The encryption architecture clocked a throughput of
35.65Gbps using only 4823 slices while the decryption
architecture achieved 33.73Gbps using 6847 slices only. The
device used is XC4VLX60. The joint E/D architecture achieved a
throughput of 31.62Gbps. Retiming techniques used to balance
the computational path delays of encryption and decryption data
paths.

Keywords— Sub-pipeline, S-Box, AES, Block RAM, Joint
Encryption and Decryption

I. INTRODUCTION

National Institute of Standards and Technology (NIST)
announced the Rijndael as the Advanced Encryption Standard
(AES). NIST with the help of cryptographic research
community evaluated and found AES-Rijndael [1] to be
efficient on VLSI implementations. The algorithm was
proposed for 128, 192 and 256-bit key lengths. AES
outperforms Data Encryption Standard (DES) due to larger
key sizes and larger number of rounds performed while
generating cipher text from plain text and key. There are quite
a good number of AES implementations on Vertex FPGAs
[2][3][4][10] reported and most of them used look-up tables
for implementing S-Boxes as there was ample of Block RAM
resources available. Also due to the less access time is
required compared to on the fly computation of the S-Boxes,
FPGA implementations preferred look-up tables for S-Boxes.
The algorithm provides convenience in implementing it on 8-
bit or 32-bit or higher, bus organization platforms.

All the previous implementations were either tried to
produce a throughput optimized or area optimized designs and
accordingly they have selected the architectures. Rolled
architectures provided an area optimized implementations
[6][11] while could not with stand the demand for higher
throughput. While implementations based on pipelined
architectures could provide very good throughput but with
certain area over heads. Hence instead of comparing either on

area or throughput parameters, throughput-slice ratio (T/S)
became one of the justified parameter for comparison. Over
recent years many of the researchers even tried to achieve
higher sharing of hardware between encryption and decryption
architectures [15] in order to achieve better T/S ratio.
Pipelined partial rolled architecture [13] implementation was
another effort to improve T/S ratio.

In this paper we implemented a sub-pipelined architecture
with an eye on getting better T/S ratio than the earlier
implementations to date. Our architecture performs
encryption and decryption for all the three key sizes. While
implementing, we have also tried to maintain the latency at the
lowest possible with sub-pipelined architecture by clubbing
some stages into one and hence balancing the clock cycles and
optimally utilizing the available clock period in the data as
well as in the key expansion path. This was achieved by
proper retiming data path and key expansion path so that the
combinational path delay in each clock cycle is approximately
same.

The rest of the paper is organized in the following manner.
Section II describes the AES algorithm briefly and helps in
identifying the features available with the algorithm which
could be possibly utilized for design optimization. Section III
elaborates our approach towards the AES implementation and
our proposed architecture. Section IV compares our results
with existing ones and which is followed by concluding
remarks.

II. AES ALGORITHM

The AES is a symmetric key block cipher algorithm [1]
that processes data in 128 bit blocks and can operate with keys
that are 128,192 or 256-bits long. The number of rounds
performed in the algorithm depends upon the key size. The
algorithm performs 10, 12 or 14 rounds of iteration for 128,
192 or 256 bit key sizes respectively to generate final cipher
text in encryption. Same number of rounds is performed in
decryption algorithm. Each of these rounds performs four
types of byte oriented, word oriented and block oriented
operations namely as substitute byte, shift row, mix column
and add round key in sequential manner. The outcomes of the
last operation of add round key is given as input to the first
operation substitute byte of the next round. The final round

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering
Editor In Chief Dr. R. K. Singh. Copyright © 2012 Universal Association of Computer and Electronics Engineers.
All rights reserved. ISBN: 978-981-07-1847-3
doi:10.3850/978-981-07-1847-3 P0810

304

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

� ���
�
� � �����������	����	� � ����

� �	�
�
�
� �	��������������	� ����� �	��

� ���
�
� � �	����	����������� � ����

� ���
�
� � ������	����	������ � ����

� ���
�

� �� � � �� ��� ���

� �	�
�
�
� ����������������� ����� �	��

� ���
�
� � ����������������� � ����

� ���
�
� � ����������������� � ����

consists of only three operations and excludes mix column.
Figure 1 shows the block diagram of encryption as well as
decryption data path.

