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Abstract—In this work the design of a Luenberger observer is 

proposed to estimate the unmeasurable state space variables from 

Hovorka’s model. This model is linearized and evaluated in an 

operation point where Luenberger observer is designed using the 

Ackermann methodology. The observer is employed to estimate the 

unmeasurable variables of virtual patients which are generated by 

Bergman’s model. Once the unmeasurable state variables are 

obtained by the Luenberger observer using only the input-output 

information of the Bergman’s model, a control algorithm based on 

eigenvalues relocation trough Ackermann methodology for linear 

systems is applied. In this methodology, a constant feedback gain 

vector is obtained in order to compute the control signal (insulin) to 

be applied to virtual patient and keep on normoglycemia rank. The 

carbohydrates ingestion is considered as the main disturbances. In 

order to assess the proposed methodology, two tests are designed: 

the first one consists of changing the reference signal in order to 

evaluate the control sensitivity; and the second one includes 

different proportions of prandial insulin used in open-loop to try 

the controller response under distinct operation conditions. The 

results are obtained via simulation using Simulink of Matlab. 

Keywords—Luenberger observer, Bergman model, artificial 

pancreas, type 1 diabetes. 

I.  Introduction  
Type 1 diabetes Mellitus (T1DM) is a chronic disease, 

which occurs when the pancreas does not produce insulin, 
because beta-cells are destroyed. Hyperglycemia is a common 
effect of uncontrolled T1DM and over time leads to serious 
damage to many of the body’s systems. Currently, 347 million 
people worldwide have diabetes, more than 80% of diabetes 
deaths occur in low and middle income countries. World 
Health Organization estimates that deaths caused by diabetes 
will double between 2005 and 2030 and will be the 7th leading 
cause of death in 2030. 

At present, it is impossible to regenerate the beta cells and 
cure this disease. T1DM can be controlled by exogenous 
insulin supplying subcutaneous injections and by the glucose 
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measurements using glucometers or continuous glucose 
subcutaneous sensors monitoring (CGM) [1]. This treatment is 
very invasive and painful. A serious complication of the 
therapies is the hypoglycemia which appears when the glucose 
level is lower than 70 mg/dl. CGM has been improved in the 
last years, the measurements are more accurate and are made 
in real-time, with shorter sample periods. But they continued 
to have problems as duration, calibrations and delays [2]. 

Continuous subcutaneous insulin infusion systems (CSII) 
uses an insulin pump and reduces the therapy injections 
painful. CSII can be used to optimize the patient’s insulin 
therapy and to improve lifestyle flexibility. The use of CSII 
together CGM is known as sensor-augmented pump (SAP) 
therapy [2]. 

The artificial pancreas (AP) should automatically keep the 
blood glucose levels to close normal levels, avoiding 
hypoglycaemia without human interaction. An AP is 
composed by a control algorithm that determines the amount 
of insulin needed and infusioned, a pump and CGM as 
primary source. Some of the closed-loop (CL) techniques 
applied in diabetes to design the control algorithm include PID 
(proportional-integral-derivative) approximations, model 
predictive control, fuzzy control, and robust control. Hybrid 
closed-loop (HCL) control has been also evaluated as a means 
to reduce the peak postprandial glucose levels [3]. 

The majority of control algorithms need a model of the 
plant (system to control, in T1DM the patient) to be designed, 
fitted or implemented. The availability of a glucose model to 
simulate the behavior in particular of T1DM patients gives the 
possibility of design and evaluate insulin infusion algorithms. 

In T1DM the most common models are based in 
compartments. A glucose compartmental model is a set of 
nonlinear equations that represents the glucose and insulin 
masses or concentrations. The set of equations emulates the 
glucoregulatory system trying to describe the dynamics of 
blood glucose or subcutaneous glucose through the insulin and 
meals. 

Sometimes the real experiments cannot be done at all, 
because they are dangerous in vivo, difficult or not ethical. 
There are several compartmental models to evaluate the 
glucose on people with T1DM. In the last ten years, two have 
been the compartmentals models widely used: 1) Bergman’s 
model (BM) also known as minimal model, which consider 
only the glucose and insulin compartments and the interaction 
between them [4]; and 2) Hovorka’s model (HM) in which the 
insulin has 3 different sensibilities on glucose 
distribution/transport, disposal, and endogenous production 
[5], [6]. Cobelli’s model in which patient has daily events and 
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 a submodel of the digestive track is used to determinate the 
glucose concentration [7]. 

