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Abstract— In this paper we have proposed three sub-
pipelined architectures for Encryption, Decryption and Joint 
Encryption and Decryption (E/D). These architectures were 
implemented on Vertex-4 device.  The use of Block RAM 
available in the device for key expansion as well as for the S-
Boxes resulted in utilizing less slices and getting higher 
throughput in all three cases compared to the literature available 
till date.  The encryption architecture clocked a throughput of 
35.65Gbps using only 4823 slices while the decryption 
architecture achieved 33.73Gbps using 6847 slices only.  The 
device used is XC4VLX60.  The joint E/D architecture achieved a 
throughput of 31.62Gbps. Retiming techniques used to balance 
the computational path delays of encryption and decryption data 
paths. 

Keywords— Sub-pipeline, S-Box, AES, Block RAM, Joint 
Encryption and Decryption

I. INTRODUCTION

National Institute of Standards and Technology (NIST) 
announced the Rijndael as the Advanced Encryption Standard 
(AES).  NIST with the help of cryptographic research 
community evaluated and found AES-Rijndael [1] to be 
efficient on VLSI implementations.  The algorithm was 
proposed for 128, 192 and 256-bit key lengths.  AES
outperforms Data Encryption Standard (DES) due to larger 
key sizes and larger number of rounds performed while 
generating cipher text from plain text and key.  There are quite 
a good number of AES implementations on Vertex FPGAs 
[2][3][4][10] reported and most of them used look-up tables 
for implementing S-Boxes as there was ample of Block RAM 
resources available.  Also due to the less access time is 
required compared to on the fly computation of the S-Boxes, 
FPGA implementations preferred look-up tables for S-Boxes. 
The algorithm provides convenience in implementing it on 8-
bit or 32-bit or higher, bus organization platforms. 

All the previous implementations were either tried to 
produce a throughput optimized or area optimized designs and 
accordingly they have selected the architectures.  Rolled 
architectures provided an area optimized implementations 
[6][11] while could not with stand the demand for higher 
throughput.  While implementations based on pipelined 
architectures could provide very good throughput but with 
certain area over heads.  Hence instead of comparing either on 

area or throughput parameters, throughput-slice ratio (T/S) 
became one of the justified parameter for comparison.  Over 
recent years many of the researchers even tried to achieve 
higher sharing of hardware between encryption and decryption 
architectures [15] in order to achieve better T/S ratio. 
Pipelined partial rolled architecture [13] implementation was 
another effort to improve T/S ratio. 

In this paper we implemented a sub-pipelined architecture 
with an eye on getting better T/S ratio than the earlier 
implementations to date.  Our architecture performs
encryption and decryption for all the three key sizes.  While 
implementing, we have also tried to maintain the latency at the 
lowest possible with sub-pipelined architecture by clubbing 
some stages into one and hence balancing the clock cycles and 
optimally utilizing the available clock period in the data as 
well as in the key expansion path.  This was achieved by 
proper retiming data path and key expansion path so that the 
combinational path delay in each clock cycle is approximately 
same. 

The rest of the paper is organized in the following manner. 
Section II describes the AES algorithm briefly and helps in 
identifying the features available with the algorithm which 
could be possibly utilized for design optimization. Section III 
elaborates our approach towards the AES implementation and 
our proposed architecture.  Section IV compares our results 
with existing ones and which is followed by concluding 
remarks. 

II. AES ALGORITHM 

The AES is a symmetric key block cipher algorithm [1] 
that processes data in 128 bit blocks and can operate with keys 
that are 128,192 or 256-bits long.  The number of rounds 
performed in the algorithm depends upon the key size. The 
algorithm performs 10, 12 or 14 rounds of iteration for 128, 
192 or 256 bit key sizes respectively to generate final cipher 
text in encryption.  Same number of rounds is performed in 
decryption algorithm.  Each of these rounds performs four 
types of byte oriented, word oriented and block oriented 
operations namely as substitute byte, shift row, mix column
and add round key in sequential manner. The outcomes of the 
last operation of add round key is given as input to the first 
operation substitute byte of the next round.  The final round 
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consists of only three operations and excludes mix column. 
Figure 1 shows the block diagram of encryption as well as 
decryption data path. 

A. Substitute Byte

This operation primarily substitute each byte of the input 
state with a substitution byte, computed by finding
multiplicative inverse in GF(28) and applying affine 
transformation.  This substitution byte can be computed on the 
fly using combinational logic [12] in GF(24). The substitution 
from S-Box for each byte of the input state could be done byte 
by byte or all sixteen bytes concurrently.   While implementing 
the algorithm on FPGA, look up tables are generally preferred 
as the devices available has Block RAM which can host these 
S-Boxes instead of using the slices.   If the whole block of 128 
bits has to be performed simultaneously then the number of 
look-up tables required for S-boxes would be 16. Each of the S-
Boxes requires 256 bit memory.   

