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Abstract—This paper proposes a method for extracting local 

features which is invariant under affine transformations. This 

method is based on the metric tensor. Using the metric tensor, an 

affine invariant smoothing filter and a set of affine invariant 

differential operators are constructed. Then, combining them a 

set of affine invariant feature extractions is constructed. 

Effectiveness of the proposed method is confirmed by 

experiments.  (Abstract) 

Keywords—feature extracton, affine invariance, metric 

tensor, smoothing (key words) 

I.  Introduction 
Affine invariance is important because images taken from 

different views are transformed with each other by affine 

transformation approximately. Therefore, it is desirable that 

features are invariant to the affine transformation. Affine 

transformation includes rotation, scaling, translation etc. As 

rotation invariant features, moments such as Zernike moment 

and Legendre moment are known [1-3]. In the paper [4], we 

proposed a method for extracting a set of rotaton invariant 

features based on 2 dimensional Herimite polynomials. A lot 

of methods have been propsed on affine invariant features[5-

12]. Among them, the paper [5] describes affine invariant 

scale-space based on a nonlinear evolution equation. The 

paper [6] proposes a method to extend SIFT method [7] to be 

fully affine invariant. 

In the previous paper [13], I proposed a new method for 
image smoothing that is invariant under affine transformations. 
Affine invariance is achieved by introducing a metric tensor 
with an appropriate transformational property against affine 
transformations. Affine invariance means that the result of 
smoothing after an affine transformation is the same as the 
result of the affine transformation after smoothing. The usual 
smoothing method by Gaussian filtering is not affine invariant. 

In this paper, I propose a method for extracting local 
features which is invariant under affine transformations. This 
method is based on the metric tensor as the method of affine 
invariant smoothing mentioned above. We regard that feature 
extraction is a process of converting the input image to an 
image representing the local feature. Affine invariance means 
that the result of a feature extraction after an affine 
transformation is the same as the result of the affine 
transformation after the feature extraction. In other words, if 
affine transformation and feature extraction are commutable, 
the feature extraction is affine invariant. 
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The method proposed in this paper is based on the metric 
tensor. Using the metric tensor, first, an affine invariant 
smoothing filter is introduced. Next, a set of affine invariant 
differential operators are constructed. Then, combining them a 
set of affine invariant feature extractions is constructed. 
Effectiveness of the proposed method is confirmed by 
experiments. 

II. Affine Invariance 

A. Definition 
We assume that the point ),( 21 xx  is transformed to 

)','( 21 xx  with an affine transformation  


.'

,'

22221212

12121111

bxaxax

bxaxax




 

We represent this transformation as T  and the above 
transformation (1) as 

 )','(),( 2121 xx
T

xx   

When the point ),( 21 xx  on an image ),( 21 xxI  is 

transformed to the point )','( 21 xx  on another image 

),( 21 xxIT  according to (1), and the following equation 

 )','(),( 2121 xxIxxI T   

is satisfied, we call ),( 21 xxIT  the affine transformation of 

),( 21 xxI . We represent it as 

 ).,(),( 2121 xxI
T

xxI T   

 Let the image ),( 21 xxIT  be the affine transformation of an 

image ),( 21 xxI  by T  as in (4). Let the ),( 21 xxI F  be the 

result of feature extraction of the image ),( 21 xxI . We call 

),( 21 xxI F  simply as the feature image of ),( 21 xxI . Let 

),( 21 xxI
FT  be the feature image of  ),( 21 xxIT , and 

),( 21 xxI
TF  be the result of the affine transformation of the 

feature image ),( 21 xxI F  as 

 ).,(),( 2121 xxI
T

xxI
TFF   
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Based on these preparations, we define affine invariance 
of feature extraction as follows. If the following equation 

 ).,(),( 2121 xxIxxI
FTTF   

holds, we define this feature extraction as affine invariant 
feature extraction. According to this definition, if the feature 
extraction is affine invariant, the feature image after affine 
transformation and the affine transformation of the feature 
image are the same. In other words, affine invariance means 
that feature extraction and affine transformation are 
commutable. 

