Trend Analyses of Critical Values Obtained for Overall Nodes Extra Energy Savings Achievable in Ubicomp MANET Against Direct Node-to-Node Location-Aware Transmission.

M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY

Abstract - Quite extensive research is well ongoing concerning enhancements of location-tracking, MANET transmission and location-aware transmission for ubicomp [1-48]. Presently, more significant developments must be awaited before these three undergo successful merging and bring desirable improvements in ubicomp. One essential factor for success of this merging is correct protocol designs. At present era of technology, research in protocol designs are claimed as inapt for implementations due to present heuristic approaches [86]. Enhancements are also awaited in middleware services and applications [87]. Rework in ubicomp network architecture is also demanded [88]. A distant milestone in this direction of study is to fulfil realism in design and evaluation of wireless routing protocols [89]. Such direction of research will also output more usable components for predictability in ubicomp. Realism is tiresome to fulfil since it will cover each aspect related to ubicomp. One aspect was studied in a past research [17] to assess trend of extra energy savings achievable by overall nodes in MANETs (OLNTNES) against direct Node-to-Node transmission under different sets of node densities in a ubicomp environment. This study was reinforced by the corresponding study of trends for each OLNTNES parameter of equations [33].

To upgrade realism of these trends, in this paper, the next level of probing that is required is stated as: "What are the observable critical values in OLNTNES trends and the trends of these critical values?"

Such knowledge will gradually lead to the design of more realistic ubicomp scenarios over which experimental ubicomp features and communication protocols are tested validly. This paper follows-up from previous ones [1-48].

Key terms: Ubicomp- Ubiquitous Computing, MAUC- Mobile and Ubiquitous Computing, ES- Energy Savings, OLNTNES-Overall Less Node-to-Node ES, CBR- Constant Bit Rate, MANET- Mobile Adhoc Network, CV- Critical Value.

M. Kaleem GALAMALI, University of Technology Mauritius (student) Mauritius

Assoc. Prof Nawaz Mohamudally University of Technology Mauritius, Mauritius

1. Introduction

A significantly wide range of factors affect energy consumption in MAUC [2]; type of transmission and node density remain predominant ones. In a past research [17], a simulation endeavour was carried out to derive the particular trend/model which depicts the overall nodes extra energy savings achievable against direct node-to-node transmission in MANET (OLNTNES) compared to theoretical/empirical models derived in simulations. The model put forward for metric OLNTNES was the normal distribution model:

 $F(x) = b*(1/(a*sqrt(2*pi)))*exp(-(x-c)^2/2*a*a)$

Obviously, the study which followed [33] was mathematical modelling of the trends of the three parameters of equation obtained, so that the results may serve towards better understanding of the evolution and predictability of ubicomp environments. As progress is made in this direction, designers may produce a platform of newly developed components, including communication protocols and middleware functions, can be exercised convincingly.

The next stage of investigation required for metric OLNTNES is identifying observable critical values obtained during experimentations and formulating the corresponding mathematical trend of variations over varying node densities for each critical value. Nine such critical values have been observed.

The key contribution of this paper is the derivation of the trend of variation for each of the nine critical values observed for metric OLNTNES introduced in prior papers [17, 33], covering node numbers 7 until 56. Such data, if properly produced, will assist designers to better understand the evolution and predictability of ubicomp behaviour and derive more acceptable simulation scenarios over which new communication protocols being implemented could be reliably tested. The rest of this paper is organised as follows: section 2-OLNTNES Critical Values, section 3- Critical Values Trend Analyses- Metric OLNTNES, section 4-Conclusion and References.

2. OLNTNES Critical Values.

2.0 Critical Values Identified.

Nine critical values have been identified as follows: Column headings are: C1 \rightarrow OLNTNES CV, C2 \rightarrow Meaning of OLNTNES CV, C3 \rightarrow Corresponding figure number for the OLNTNES CV.