The pipeline architecture is selected for implementation, in 
all 160, 192 or 224 such S-boxes would be required for 128, 
192 or 256 bit key lengths respectively.  The decryption 
algorithm would require totally different set of Inverse S-Boxes 
in same number. 

B. Shift Rows 

Shift row cyclically shifts left one byte of second row, two 
bytes of third row and three bytes of fourth row respectively.  
While in case of decryption it would be right shift in the 
similar manner and both cases first row is not shifted. 

C. Mix Column

Each column of the row shifted state is treated as a 
polynomial of GF(28) and multiplied modulo  x4+1   by a fixed 
polynomial a(x) 

a(x) = {03}x3 + {01}x2 + {01}x + {02}                            (1) 

      (2) 

The modulo multiplication can be realized as matrix
multiplication of a column with a square matrix of (2). While 
finding inverse Mix Column the fixed polynomial is 

a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}                          (3) 

(4) 

Even this modulo multiplication can be realized as matrix 
multiplication of a column with a square matrix of (4). The 
inverse Mix Column operation can share the matrix 
multiplication module of (2) as presented in [2]. 

D. Add Round Key 

The Add Round Key is just XOR of each block after mix 
column with the round key generated by the Key Expansion 
data path.  This operation is same in decryption data path as 
the XOR operation is inverse to itself.  

III. THE PROPOSED ARCHITECTURE

The pipelined architecture suggests introduction of
registers after every round [14].  As mentioned in the earlier 
section each round has four operations to be performed.  These 
rounds when implemented one after one will result into a large 
combinational path delay which will restrict shorter clock 
cycle time.  Sub-pipelined architecture is like further fine grain 
pipelining where registers are introduced even in between the 
operation within and round.  This allows the clock to be 
increased but at the cost of increased latency.  The throughput 
gets improved compared to pipeline architecture.  

Figure 1. Cycle time for fully sub-pipelined and our proposed subpipelined 

Let the tsub, tshft, tmixcol, and taddkey be the computation time 
of substitute byte, shift row, mix column and add round key 
respectively.  After implementing the design the conducting 
static timing analysis it found that these timing were 2.02ns, 
0.49ns, 2.65ns and 0.56ns respectively.  These timing 
parameters were obtained after performing certain iterations of 
optimization while place and route.  A fully sub-pipelined 
architecture would require putting register after every sub 
process in the each round.  This would have directly employed 
41, 49 or 57 registers for 128, 192 or 256 bit encryption 
respectively. Also this would increase the latency of the 
implementation. The clock time tclk could be calculated as in 
the (5). The time parameter tδ includes the setup and hold time 
of the registers and all other contingencies due to clock 
distribution network. 

tclk = tδ + max{ tsub, tshft, tmixcol, taddkey}                              (5)  

This implementation resulted in 330MHz clock frequency, 
as computation time of mix column was the largest.  After 
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performing retiming on the block architecture [16], reduced 
the registers required and instead of four consecutive clock 
cycles it used only two consecutive clock cycles for each 
round.  The substitute byte and shift row were clubbed as a 
single sub process while mix column and add round key were 
clubbed together as a single sub process stage. This retiming 
resulted in clock computation mentioned in (6). 

      t’clk = tδ + max{( tsub+ tshft)  , (tmixcol+ taddkey)}                    (6)  

Even though this reduced the clock frequency and in turn 
the throughput, but the numbers of registers required were less 
and also the latency was less. The registers required in this 
implementation were 21, 25 and 29 for 128bit, 192bit and 
256bit encryption respectively. The retiming of the design 
resulted into more optimal utilization of clock period which 
has been demonstrated in Figure 1. 

(a) 

(b) 

Figure 2. (a) Encryption Data Path   (b)Decryption Data Path 

A. 128/192/256 bit AES Encryption Data Path

In our proposed round architecture in Figure.2(a) for 
encryption data path we have introduced one register in the 
beginning and the second one after Shift Row is performed. 
After the Mix Column and Add Round Key are performed the 
functionality of pipelining register is performed by the initial 
register of the next Round architecture. Hence only two 
registers appears in each round. Total of 16 S-Boxes are 
required for each round so that all 16 bytes are substituted in 
single clock cycle. Shift Row does not require to employ shift 
registers because after substitution of each byte the placement 
of these bytes are done at the new shifted location in the next 
register.  This simplifies the Substitute Byte and Shift Row 
operation in a single clock cycle. A multiplier less architecture 
has been used for the Mixed Column.  Multiplication by {02} 
has been realized by modulo shifting the byte once left, while 
multiplication by {03} by shifting and XOR to itself.  