T1DM patients have a lot of problems to fit the insulin 
therapy to their life habits. The main problem is not to use too 
much insulin in order to avoid hypoglycemia events. The goal 
of all alternative treatments in T1DM is to keep the glucose 
concentration in normal ranges using as much doses of 
exogenous insulin as necessary. CGM and CSII require the 
subcutaneous route, which complicates control because of 
delays in both routes, measurement and insulin action. 

In control design, it is difficult to infer the behavior of the 
nonlinear systems, which have internal or external 
disturbances, unknown parameters or unmodeled dynamics 
and delays. When a control law it is designed using a 
mathematical model, is necessary to estimate the 
unmeasurable variables. A useful tool to estimate the 
unmeasurable variables are the observers; there exists a wide 
variety of them applied in very different fields successfully as 
Kalman filter, observers with sliding modes, nonlinear 
observers and Luenberger observer [8-9].  

In this work we propose to design a Luenberger observer 
in order to estimate the unmeasurable state space variables (as 
it is done in [10]). The HM is linearized and an operation point 
is selected to evaluate the model; this linearized model is used 
to design the Luenberger observer. The observer based on the 
HM is employed to estimate the unmeasurable variables of 
virtual patients (VP) generated by BM. Once the 
unmeasurable state variables are obtained by the Luenberger 
observer using only the input-output information (insulin-
glucose) of the BM, a control algorithm based on eigenvalues 
relocation trough Ackermann methodology for linear systems 
is applied. In this methodology, a constant feedback gain 
vector is obtained in order to compute the control signal 
(insulin) to be applied to VP and keep on normoglycemic 
rank. The main external disturbances included in this work is 
the carbohydrates (CHOs) ingestion. Two tests are designed to 
evaluated the performance of the control algorithm: 1) Target 
sensibility, it consists of changing the reference signal in order 
to evaluate the steady state control; and 2) Prandial sensibility, 
it includes different proportions of prandial insulin used in 
open-loop (OL) or CSII to try the controller response under 
distinct operation conditions. 

II. Hovorka´s model 
HM is one of the most accepted models describing the 

glucose-insulin dynamic. Roman Hovorka modelled the 
diabetes disease with eight compartmental differential 
equations in 2004 [6] and in subsequent works updated his 
model including the equation of CGM sensor [11]. HM is 
represented in states space as: 
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S2 and S1 are two-compartments chain representing absorption 
of subcutaneously administered short-acting insulin (mU); 
G(t)=Q1/VG is the glucose concentration in the plasma (mg/dl); 
VG is the blood volume (l/kg); u(t) is input signal, represents 
the infusion dose of insulin (U); and EGP0 represents the 
endogenous glucose production liver extrapolated to a 0 
insulin concentration (mg/dl). 

The Glucose absorption is a fundamental process affecting 

postprandial glucose excursions. In HM , the gut absorption 
rate UG(t) (mg/min) is represented by: 

max,( )
 ( ) ,   
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where tmax,G is the time-of-maximum appearance rate of 
glucose in the accessible glucose compartment, d(t) is the 
amount (mg) of CHOs ingested, AG is carbohydrate 
bioavailability. 

The renal glucose clearance (fR) appears when the glucose is 
above threshold of 9 mmol/l, which can be represented as: 
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The total non-insulin-dependent glucose flux (f01
c
) corrected 

depends on glucose concentration, it is represented as: 
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In this work, the HM (1) is linearized around of an 
operation point in order to design the Luenberger observer. 
This observer is used to design a control law by eigenvalues 
relocation. This procedure is explained in section III. The HM 
(1) and its parameters are obtained from [5-6] and are used to 
parameterize the observer during simulations. 