B. Metric Tensor 
In this subsection, we consider a method to construct a set 

of affine invariant feature images. For this purpose, we 
introduce an  evaluation function )),,(( 21 GxxIJ  as 

 )det(/][)),,(( 21,21 Gdxdx
x

I

x

I
IGGxxIJ

ji
ji ij








  , (7) 

where G  is a metric tensor which satisfies following 

transformation property  



,][][

],[][][ ,

t
T

lk kljlikTijij

AIAGIG

IGaaIG
T

IG



   (8) 

where A  is the matrix element consist of  ija s, and 
tA  is the 

transpose of A . Here )det(G  is the determinant of the matrix 

G , and ])[det(/1 IG  is the area element. This evaluation 

function is affine invariant as is proved below. 

Theorem 1:  

Under the following affine transformation,  



],[][][

),,(),(

,

2121

IGaaIG
T

IG

xxI
T

xxI

lk klljkiTijij

T




 (9) 

the evaluation function (7) is invariant as  

 ])[),,(()),,(( 2121 TT IGxxIJGxxIJ  ,  (10) 

Proof of the Theorem 1 

Differentiating both sides of (3) with respect to 1x  or 2x , 

we obtain 

 

















k

k

T
kik

k

T

i

k

i x

xxI
a

x

xxI

x

x

x

xxI

'

)','(

'

)','('),( 212121 

Using the relation on the area element under affine 
transformation, 

 21

1

2

1

2

2

1

1

1

11 ''

''

det'' dxdx

x

x

x

x

x

x

x

x

dxdx



































  

we obtain 



]),[),,((

])[det(/''
''

][

)][det()det(/''
''

][

])[det(/
''

][

])[det(/][)),,((

21

21,

11
21,

21,,,

21,21

TT

T
ji

Tji ij

t
T

ji
Tji ij

lk
ljkilkji ij

ji
ji ij

IGxxIJ

IGdxdx
x

I

x

I
IG

AIGAAdxdx
x

I

x

I
IG

IGdxdx
x

I

x

I
aaIG

IGdxdx
x

I

x

I
IGGxxIJ



















































  

Thus, the theorem 1 is proved. From this theorem we can 
prove the following theorem. 

Theorem 2: 

The 2 by 2 symmetric matrix )(MING that minimizes the 

evaluation function (7) is transformed as follows under the 
affine transformation. 

].[][][

),,(),(

,
)()()(

2121

IGaaIG
T

IG

xxI
T

xxI

lk kl
MIN

jlikTij
MIN

ij
MIN

T





 (14) 

This theorem means that if ][)( IG MIN  minimizes the 

evaluation function )),,(( 21 GxxIJ  ][)(
T

MIN IG  minimizes the 

evaluation function )),,(( 21 GxxIJ T . 

Proof of theorem2:  

We assume that the minimum of )),,(( 21 GxxIJ   is  


MINIGdxdx

x

I

x

I
IG

GxxIJ

MIN

ji
ji ij

MIN

MIN









  ])[det(/][

)),,((

)(
21,

)(

)(
21

  

Let ),( 21 xxIT be the affine transformation of ),( 21 xxI  

and ][)(
T

MIN IG  be the affine transformation of ][)( IG MIN . 

From the theorem 1,  
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 .])[),,((])[),,(( )(
21

)(
21 MINIGxxIJIGxxIJ MIN

T
MIN

T 

 

This equation implies that ][)(
T

MIN IG  minimizes the 

evaluation function )),,(( 21 GxxIJ T . In fact, if not, there exit 

otherG  such that )),,(( 21 otherT GxxIJ is less than MIN . Then, 

from the theorem 1, ])[),,(( 121 Tother IGxxIJ  is also less than 

MIN  for ][ 1Tother IG , that is inverse affine transformation of 

otherG . It is contrary to the assumption that the minimum 

value of )),,(( 21 GxxIJ  is MIN . 