C1	C2	C3
1	Smallest OLNTNES value obtained.	1
2	Highest value of OLNTNES obtained.	2
3	Experimental Modal value of OLNTNES.	3
4	%CBR with OLNTNES < modal value.	4
5	%CBR with OLNTNES > modal value.	5
6	%CBR with negative OLNTNES values.	6
7	%CBR with OLNTNES value 0.	7
8	%CBR with positive OLNTNES values.	8
9	95% CBR have OLNTNES value as from.	9

Table 1: OLNTNES Critical Values

2.1 Experimental Critical Values Obtained.

The values obtained in experiments are summarised below. Values have been rounded to a maximum of 9 decimal places. Column heading $NN \rightarrow Node Number$.

NN	CV1	CV2	CV3	CV4	CV5
7	-1397	48	2	77.539682540	18.650793651
8	-1397	48	2	77.570837313	18.656478828
9	-1188	52	2	78.095238095	17.539682540
10	-1208	67	-5	66.031746032	30.952380952
11	-1175	65	-5	67.460317460	29.841269841
12	-1204	63	-11	58.251192369	39.268680445
13	-1225	62	-13	53.650793651	43.571428571
14	-1293	62	-14	54.365079365	42.666666667
15	-1690	62	-20	45.761904762	51.857142857
16	-2321	62	-5	74.190476190	23.031746032
17	-3555	66	-30	35.158730159	62.380952381
18	-4365	66	-15	59.238095238	38.015873016
19	-3911	66	-17	56.825396825	40.793650794
20	-4021	66	-9	73.253968254	24.285714286
21	-1790	70	-12	67.698412698	29.682539683
22	-2887	70	-12	69.126984127	28.253968254
23	-3824	70	-17	60.317460317	37.301587302
24	-3153	70	-15	65.22222222	32.460317460
25	-2283	70	-13	69.761904762	27.873015873
26	-3238	72	-13	68.88888889	28.730158730
27	-3220	72	-17	62.857142857	34.682539683
28	-3138	72	-15	67.857142857	29.936507937
29	-3188	72	-17	64.841269841	32.936507937
30	-3233	72	-23	56.031746032	41.507936508
31	-1637	72	-19	61.746031746	36.063492063
32	-1682	72	-26	50.000000000	47.698412698
33	-1689	72	-25	52.77777778	44.920634921
34	-1694	72	-28	47.857142857	49.603174603
35	-1711	72	-20	62.444444444	51.158730159
36	-1781	72	-28	50.317460317	47.619047619
37	-1636	65	-25	55.881886014	41.974916653
38	-1736	65	-14	73.015873016	24.761904762
39	-1759	65	-26	55.396825397	42.698412698
40	-1657	65	-31	47.539682540	50.158730159
41	-1591	65	-28	53.095238095	44.523809524
42	-1934	65	-17	69.761904762	28.015873016
43	-1506	70	-17	69.523809524	28.015873016
44	-1493	70	-18	68.646759848	29.129606099
45	-1669	70	-17	70.55555556	27.253968254
46	-1520	70	-29	52.539682540	45.44444444
47	-1520	70	-29	52.253968254	45.55555556
48	-2501	70	-28	54.920634921	42.984126984

49	-2421	70	-28	55.317460317	42.650793651
50	-3149	74	-28	54.809523810	42.857142857
51	-3469	74	-26	58.269841270	39.365079365
52	-4919	74	-26	58.746031746	38.809523810
53	-4925	74	-31	50.650793651	46.873015873
54	-5725	74	-19	70.793650794	26.984126984
55	-5694	74	-27	59.126984127	38.809523810
56	-5111	74	-31	51.507936508	46.190476190

Table 2a: Experimental Critical Values Obtained(1)