III. Proposed methodology 
In this section, we proposed the procedure for designing 

the Luenberger observer in the T1DM HM and applying it in 
BM to CL. 
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A. Luenberger observer 

The assumption that all state variables are available for 
feedback may not hold in practice, because in the case of 
T1DM nowadays it is not feasible to measure all HM variables 
for an ambulatory AP. In this paper, HM (1) can be 
represented in a general form as: 

( ) ( ) ( ),

( ),

u t

y h

  



x f x g x d

x                        

where f(x) and g(x) are nonlinear functions; d(t) represents the 
external disturbances (described in equation (2)) and h(x) is 
the output function. 

In [10], the Luenberger observer linear theory is extended 

for general nonlinear system  with following structure: 

 ( ) ( ) ( ) ( ) ,u t y h    x f x g x d l x      

where the Luenberger gain vector l is calculated by 

eigenvalues relocation trough Ackermann methodology, x  is 

the estimated states vector for x. In order to select the desired 

eigenvalues, the system  is linearized using the Jacobian to 
obtain:  
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where A is the state matrix and b is the input vector and c is 
the output vector. The operation point ρ is selected when y=90 
mg/dl. That is, the T1DM patient is into normoglycemia band. 
Then, the linearized system is: 
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The pair (A,c) from (8) is completely state observable 
because  

   1rank rank ,n n   c cA cAO
T

        

where O  is the observability matrix. The desired eigenvalues 

are relocated to the left of eigenvalues of A in the left side of 
the complex “s” plane. This is done by computing the gain 
vector l with Ackermann methodology as follows [12]: 

 1( ) 0 0 1 ,  Al O
T

               

where ϕ(A) results from desired characteristic polynomial for 

. The observer (6) will estimate the unmeasurable state 
variables of HM (1) with the form (5). Even when output of 
system (1) is considered available for measuring, in this work 
the output estimation of y=C=x1 in system (1) will contribute 
to estimate the state variable G in BM. 

B. Control algorithm 
With all the state space variables x available for feedback, 

it is possible to propose a control law using the gain feedback 
concept. In order to obtain the feedback gains k to calculate 
the control signal uc(t), we use the Ackermann methodology. 
This is possible by applying the duality theorem for 
controllability-observability [13]. As the pair (A, b) of system 
(8) is completely state controllable due to controllability 
matrix 

1 ,n   b Ab A bC                      

has full rank. The feedback control gains are computed with 
Ackermann method as: 

  10 0 1 ( ). Ak C                 

where φ(A) results from the desired control characteristic 
polynomial for (8). The control eigenvalues are relocated at 
the left of their corresponding with A at the right of the 
observer eigenvalues, in the left side of the complex “s” plane. 
The control linear theory is applied to feedback estimated 
states of nonlinear system that is the BM, which is described 
in section IV. In this work, the HM is parameterized with the 
mean of six patients shown in [5-6].  

IV. Test methodology 
In this work, it is proposed to test the observer and 

controller with a VP different from HM. Figure 1 depicts the 
employed configuration to test the designed controller using 
the estimated variables by the Luenberger observer. 

 

Figure 1.  Configuration structure with controller coupled to Luenberger 

observer with test VP. 

Both controller and observer are based on HM. BM is used 
as VP test taking only BM output and input to estimate the 
unmeasurable states. All the estimated variables are used in 
the controller. Kp is adjusted during the different experiments 
which are described in subsection IV-B. 

A. Virtual patient 
BM also known as minimal model is used in this work to 

generate the VP. Insulin absorption equations are added to 
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 original BM [14] to consider the insulin delays having the next 
state space representation: 
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where G is the plasma glucose (mg/dl), X is the insulin effect 
over glucose elimination (1/min), I is the plasma insulin 
(mU/dl) S1 and S2 are the two compartments where the insulin 
is administered in subcutaneous route (mU). The parameters to 
generate the VP population with BM are taken from [4]. 

B. Pump simulation description 
The operation of an insulin pump is simulated as follows: 

1) as the simulation iterates at 1 second and the pump infusion 
a bolus each 5 minutes, the control signal uc(t) is accumulated 
during this 5 minutes; 2) as insulin pumps cannot infusion any 
exact amount of insulin due to its minimum dosage ability, the 
insulin to be administered to the patient by the pump is 
adjusted to pump resolution dosage, the rounding error is 
added for the next infusion time; 3) if the control signal is 
negative (the controller indicates to extract insulin, which is 
impossible in real life), the insulin pump action is suspended 
and counts the suspension time; for each 30 minutes of 
suspension the pump dose a microbolus ergo minimum dosage 
resolution in order to avoid the catheter occlusion by insulin 
crystallization. 