 In this way, the following statement is proved: 

][)(
T

MIN IG   minimizes )),,(( 21 TT GxxIJ . The metric tensor 

)(MING  depends on the image ),( 21 xxI . Therefore, we denote 

it as ][IG . When the image ),( 21 xxI  is transformed to 

),( 21 xxIT by the affine transformation, ][IG  is transformed 

to ][ TIG as in the equation (8). In the appendix A, we show 

how to obtain ][IG  which minimizes the evaluation function 

(7).  

C. Affine invariant differential operator 
Using the metric tensor ][IG , we define an affine 

invariant differential operator ][IH  as  


ii

ji ij
xx

IGIH



 

2

, ][][  

The differential operator ][IH is a generalization of the usual 

Laplacian operator  

 



 i

ix
2

2
2

 

The image ),( 21 xxI  is converted to  

 ),(][),( 2121][ xxIIHxxI IH  . 

We can regard ),( 21][ xxI IH  as an example of feature images.  

Theorem 3: 

The operator ][IH  is affine invariant. That is, the next 

relation holds. 

 ),(),( 21][21][ xxIxxI
TIHTTIH  . 

Proof of theorem 3:  

 First, we notice that 



lk
ljkiji ij

lkj

l

i

k
ji ij

ji
ji ij

xx
aaIG

xxx

x

x

x
IG

xx
IGIH

''
][

''

''
][][][

2

,

2

,

2

,




























.

Let ),( 21 xxIT  and ),( 21][ xxI
TIH  be the affine 

transformations of ),( 21 xxI  and ),( 21][ xxI IH , respectively. 

Then, the relations 

 )','(),(),','(),( 21][21][2121 xxIxxIxxIxxI
TIHIHT   

hold for the affine transformation (1) (see (5)). From (17) and 

(19) we obtain 



),','()','(][

''

)','(
][

''

)','(
][

),(
][),(][),(

][

21
2

,
21

2

,,,

21
2

,2121][

yxIyxIIH

xx

xxI
IG

xx

xxI
aaIG

xx

xxI
IGxxIIHxxI

TIHTTT

lk

T
Tlk kl

lk

T
ljkilkji ij

ji
ji ijIH






















 



where ][ TIH  is   


lk

Tlk klT
xx

IGIH
''

][][
2

,



   

 From (22) and (23), the relation (20) is confirmed. Thus, we 

see that the differential operator and the affine transformation 

is commutable. In other words, the differential operator can be 

regarded as an affine invariant feature extraction. 

In order to construct a set of affine invariant feature 

extractions,  we consider powers 
nIH ][  of the differential 

operator ][IH .  

Theorem 4: 

The operator nIH ][  is affine invariant. That is the next 

relation holds.  

 ),(),( 21][21][
xxIxxI n

T
n IHT

TIH
 . 

Proof of theorem 4:  

The theorem 4 is proved by mathematical induction. When    

1n , 
nIH ][  is affine invariant from the theorem 3. We will 
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prove below that 
1][ nIH  is affine invariant when 

nIH ][  is 

affine invariant. First, we notice that  

 )','(),( 21][21][
xxIxxI

TIHIH nn  . 

Apply ][IH to the left-hand side of (23), we get  



).','()','(][)','(][

''

)','(
][

''

)','(
][

),(
][),(][),(

1

1

][][

21][

2

,

21][

2

,,,

21][

2

,21][21][

yxIyxIIHyxIIH

xx

xxI
IG

xx

xxI
aaIG

xx

xxI
IGxxIIHxxI

n
T

n
T

n
T

n

n

n

nn

IHTIHTT
THT

lk

TIH

Tlk kl

lk

TIH

ljkilkji ij

ii

IH

ji ijIHIH






























This equation implies (22). Thus the theorem is proved. 

Next, we consider the following differential equation: 

 ),,()]0,,([
),,(

2121
21 txxIxxIH

dt

txxdI
 . 