·	CV6	CV7	CV8	CV9
7	71.984126984	2.698412698	25.317460317	-195
8	72.015281757	2.690226043	25.294492200	-195
9	74.523809524	2.142857143	23.333333333	-266
10	76.190476190	2.460317460	21.349206349	-239
11	78.253968254	1.746031746	20.000000000	-246
12	79.332273450	2.082670906	18.585055644	-253
13	79.682539683	2.095238095	18.22222222	-286
14	81.349206349	1.857142857	16.793650794	-304
15	82.619047619	1.984126984	15.396825397	-309
16	83.809523810	1.428571429	14.761904762	-279
17	84.841269841	1.269841270	13.888888889	-315
18	85.476190476	1.349206349	13.174603175	-294
19	86.269841270	1.904761905	11.825396825	-299
20	87.142857143	1.111111111	11.746031746	-314
21	87.698412698	1.031746032	11.269841270	-344
22	88.095238095	1.587301587	10.317460317	-358
23	88.095238095	1.746031746	10.158730159	-374
24	88.730158730	1.587301587	9.682539683	-377
25	88.968253968	1.587301587	9.44444444	-384
26	88.968253968	1.031746032	10.000000000	-386
27	89.047619048	1.269841270	9.682539683	-393
28	89.920634921	0.873015873	9.206349206	-415
29	90.238095238	1.031746032	8.730158730	-411
30	90.015873016	0.936507937	9.047619048	-424
31	89.682539683	1.253968254	9.063492063	-418
32	90.634920635	0.714285714	8.650793651	-428
33	90.365079365	0.904761905	8.730158730	-424
34	90.317460317	0.873015873	8.809523810	-435
35	90.396825397	0.476190476	9.126984127	-427
36	90.396825397	0.714285714	8.888888889	-437
37	90.950944594	0.555643753	8.493411653	-439
38	91.428571429	0.55555556	8.015873016	-437
39	91.349206349	0.952380952	7.698412698	-436
40	92.063492063	0.634920635	7.301587302	-431
41	91.428571429	0.634920635	7.936507937	-458
42	91.666666667	0.634920635	7.698412698	-441
43	91.984126984	0.714285714	7.301587302	-406
44	92.137865311	0.635324015	7.226810673	-439
45	91.666666667	0.634920635	7.698412698	-428
46	91.825396825	0.793650794	7.380952381	-403
47	91.984126984	0.634920635	7.380952381	-411
48	92.380952381	0.793650794	6.825396825	-422
49	92.619047619	0.476190476	6.904761905	-424
50	92.77777778	0.873015873	6.349206349	-409
51	92.77777778	0.952380952	6.269841270	-435
52	92.857142857	0.634920635	6.507936508	-446
53	92.698412698	0.873015873	6.428571429	-480
54	92.936507937	1.031746032	6.031746032	-438

55	93.015873016	0.873015873	6.111111111	-437
56	93.095238095	0.793650794	6.111111111	-444

Table 2b: Experimental Critical Values Obtained(2)

The parameters for best fit are: $a=-17.751\ 8\ ,\ b=0.080\ 438\ 2\ ,\ \ c=34.771\ 6\ ,$ $d=1.171\ 65\ ,\ f=28.915\ 4$

3. Critical Values Trend Analyses- Metric OLNTNES.

3.0 General Procedure Adopted.

The tabulated data for each OLNTNES CV is plotted on gnuplot over Linux. Graphical analysis using smooth bezier support and "Fit" command is performed. General observations, for each such graph obtained is reported. Again, various equations of fit are attempted and their summary report is presented for each OLNTNES critical value. Ultimately, choice is made considering firstly value of least reduced chisquare and secondly on most plausible extendability produced at node numbers 80, 100 and 120. Finally, the values of parameters for each equation of each OLNTNES critical value is also noted.

3.1 Trend Analysis – OLNTNES CV1.

The curve obtained appears to be oscillating along a mildly decreasing straight line.

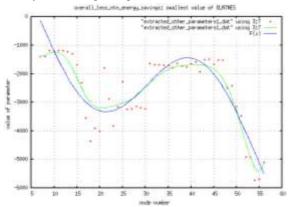


Figure 1: OLNTNES Critical Value 1

The applicable equation is:

F(x) = a * sin (b*(x-c)) + (d*x) + f $Ch_sq = 435 165$ F(80) = -6928.628 224 615F(100) = -9045.150 284 556 F(120) = -12903.691 101 643

The parameters for best fit are: $a = -2\ 008.26$, $b = -0.131\ 905$, $c = 30.317\ 5$, d = -102.241, f = 714.647

3.2 Trend Analysis – OLNTNES CV2.

The curve obtained appears to be oscillating along a mildly increasing straight line.

The applicable equation is:

F(x) = a * sin (b* (x-c)) + (d*x) + f $Ch_sq = 8.5566$ F(80) = 131.103575167F(100) = 161.356675540 F(120) = 159.897731328

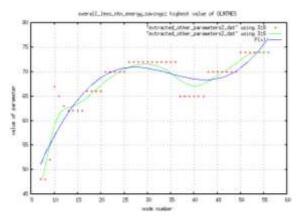


Figure 2: OLNTNES Critical Value 2

3.3 Trend Analysis – OLNTNES CV3.

The curve appears to be an oscillation along an axis which is itself mostly decreasing at a decreasing rate.