A. Substitute Byte

This operation primarily substitute each byte of the input
state with a substitution byte, computed by finding
multiplicative inverse in GF(28) and applying affine
transformation. This substitution byte can be computed on the
fly using combinational logic [12] in GF(24). The substitution
from S-Box for each byte of the input state could be done byte
by byte or all sixteen bytes concurrently. While implementing
the algorithm on FPGA, look up tables are generally preferred
as the devices available has Block RAM which can host these
S-Boxes instead of using the slices. If the whole block of 128
bits has to be performed simultaneously then the number of
look-up tables required for S-boxes would be 16. Each of the S-
Boxes requires 256 bit memory.

The pipeline architecture is selected for implementation, in
all 160, 192 or 224 such S-boxes would be required for 128,
192 or 256 bit key lengths respectively. The decryption
algorithm would require totally different set of Inverse S-Boxes
in same number.

B. Shift Rows

Shift row cyclically shifts left one byte of second row, two
bytes of third row and three bytes of fourth row respectively.
While in case of decryption it would be right shift in the
similar manner and both cases first row is not shifted.

C. Mix Column

Each column of the row shifted state is treated as a
polynomial of GF(28) and multiplied modulo x4+1 by a fixed
polynomial a(x)

a(x) = {03}x3 + {01}x2 + {01}x + {02} (1)

 (2)

The modulo multiplication can be realized as matrix
multiplication of a column with a square matrix of (2). While
finding inverse Mix Column the fixed polynomial is

a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e} (3)

(4)

Even this modulo multiplication can be realized as matrix
multiplication of a column with a square matrix of (4). The
inverse Mix Column operation can share the matrix
multiplication module of (2) as presented in [2].

D. Add Round Key

The Add Round Key is just XOR of each block after mix
column with the round key generated by the Key Expansion
data path. This operation is same in decryption data path as
the XOR operation is inverse to itself.

III. THE PROPOSED ARCHITECTURE

The pipelined architecture suggests introduction of
registers after every round [14]. As mentioned in the earlier
section each round has four operations to be performed. These
rounds when implemented one after one will result into a large
combinational path delay which will restrict shorter clock
cycle time. Sub-pipelined architecture is like further fine grain
pipelining where registers are introduced even in between the
operation within and round. This allows the clock to be
increased but at the cost of increased latency. The throughput
gets improved compared to pipeline architecture.

Figure 1. Cycle time for fully sub-pipelined and our proposed subpipelined

Let the tsub, tshft, tmixcol, and taddkey be the computation time
of substitute byte, shift row, mix column and add round key
respectively. After implementing the design the conducting
static timing analysis it found that these timing were 2.02ns,
0.49ns, 2.65ns and 0.56ns respectively. These timing
parameters were obtained after performing certain iterations of
optimization while place and route. A fully sub-pipelined
architecture would require putting register after every sub
process in the each round. This would have directly employed
41, 49 or 57 registers for 128, 192 or 256 bit encryption
respectively. Also this would increase the latency of the
implementation. The clock time tclk could be calculated as in
the (5). The time parameter tδ includes the setup and hold time
of the registers and all other contingencies due to clock
distribution network.

tclk = tδ + max{ tsub, tshft, tmixcol, taddkey} (5)

This implementation resulted in 330MHz clock frequency,
as computation time of mix column was the largest. After

305

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

performing retiming on the block architecture [16], reduced
the registers required and instead of four consecutive clock
cycles it used only two consecutive clock cycles for each
round. The substitute byte and shift row were clubbed as a
single sub process while mix column and add round key were
clubbed together as a single sub process stage. This retiming
resulted in clock computation mentioned in (6).

 t’clk = tδ + max{(tsub+ tshft) , (tmixcol+ taddkey)} (6)

Even though this reduced the clock frequency and in turn
the throughput, but the numbers of registers required were less
and also the latency was less. The registers required in this
implementation were 21, 25 and 29 for 128bit, 192bit and
256bit encryption respectively. The retiming of the design
resulted into more optimal utilization of clock period which
has been demonstrated in Figure 1.

(a)

(b)

Figure 2. (a) Encryption Data Path (b)Decryption Data Path

A. 128/192/256 bit AES Encryption Data Path

In our proposed round architecture in Figure.2(a) for
encryption data path we have introduced one register in the
beginning and the second one after Shift Row is performed.
After the Mix Column and Add Round Key are performed the
functionality of pipelining register is performed by the initial
register of the next Round architecture. Hence only two
registers appears in each round. Total of 16 S-Boxes are
required for each round so that all 16 bytes are substituted in
single clock cycle. Shift Row does not require to employ shift
registers because after substitution of each byte the placement
of these bytes are done at the new shifted location in the next
register. This simplifies the Substitute Byte and Shift Row
operation in a single clock cycle. A multiplier less architecture
has been used for the Mixed Column. Multiplication by {02}
has been realized by modulo shifting the byte once left, while
multiplication by {03} by shifting and XOR to itself.