Equation (25) is an anisotropic diffusion equation. If we set 
initial condition to be  

 ),,()0,,( 2121 xxIxxI   

the solution ),,( 21 txxI  of (25) can be represented formally as  

 ),(],[),,( 2121 xxItIKtxxI  , 

where )][exp(],[ tIHtIK  . The solution ),,( 21 txxI  is 

considered to be the result of applying the operator ],[ tIK  to 

the image ),( 21 xxI .  

Theorem 5: 

The operator ],[ tIK  is affine invariant. That is, the next 

relation holds.  

 ),(),( 21],[21],[ xxIxxI
tIKTTtIK T

 . 

The proof of this theorem is seen in the appendix B. 

The operator ],[ tIK  can be regarded as a kind of 

smoothing operators. It may be valuable to recall the case of 
Gaussian smoothing. We consider the following diffusion 
equation.  

 I
xxdt

txxdI

























2
2

2

2
1

2
21 ),,(

. (29) 

 The solution is expressed as 

 
.'')

4

)'()'(
exp()0,','(

4

1

),,(

212

2
22

2
11

21

21




 dxdx
t

xxxx
xxI

t

txxI



      (30) 

From this analogy, we can regard the smoothing by equation 
(27) to be natural extension of Gaussian smoothing, but it is 
affine invariant.  

D. A Set of Affine Invariant features 

The differential operator 
nIH ][  has property of a high-

pass filter and the smoothing operator ],[ tIK  has property of 

a low-pass filter. Combining them, we can construct a set of 
affine invariant local features which have property of a band-
pass filter. Band-pass property would be desirable for feature 

extraction. Since both of 
nIH ][  and ],[ tIK  are affine 

invariant, the combinations also are affine invariant. Thus, we 
obtain a set of affine invariant local features.  

More specifically, the set of affine invariant local features 
are constructed as follows. First, the metric tensor ][IG  

specific to the input image ),( yxI  is generated by the method 

described in the appendix B. Then, the image ),( yxI  is 

smoothed by solving the differential equation (25). The 
solution is represented formally as (27). Next, the smoothed 
image is successively processed by the differential operator 

][IH  and the series of images  

 ),,(],[][),,(],[][),,(],[][ 2121
2

21 xxItIKIHxxItIKIHxxItIKIH n       

(31) 

are results of affine invariant feature extraction. 

III. Experiments and Results 
We conducted experiments to confirm effectiveness of our 

method. We used a following synthesized image of 512512  

pixels as an input image:  

 .
22

exp),(
2

2

2

2






























yx

yx
yxI


 

where x  and y  are randomly determined according to 

uniform distribution between 10.0 and 20.0. We prepared 64 

images. These images were affine transformed, where affine 

transformation matrix A s are determined randomly as 
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 ,
)5.0

22
(5.01)5.0

21
(8.0

)5.0
12

(8.0)5.0
11

(5.01


















rr

rr
A         (33) 

where 11r , 12r , 21r , and 22r  are random variables uniformly 

distributed between 0.0 and 1.0.  

Using these data, we conducted experiment to compare 
two cases. One is the conventional method where the metric 

tensor is constant and has values 12211  gg   and 

02112  gg . In this case, the image is isotropically smoothed 

and differentiated by the usual Laplacian filter successively. 
The other is the proposed method  

An example is shown in Figure 1 for the usual method. In 
the figure, the top-left represents  the input image. The top-
right represents the affine transformed image. The feature 
images are calculated for these images. The feature image of 
the input image is shown at middle-left and the feature image 
after affine transformation is shown at middle-right of the 
figure 1. The result of the affine transformation after feature 
extraction is shown at bottom right. The feature image after 
affine transformation and the affine transformed image after 
feature extraction is not the same in this case. It means that the 
feature extraction is not affine invariant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another example is shown in Figure 2 for the usual 
method. In the figure, the top-left and the top-right represent 
the input image and the affine transformed image, 
respectively. The feature image of the input image is shown at 
middle-left and the feature image after affine transformation is 
shown at middle-right of the figure 2. The result of the affine 
transformation after feature extraction is shown at bottom 
right. The feature image after affine transformation and the 
affine transformed image after feature extraction is the same in 
this case. It means that the feature extraction by the proposed 
method is affine invariant. 