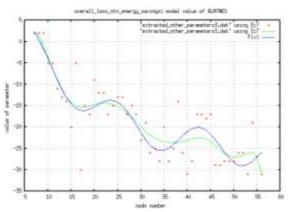


Figure 3: OLNTNES Critical Value 3

The applicable equation is:

F(x) = a*exp((b*x)+c) +d+ f*sin (g*(x-h)) $Ch_sq = 23.5762$ F(80) = -23.652 835 588F(100) = -26.051 612 639 F(120) = -28.844 576 575

The parameters for best fit are:

a = 0.466 63, b = -0.056 687 1, c = 4.413 03, d=-27.333 8, f=3.797 18, g=0.350 609, h=38.154 2

3.4 Trend Analysis – OLNTNES CV4.

The curve appears to be a damped oscillation along a straight line axis.

The applicable equation is:

F(x) = a*exp(-b*(x-c))*cos(2*b*pi*(x-c))+dCh_sq = 60.045 2 F(80) = 60.611 214 791 F(100) = 60.409 652 824 F(120) = 60.396 045 522

The parameters for best fit are: $a = 0.326\ 901$, $b = 0.056\ 740\ 9$, $c = 77.643\ 8$, $d=60.420\ 3$

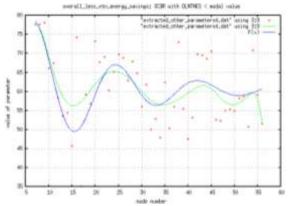


Figure 4: OLNTNES Critical Value 4

3.5 Trend Analysis – OLNTNES CV5.

The curve appears to be a case of damped oscillation along a straight line of positive gradient.

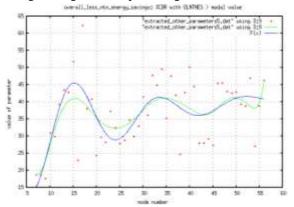


Figure 5: OLNTNES Critical Value 5

The applicable equation is:

F(x) = a * exp(-b * (x-c)) * cos (2*b*pi * (x-c)) + d * x + f $Ch_sq = 58.232 \quad F(80) = 44.208$ $F(100) = 47.587 \quad F(120) = 50.784$

The parameters for best fit are: $a = 0.555\ 039$, $b = 0.055\ 223\ 4$, $c = 69.935\ 6$, $d = 0.156\ 838$, $f = 31.960\ 5$

3.6 Trend Analysis – OLNTNES CV6.

Generally, the curve obtained here increases at a decreasing rate.

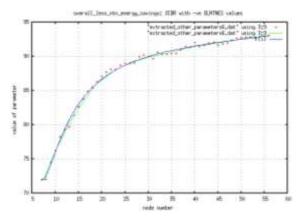


Figure 6: OLNTNES Critical Value 6

The potentially applicable equations are:

1.
$$F(x) = a * exp (b * x) + (c*x) + d$$

 $Ch_sq = 2.022\ 36$ $F(80) = 73.229\ 969\ 576$
 $F(100) = 41.240\ 240\ 974$ $F(120) = -9.402\ 767\ 677$
2. $F(x) = a * log (b * x) + (c*x) + d$
 $Ch_sq = 0.337\ 59$ $F(80) = 90.215\ 653\ 731$
 $F(100) = 87.021\ 027\ 428$ $F(120) = 83.050\ 373\ 205$
3. $F(x) = a * x * log (b*x) + (c*x) + d$
 $Ch_sq = 1.479\ 37$ $F(80) = 79.133\ 546\ 229$
 $F(100) = 60.833\ 938\ 529$ $F(120) = 35.779\ 809\ 566$
4. $F(x) = a * x^{-1} * log (b*x) + (c*x) + d$
 $Ch_sq = 0.276\ 054$ $F(80) = 91.772\ 595\ 111$
 $F(100) = 90.024\ 681\ 483$ $F(120) = 87.669\ 003\ 515$
5. $F(x) = a * x^{-2} * log (b*x) + (c*x) + d$
 $Ch_sq = 0.154\ 076$ $F(80) = 93.525\ 391\ 724$
 $F(100) = 93.783\ 756\ 188$ $F(120) = 93.918\ 874\ 884$
6. $F(x) = a * x^{-2.5} * log (b*x) + (c*x) + d$
 $Ch_sq = 0.125\ 2$ $F(80) = 94.763\ 990\ 385$
 $F(100) = 96.198\ 222\ 062$ $F(120) = 97.708\ 848\ 375$