C. Implementation scenarios 
To stimulate the glucose-insulin dynamic, the VP are 

disturbed with a diet of CHOs as follows: 40 gr at 7:30 hrs. 
during breakfast; 15 gr at 11:00 hrs. in a first snack; 90 gr for 
lunch at 13:00 hrs.; 80 gr for dinner at 19:00 horas and 15 gr 
for a second snack at 23:00 hrs. [15]. 

Three different experiments are proposed to see the 
performance of the controller under different conditions. 

1) Scenario 1: Target sensibility 

In this experiment the reference signal is changed in order 
to evaluate the steady state control. The percentage of the 
feed-forward prandial bolus insulin Kp is set to 50%. The 
sensitivity to reference signal is tested using four different 
values (80, 90, 100 and 110 mg/dl) for each VP. 

2) Scenario 2: Prandial sensibility 

Different proportions of prandial insulin used in CSII is 
administrated independently of controller. The reference is 
placed in 90 mg/dl. In order to test the control algorithm under 
distinct operation conditions, the feed-forward proportions of 

prandial bolus insulin Kp is adjusted in 0%, 50%, 60% and 
80%.  

V. Results and discussion 
The observer is used to estimate the unmeasurable 

variables of the BM. In Figure 2 A) is shown the estimation of 

the HM output  Hy C and its corresponding identification 

error ˆ
H H He y y   is shown in Figure 2 B). As can be seen in 

these Figures, the variable C is estimated with a FIT=99%, it 
is important to mention that the results shown in [10] present 
the estimation of all variables. In this simulation results, 24 
hours are presented based on the results obtained in the 
estimation of HM variables, the proposed algorithm is used in 

BM. The estimation error is bounded in 0 1.5 /He mg dl  . 

 

Figure 2.  A) Estimation of HM output 
Hy C  (dashed gray line), and its 

estimated output 
1H

ˆ ˆ
Hy x  (continuous black line); and B) estimation error 

ˆ
H H He y y  . 

 

Figure 3.  A) Estimation of BM output 
By G  (dashed gray line), and its 

estimated output 
1B

ˆ ˆ
By x  (continuous black line); and B) estimation error 

ˆ
B B Be y y  . 

Figures 3A) and 3B) depict the estimation of BM output 

By G  and its corresponding estimation error ˆ
B B Be y y  , 

respectively. The output variable By G  is estimated with a 

FIT=98%, the error is contained between 2 25Be    mg/dl. 

This error is due to whole differences between models. The 
goal for estimation the BM output consists of using this 
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 estimated variable in order to control it applying the procedure 
explained in section III B) using the two different scenarios.  

1) Scenario 1: Target sensibility 

In Figure 4 A) is displayed the BM controlled output 

By G of VP#2 comparing the OL with CL therapy to a 

reference ref 90G  mg/dl; Figure 4 B) shown the insulin 

administered ( )u t  to VP#2, which includes Kp=50% of OL 

prandial bolus ( )OLu t  added to ( )cu t  computed by the 

controller with Ackermann methodology described in section 
III B) and shown in Figure 1. From Figure 4 A) is seen that the 
CL glucose, using the estimated variables, is 1.4% of the day 
in hyperglycemia than 4.1% of OL glucose. Both OL and CL 
glucose avoids hypoglycemia level this means hypoglycemia 
time is 0%; but, as controller is limited to sidedness, is not 
possible to increase the glucose level until other disturbance 
appears. 

 

Figure 4.  Particular case of control applied to VP#2 of BM A) BM OL 

output
By G  is compared compared with CL output 

1
ˆ ˆ

B By x ; in B) shows 

the administered insulin ( ) ( )c p OLu t u t K u  .  

Figure 5 and Figure 6 display the mean OL output
By G  

with maximum and minimum VP values (blue areas) versus 
mean CL output 

1
ˆ ˆ

B By x  with maximum and minimum VP 

values (red areas); in CL the control signal ( ) ( )c p OLu t u t K u   

with p 50%K  .  