We evaluated average pixel error (mean square root error) 
for 64 times trials each between two images; one is the result 
of feature extraction after affine transformation and the other 
is the result of affine transformation after feature extraction. 
The result is shown in figure 3.The horizontal axis represents 

t2 , where  t  is the parameter in (27). From the figure, we 

can see that the error is significantly small in the case of the 
proposed method compared with the case of the conventional 
method. The error is normalized by the standard deviation of 
the pixel values of the feature image. From the theorem 
declared in this paper, the error should be exactly zero 
mathematically. The error observed in the experiment is 
considered to be from discretization error of finite sized 
images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T 

F 

Ｔ 

F 

Figure 1. An example of the experiments in the case of  the 

conventional method. 

T 

F 

Ｔ 

F 

Figure 2. An example of the experiments in the case of the proposed 

of the method. 
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IV. Conclusion 
In this paper, we proposed a method for extracting local 

features which is invariant under affine transformations using 
a metric tensor. We showed that an affine invariant smoothing 
filter and a set of affine invariant differential operators can be 
constructed using the metric tensor. Combining them, a set of 
affine invariant feature extractions was constructed. Feature 
extraction is affine invariant, if and only if affine 
transformation and feature extraction are commutable. We 
showed that this commutability is achieved in the proposed 
method by a computer simulation. 

Appendix A 

In this appendix, we show a method to obtain ][IG   that 

minimizes the following evaluation function. 

 )det(/][)),,(( 21,21 Gdxdx
x

I

x

I
IGGxxIJ

ji
ji ij








  , (A-1) 

Since equation (A-1) does not change by replacing ijIG ][  

with ijIkG ][ , we can only obtain the solution that minimize (A-

1) except scale factor. To fix the scale, we assume that 
determinant of G  is unit as  

  1][][][
2

122211  IGIGIG .     (A-2) 

In this case, since the relation t
T AIAGIG ][][  holds as is 

shown in (12), determinant of A  should be unit, because  

 .det][detdet)][det(][det AIGAAIAGIG t
T        (A-3) 

Thus, affine transformation must be restricted to such 
transformation that does not change area of any region in the 

image. Then we again rewrite the evaluation function by 
introducing Lagrange multiplier as 

 

.)1][][][()det(/][

)),,((

2
12221121,

21









  IGIGIGGdxdx

x

I

x

I
IG
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Differentiating (A-4) by ][11 IG , ][22 IG  and ][12 IG , we obtain 
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Now we set 11D , 22D  and 12D to be 
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then we obtain 
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Since  
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  is determined as 
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Therefore ][11 IG , ][22 IG  and ][12 IG  are obtained as 
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Figure 3. Average pixel error (mean square root error) between two 

images; one is the result of feature extraction after affine transformation 

and the other is the result of affine transformation after feature 

extraction. 
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Thus, we obtain ][11 IG , ][22 IG  and ][12 IG that minimize the 

evaluation function (A-1).  

Appendix B 
In this appendix, it is shown that the feature extraction  

],[ tIK  is affine invariant. First, we recall that if a feature 

extraction F  is affine invariant, next relation holds. 

).,(),( 2121 xxIxxI
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This is equivalent to  
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TFTF  ,                             (B-2) 

where 1T  is the inverse transformation of  T . Therefore, 
feature extraction F  is affine invariant, if and only if the next 
relation holds. 

   1TFTF ,                                 (B-3) 

From this, we can prove the statement that if 1H  and 2H  are 

affine invariant, 21 HHHP  and 21HHHM   are also 

affine invariant. In fact, it is easy to see  
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In the same way, we obtain 
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(B-5)  

From this equation, we obtain  

  TtIKtITK ],[],[  .                                            (B-6) 

This formula indicates that the feature extraction  ],[ tIK  is 

affine invariant. 
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