Choice of best fit for SLNTNES Critical Value 6

The equation in part 6 above has been selected because of smallest reduced chi-square value obtained and good extendability. The parameters obtained for best fit are:

a = -6 979.98, b= 0.207 054, c= 0.004 582 22, d= 91.827 5

3.7 Trend Analysis – OLNTNES CV7.

Generally, the curve depicts a decreasing tendency until a minimum point, then shows an increasing tendency. The curve obtained depicts about half a wave:

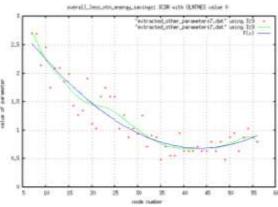


Figure 7: OLNTNES Critical Value 7

The applicable equation is:

$$F(x) = a * sin ((b* x) + c) + d$$

 $Ch_sq = 0.051 681 1$ $F(80) = 2.511 931 649$
 $F(100) = 4.714 178 503$ $F(120) = 7.217 407 852$

The parameters obtained for best fit are:

a= 5.462 12, b= 0.023 133 4, c= -3.704 69, d= 6.145 59

3.8 Trend Analysis – OLNTNES CV8.

Generally, the curve depicts a decreasing tendency at a decreasing rate.

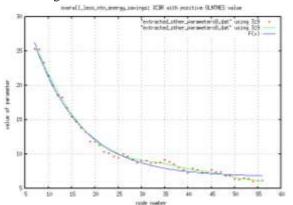


Figure 8: OLNTNES Critical Value 8

The potentially applicable equations are:

1. F(x) = a * exp ((b * x) +c) + d $Ch_sq = 0.313578$ F(80) = 6.714650734F(100)=6.702 133 122 F(120)=6.700 395 627 2.F(x) = a * x * exp ((b*x) +c) + dF(80) = 7.297 253 417 $Ch_sq = 0.458 186$ $F(100) = 7.297 \ 017 \ 203$ F(120)=7.297 010 154 3. $F(x) = a * x^{0.25} * exp ((b*x)+c) + d$ $Ch_sq = 0.330\ 081$ F(80) = 6.906314392F(100)=6.901 578 184 F(120) = 6.901 129 7654. F(x) = a * exp ((b*x)+c) + (d * x) $Ch_sq = 0.55351$ F(80) = 9.312487067F(100)=11.474 049 413 F(120)=13.728 599 970

Choice of best fit for SLNTNES Critical Value 8

The equation in part 1 above has been selected because of smallest reduced chi-square value obtained and good extendability. The parameters obtained for best fit are:

a = 4.207 32, b= -0.098 734 6, c= 2.230 76, d= 6.700 12

3.9 Trend Analysis – OLNTNES CV9.

The curve obtained here shows decreasing tendency at a decreasing rate.

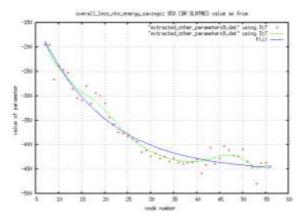


Figure 9: OLNTNES Critical Value 9

The potentially applicable equations are:

1.
$$F(x) = a / log ((b * x) + c) + d$$

 $Ch_sq = 457.98$ $F(80) = -476.583 896 683$
 $F(100) = -487.959 017 824$ $F(120) = -495.801 903 894$
2. $F(x) = a * exp ((b * x) + c) + d$
 $Ch_sq = 392.467$ $F(80) = -453.443 377 428$
 $F(100) = -454.705 519 396$ $F(120) = -455.020 239 560$
3. $F(x) = a * exp ((b*x) + c) + (d*x^{0.25})$
 $Ch_sq = 388.584$ $F(80) = -391.151 211 570$
 $F(100) = -308.479 987 522$ $F(120) = -188.195 841 981$
4. $F(x) = a * exp ((b*x) + c) + (d*x^{0.5})$
 $Ch_sq = 366.868$ $F(80) = -216.488 730 936$
 $F(100) = 252.313 505 313$ $F(120) = 1 210.880 853 749$