The number of rounds needed for the 128, 192 and 256 bit
key lengths are different, which requires an arrangement in the
architecture to take the output after 10th, 12th and 14th round
and switch to the output port on selection of key size using
multiplexer. Including the output registers, in all 30 registers
are employed in the architecture.

B. 128/192/256 bit AES Decryption Data Path

Unlike in encryption the decryption data path make use of
already expanded keys which are in the key registers while
performing encryption. Figure.2(b) illustrates the architecture
of decryption data path for all key sizes. As the number of
rounds for different key sizes are different hence the
decryption round starts at the appropriate stage in the
architecture. The number of inverse S-Boxes needed is 16 so
that the inverse Substitute Byte is performed in one clock
cycle. Here again the Inverse Substitute Byte and Inverse Shift
Row has been merged into a single clock cycle by placing the
substituted bytes in the shifted location of the next registers.

In order to avoid multiplier for implementing eq. (3), {0b},
{0d}, {09} and {0e} has been realized as in the eq.(7).

{0b} = {03} + {08}

{0d} = {01} + {08} + {04}

{09} = {01} + {08}

 {0e} = {02} + {08} + {04} (7)

This also helps in reusing the Mix Column architecture of
encryption data path. Each byte is shifted thrice to left and the
bytes to be multiplied by {0d} or {0e} are further shifted twice
to left before using Mix Column stage of encryption path.

C. Combined Encryption and Decryption Data Path

While combining the encryption and decryption data path
the architecture reuses all the registers as well as Mix Column
stage of the architecture. The multiplexers placed in between
are used to switch between the encryption or decryption data
paths. The mode selection control line is used as select line
for these multiplexers. Figure.3 shows the round architecture
for this combined encryption and decryption data path.

306

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

IV. IMPLEMENTATION RESULTS

The three proposed architectures were implemented on
Vertex-4 FPGAs. The encryption with key expansion could fit
into XC4VLX60 device. We achieved the throughput of
35.65Gpbs at the clock frequency of 278.5MHz. The keys
generated by the key expansion unit were stored in the Block
RAM whereas the S-Boxes utilized Block RAM in ROM
mode. This resulted in to utilizing only 5% of flip flops from
the slices. The total number of slices employed for this
architecture was 4823(18%).

The decryption data path with key expansion unit achieved
33.73Gbps at the clock frequency of 263.5MHz. The
architecture could be successfully implemented by employing
mostly Block RAMs rather than flip flops of logic slices. The
device utilization reports mentions use of 6847(25%) of slices
and around only 4% of flips flops from slices. The decryption
data path required more hardware resources then encryption
data path. The reason for getting higher latency than
encryption data path was due to waiting for the key expansion
to be completed before the actual decryption round starts.

Figure 3. Joint Encryption and Decryption Data Path

The third architecture of combined encryption and
decryption with single key expansion unit was successfully
clocked at 247MHz providing a throughput of 31.62Gbps.
XC4LX60 device fall short to the number of Block RAMs
needed, hence the design was pushed into XC4VLX80 device.
The total number of slices used was 7667(21%) while 80% of
Block RAM in 16 bit mode was employed. The
computational delays of both the encryption and decryption
path were balanced such that the cycle time between two
registers is approximately same.

The timing simulations were performed on ModelSim SE
Version 6.6. and Design Synthesis and Implementation was
done Xilinx ISE 9.2.

CONCLUSION

The Table I. shown below gives the comparison of our
results with the available published literature. The comparison
group selected in the table has implemented their design on the
Vertex family devices and used pipelined architectures.
Comparing only throughputs would have penalized results
with less number of slices, hence we have compared
Throughput to slice ratio (T/S). Our design has achieved
highest T/S ratios for all the three architectures.

Due to the use of less number of slices and higher
utilization of Block RAM available on FPGA has enabled us
to push the design on smaller device like XC4VLX60 for
encryption and decryption. The joint encryption and
decryption needed higher number of Block RAM cells hence
we have used XC4VLX80 device. Considering the resources
utilized and the throughput achieved our design has best
results in overall. All the static timing obtained was due to few
iterations of optimization while placing and routing the design.
A further high level effort of optimization was tried and found
setup and holds time violations at many places hence the
results were discarded

TABLE I. RESULT COMPARISON

REFERENCES

[1] NIST, Announcing the Advanced Encryption Standards (AES), Federal
Information Processing Standards Publication 197, November 2001.