 

Figure 5.  VP population of BM OL output By G  is compared compared 

with VP population in CL output 1
ˆ ˆ

B By x , prandial bolus feed-forward 

50%pK   A) 80 /refG mg dl ; B) 90 /refG mg dl . 

Figure 5 compares OL and CL outputs, for all OL the 
mean time in hyperglycemia is 4.1% and 0% in hypoglycemia. 

In Figure 5 A) ref 80G  mg/dl the CL mean time in 

hyperglycemia is 0.9% and  in hypoglycemia is 14.1%. For 

Figure 5 B) ref 90G   mg/dl, the CL mean time in 

hyperglycemia is 1.7% and in hypoglycemia is 0.3%.  

 

Figure 6.  VP population of BM OL output
By G  is compared compared 

with VP population in CL output 
1

ˆ ˆ
B By x , prandial bolus feed-forward 

50%pK   A) 100 /refG mg dl ; B) 110 /refG mg dl . 

Comparisons between OL and CL outputs in Figure 6 A) 

ref 100G   mg/dl the CL mean time in hyperglycemia is 2.6% 

and in hypoglycemia is 0%. 6 B) ref 110G   mg/dl, the CL 

mean time in hyperglycemia is 3.7% and in hypoglycemia is 
0%. From the times in hypoglycemia level is possible deduce 

that if refG  is raised the risk of reach hypoglycemia is reduced; 

then raising the reference hypoglycemia risk is avoided but, in 
consecuense is few increased the hyperglycemia period.  

2) Scenario 2: Prandial sensibility 

Figure 7 and Figure 8 depict the mean OL output By G  

with maximum and minimum VP values (blue areas) versus 
mean CL output 

1
ˆ ˆ

B By x  with maximum and minimum VP 

values (red areas); in CL the reference signal ref 90G   mg/dl 

for the four trials.  

 

Figure 7.  Comparation between VP population of BM in OL output By G  

versus CL output 1
ˆ ˆ

B By x , with 90 /refG mg dl ;  A) prandial bolus feed-

forward 0%pK   and B) prandial bolus feed-forward 50%pK  . 
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   Figure 7 shows OL and CL outputs, in A) control signal 

is adjusted with p 0%K  , computing the CL mean time in 

hyperglycemia is 13.6% and in hypoglycemia is 2.0%; in B) 

control signal is complemented with p 50%K  , the calculus of 

CL mean time in hyperglycemia indicates 1.7% and for 
hypoglycemia is 0.3%.    

 

Figure 8.  Comparation of BM VP population between OL output
By G  

and CL output 
1

ˆ ˆ
B By x , with 90 /refG mg dl ;  A) prandial bolus feed-

forward 80%pK   and B) prandial bolus feed-forward 100%pK  . 

With reference signal fixed in 90 /refG mg dl , in Figure 8 

A) the control signal  is balanced with p 80%K  , the 

calculation of CL mean time in hyperglycemia results 0% and 
for hypoglycemia 8.2%. In Figure 8 B) the control signal  is 

made-up with p 100%K  , the percentage of CL mean time in 

hyperglycemia indicates 0% and for hypoglycemia is 23.6%. 
From trials in Figure 7 and Figure 8 is deduced that, in full CL 

i.e. p 0%K  the controller is able to deal with the disturbances 

and regulates the glucose output, taking it to normoglycemic 
range. According proportion of prandial bolus feed-forward 

pK  is increasing the output regulation is more time in the 

normoglycemic band. But, if p 100%K   i.e. whole prandial 

bolus is administered the VP is hyper insulinized, becase in 
OL the VP is regulated and more insulin is added to its 
therapy. 

VI. Conclusion 
From results we conclude that proposed controller is able 

to deal with disturbances to regulate glucose concentration in 
VP with T1DM. The control operation conditions must be 
selected carefully in order to avoid hypoglycemia events and 
reducing the time in hyperglycemic level. The control 
algorithm based in Luenberger observer which estimates the 
unmeasurable variables absorbing the intra patient variability 
and external disturbances its good strategy to tackle the AP 
challenge.   
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