Choice of best fit for SLNTNES Critical Value 9

The equation in part 2 above has been selected because of smallest reduced chi-square value obtained and good extendability. The parameters obtained for best fit are:

a = 14.178 1, b= -0.069 444 1, c= 3.423 46, d= -455.125

4. Conclusion.

This piece of research was aimed at and has as achievement the identification of some critical values relevant to metric OLNTNES and modelling of their corresponding trends over varying node densities in a MANET topography of 300 x 300 m². The models put forward comprise of mathematical equations of varying complexity levels which will assist in studying MANETs for MAUC environment from a software engineering perspective. These mathematical models may fairly easily be implemented as programming algorithms, to generate more rigorously realistic simulation scenarios with the help of which newly developed communication protocols and middleware components for ubicomp may be tested.

This experiment has been conducted in NS-2 over Linux. The plottings and "Fit" attempts were carried out in gnuplot. Best fit was selected based on least reduced chi-square values and best extendability of equations at higher node numbers have been used. Assumptions stated in previous papers [17, 33] are continued here also.

This work is a follow-up of previous papers [1-13, 17, 33] and remains open for future upgrades. One such further work identified is formulating a method of predictability for metric OLNTNES and its trend.

References

[1] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Towards Dependable Pervasive

ISBN: 978-1-63248-126-9 doi: 10.15224/ 978-1-63248-126-9-22

- Systems-A Position and Vision Paper, CEET 2014
- [2] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Energy Savings achievable with Location-aware Node-to-Node Transmission in UbiComp, CEET 2014
- [3] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Energy Savings achievable with Location-aware Node-to-Node Transmission in UbiComp Using Location Refresh Intervals, CEET 2014
- [4] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Energy Savings achievable with Location-aware Transmission in UbiComp Using Relays, CEET 2014
- [5] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Mathematical modeling of need of exact number of relays to ensure seamless mobility in mobile computing, CEET 2014
- [6] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Modelling of need for multiple relays for ensuring seamless mobility, CEET 2014
- [7] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Investigation of prominence of placements of relays in a ubicomp topography,
- [8] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of energy savings achievable with location-aware transmission in ubicomp using optimised number of relays.
- [9] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Investigation of Prominence of Placements of Optimised Number of Relays in a Ubicomp Topography using Location-Aware Transmission, CEET 2015
- [10] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Extending Node Battery Availability in Ubicomp with Location-Aware Transmission, CEET 2015.
- [11] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Extending Node Battery Availability in Ubicomp with Location-Aware Transmission using Location Refresh Intervals, CEET 2015.
- [12] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Extending Node Battery Availability in Ubicomp with Location-Aware Transmission using Uniformly Placed Relays, CEET 2015.
- [13] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Extending Node Battery Availability in Ubicomp with Location-Aware Transmission Using Optimally Placed Relays, CEET 2015.
- [14] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Sender Node Energy Savings Achievable with Location-Aware MANET Transmission in Ubicomp. ACCN 2016
- [15] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Overall Node Energy Savings Achievable with Location-Aware MANET Transmission in Ubicomp. ACCN 2016
- [16] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Sender Node Extra Energy Savings Achievable in MANET Against Direct Node-to-Node Transmission Using Location-Aware Transmission in Ubicomp. ACCN 2016
- [17] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Overall Node Extra Energy Savings Achievable in MANET against Direct Node-to-Node Transmission Using Location-Aware Transmission in Ubicomp. ACCN 2016
- [18] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Energy Consumption Ratio Achievable in MANET Using Location-Aware Transmission in Ubicomp. ACCN 2016
- [19] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Minimum Energy Consumption Ratio Achievable in MANET Using Location-Aware Transmission in Ubicomp. ACCN 2016
- [20] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Maximum Energy Consumption Ratio Achievable in MANET Using Location-