[2] Xinmiao Shang, Keshab K. Parhi, “High speed VLSI architectures for
the AES algorithm”, IEEE Transaction on Very Large Scale Integration
Systems, Vol.12, No.9, 2004, pp.957-967.

[3] Alizera Hodjat, Ingrid Verbauwhede,” A 21.54Gbits/s fully pipelined
AES processor”, IEEE Symposium on Filed Programmable Custom
Computing Machines (FCCM), 2004 .

[4] J.Zambreno, D.Nguyen, A.Choudhary, “Exploring Area/Delay tradeoffs
in an AES FPGA implementation”, 2004, pp.575-585.

Design
Device

Clock
Frequency
(MHz)

Throughput
(Gbps)

Device
Utilization
(slices)

T/S

[2]
Enc
[3]
Enc
[5]
Enc
[5]
Dec
[6]
Enc
[7]
Enc
[4]
Enc
[8]
Enc
[9]
Enc
[10]
Dec

XCV1000

XC2VP20

XCV2000

XCV2000

XCV4LX200

XCV2V600

XCV2V400

XC5VLX85

XC4VLX80

XC4VLX60

168.4

168.3

241.3

128.07

250

305.1

184.2

576.06

500

180.39

21.56

21.54

30.88

12.9

32

39.053

23.57

73.737

64

23.09

11022

5177

4626

19125

86806

10762

16938

22994

8901

20155

1.96

4.2

6.67

0.67

0.37

3.66

1.39

3.21

7.19

1.15

Our
Designs

Enc

Dec

E/D

XC4VLX60

XC4VLX60

XC4VLX80

278.5

263.5

247

35.648

33.728

31.616

4823

6847

7667

7.39

4.92

4.12

307

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

[5] Nalini.C, Nagaraj,Anand Mohan, Poornaih D.V,V.D.Kulkarni, “An
FPGA based performance analysis of pipelining and unrolling of AES
algorithm”,Proceedings of International Conference on Advacned
Computing and Communications, 2006, pp.477-482.

[6] Chih-Penh Fan, Ju-Kui Hwang,”Implementations of high throughput
sequential and fully pipelined processors on FPGA”, Proceedings of
International Symposium on Intelligent Signal Processing and
Communication systems, 2007, pp.353-356.

[7] Issam Hammad, Kamal El-sankary, Ezz El-Masry, “High speed AES
encryptor with efficient merging techniques”, IEEE Embedded systems
Letters, Vol.2 Issue 3, 2010, pp.67-71.

[8] Shanxin Qu, Guochu Shou, Yihong Hu, Zhigang Guo, Zongjue Qian,
“High throughput, pipelined implementation of AES on FPGA”,
International symposium on Information Engineering and Electronic
Commerce, 2009, pp.542-545.

[9] Dong Chen, Guochu Shou, Yihong Hu, Zhigang Guo, “Efficient
architecture and implementation of AES”, 3rd International Conference
on Advanced Computer Theory and Engineering, 2010, pp.295-298.

[10] M.R.M.Rizk, “Optimized area and optimized speed hardware
implementation of AES on FPGA”, 2nd International Design and Test
Workshop, 2007, pp.207-217.

[11] Monjur alam, Santosh Ghosh, Dipanwita RoyChoudhary, Indranil
Sengupta, “ Single chip encryptor/decryptor core implementation of
AES alfotrithm”, 21st International Conference on VLSI Design, 2008,
pp.693-698.

[12] P.V.S.Shastry,Anuja Agnihotri, Divya Kacchwaha, JayasmitaSingh,
M.S.Sutaone, “A combinational logic implementation of S-box of AES”,
54th IEEE International Midwest Symposium on Circuits and Systems,
Seoul, Korea, 2011.

[13] Hui Qin, Tsutomu Sasao, Yukihiro Iguchi, “An FPGA design of AES
encryption circuit with 128-bit keys”, GLSVLSI 2005, Chicago, pp.147-
151.

[14] N. Sklavos, O. Koufopavlou, “Architectures and VLSI implementation
of the AES-proposal Rijndael”, IEEE Transaction on Computers,
Vol.51,No.12,2002,pp.1454-1459.

[15] S.-F.Hsiao, M.-C.Chen, “Efficient substructure sharing methods for
optimizing the inner-product opertaions in Rijndael advanced encryption
standard”, IEE Proceedings of Computers and Digital Techniques,
Vol.152,Issue.5,pp.653-665.

[16] Keshab K. Parhi, “VLSI Digital Signal Processing Systems, Design and
Implementation”, Wiley India (P) Ltd.

�

308