The number of rounds needed for the 128, 192 and 256 bit 
key lengths are different, which requires an arrangement in the 
architecture to take the output after 10th, 12th and 14th round 
and switch to the output port on selection of key size using 
multiplexer. Including the output registers, in all 30 registers 
are employed in the architecture. 

B. 128/192/256 bit AES Decryption Data Path 

Unlike in encryption the decryption data path make use of 
already expanded keys which are in the key registers while 
performing encryption.  Figure.2(b) illustrates the architecture 
of decryption data path for all key sizes.  As the number of 
rounds for different key sizes are different hence the 
decryption round starts at the appropriate stage in the 
architecture. The number of inverse S-Boxes needed is 16 so 
that the inverse Substitute Byte is performed in one clock 
cycle. Here again the Inverse Substitute Byte and Inverse Shift 
Row has been merged into a single clock cycle by placing the 
substituted bytes in the shifted location of the next registers. 

In order to avoid multiplier for implementing eq. (3), {0b}, 
{0d}, {09} and {0e} has been realized as in the eq.(7). 

{0b} = {03} + {08} 

{0d} = {01} + {08} + {04} 

{09} = {01} + {08} 

     {0e} = {02} + {08} + {04}                                                (7)

This also helps in reusing the Mix Column architecture of 
encryption data path. Each byte is shifted thrice to left and the 
bytes to be multiplied by {0d} or {0e} are further shifted twice 
to left before using Mix Column stage of encryption path. 

C. Combined Encryption and Decryption  Data Path 

While combining the encryption and decryption data path 
the architecture reuses all the registers as well as Mix Column 
stage of the architecture.  The multiplexers placed in between 
are used to switch between the encryption or decryption data 
paths.  The mode selection control line is used as select line 
for these multiplexers.  Figure.3 shows the round architecture 
for this combined encryption and decryption data path. 
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IV. IMPLEMENTATION RESULTS

The three proposed architectures were implemented on 
Vertex-4 FPGAs. The encryption with key expansion could fit 
into XC4VLX60 device. We achieved the throughput of
35.65Gpbs at the clock frequency of 278.5MHz. The keys 
generated by the key expansion unit were stored in the Block 
RAM whereas the S-Boxes utilized Block RAM in ROM 
mode.  This resulted in to utilizing only 5% of flip flops from 
the slices.  The total number of slices employed for this 
architecture was 4823(18%). 

The decryption data path with key expansion unit achieved 
33.73Gbps at the clock frequency of 263.5MHz.  The 
architecture could be successfully implemented by employing 
mostly Block RAMs rather than flip flops of logic slices.  The 
device utilization reports mentions use of 6847(25%) of slices 
and around only 4% of flips flops from slices.  The decryption 
data path required more hardware resources then encryption 
data path.  The reason for getting higher latency than 
encryption data path was due to waiting for the key expansion 
to be completed before the actual decryption round starts. 

  

Figure 3. Joint Encryption and Decryption Data Path

The third architecture of combined encryption and 
decryption with single key expansion unit was successfully 
clocked at 247MHz providing a throughput of 31.62Gbps.  
XC4LX60 device fall short to the number of Block RAMs 
needed, hence the design was pushed into XC4VLX80 device.  
The total number of slices used was 7667(21%) while 80% of 
Block RAM in 16 bit mode was employed.  The 
computational delays of both the encryption and decryption 
path were balanced such that the cycle time between two 
registers is approximately same. 

The timing simulations were performed on ModelSim SE 
Version 6.6. and Design Synthesis and Implementation was 
done Xilinx ISE 9.2. 

CONCLUSION

The Table I. shown below gives the comparison of our 
results with the available published literature. The comparison 
group selected in the table has implemented their design on the 
Vertex family devices and used pipelined architectures.  
Comparing only throughputs would have penalized results 
with less number of slices, hence we have compared 
Throughput to slice ratio (T/S).  Our design has achieved 
highest T/S ratios for all the three architectures.   

Due to the use of less number of slices and higher 
utilization of Block RAM available on FPGA has enabled us 
to push the design on smaller device like XC4VLX60 for 
encryption and decryption.  The joint encryption and 
decryption needed higher number of Block RAM cells hence 
we have used XC4VLX80 device.  Considering the resources 
utilized and the throughput achieved our design has best 
results in overall. All the static timing obtained was due to few 
iterations of optimization while placing and routing the design.  
A further high level effort of optimization was tried and found 
setup and holds time violations at many places hence the 
results were discarded 
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