- Aware Transmission in Ubicomp. ACCN 2016
 [21] M. Kaleem GALAMALI, Assoc. Prof Nawaz
 MOHAMUDALLY, Model of Overall Energy Consumpti
 - MOHAMUDALLY, Model of Overall Energy Consumption Fairness Ratio Achievable in MANET Using Location-Aware Transmission in Ubicomp. ACCN 2016
- [22] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Overall Energy Consumption Fairness Proportion Achievable in MANET Using Location-Aware Transmission for Ubicomp, CEET 2016
- [23] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Minimum Fairness Proportion Achievable in MANET Using Location-Aware Transmission for Ubicomp, CEET 2016
- [24] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Maximum Fairness Proportion Achievable in MANET Using Location-Aware Transmission for Ubicomp, CEET 2016
- [25] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Sender Fairness Proportion Achievable in MANET Using Location-Aware Transmission for Ubicomp, CEET 2016
- [26] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Distance Travelled by packets in MANETs using Location-Aware Transmission for Ubicomp, CEET 2016
- [27] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Maximum CBR Distance Travelled by packets in MANETs using Location-Aware Transmission for Ubicomp, CEET 2016
- [28] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Minimum CBR Distance Travelled by packets in MANETs using Location-Aware Transmission for Ubicomp, CEET 2016
- [29] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Model of Range CBR Distance Experienced by Transmissions in MANETs using Location-Aware Transmission for Ubicomp, CEET 2016
- [30] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Sender Node Energy Savings Achievable in ubicomp MANETs using Location-Aware Transmission, ACCN 2017.
- [31] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Overall Node Energy Savings Achievable in ubicomp MANETs using Location-Aware Transmission, ACCN 2017.
- [32] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Sender Node Extra Energy Savings Achievable in MANET against Direct Node-to-Node Location-Aware Transmission, ACCN 2017.
- [33] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Overall Nodes Extra Energy Savings Achievable in MANET against Direct Node-to-Node Location-Aware Transmission, ACCN 2017.
- [34] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Energy Consumption Ratio Achievable in Ubicomp MANET Using Location-Aware Transmission, ACCN 2017.
- [35] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Minimum Energy Consumption Ratio Achievable in Ubicomp MANETs Using Location-Aware Transmission, ACCN 2017.
- [36] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Maximum Energy Consumption Ratio Achievable in Ubicomp MANETs Using Location-Aware Transmission, ACCN 2017.
- [37] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Overall Fairness Ratio Achievable in Ubicomp MANETs Using Location-Aware Transmission, ACCN 2017.
- [38] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Energy Consumption Fairness Proportion Achievable in

ISBN: 978-1-63248-126-9 doi: 10.15224/ 978-1-63248-126-9-22

- Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [39] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Minimum Fairness Proportion Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [40] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Maximum Fairness Proportion Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [41] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Sender Fairness Proportion Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [42] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Packets Per Distance Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [43] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Maximum CBR Distance Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [44] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Minimum CBR Distance Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [45] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Parameters of Equations for Range CBR Distance Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [46] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Critical Values Obtained for Sender Node Energy Savings Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [47] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Critical Values Obtained for Overall Node Energy Savings Achievable in Ubicomp MANETs Using Location-Aware Transmission, CEET 2017
- [48] M. Kaleem GALAMALI, Assoc. Prof Nawaz MOHAMUDALLY, Trend Analyses of Critical Values Obtained for Sender Node Extra Energy Savings Achievable in Ubicomp MANET Against Direct Node-to-Node Location-Aware Transmission, CEET 2017
- [49] Markus Bylund and Zary Segall, Towards seamless mobility with personal servers, 2004.
- [50] Masugi Inoue, Mikio Hasegawa, Nobuo Ryoki and Hiroyuki Morikawa, Context-Based Seamless Network and Application Control, 2004
- [51] Xiang Song, Umakishore Ramachandran, MobiGo: A Middleware for Seamless Mobility, College of Computing Georgia Institute of Technology, Atlanta, GA, USA, August 2007
- [52] Budzisz, Ferrús, R., Brunstrom A., Grinnemo, K, Fracchia, R., Galante, G., and Casadevall, F. Towards transport-layer mobility: Evolution of SCTP multihoming, March 2008
- [53] Paul Dourish & Genevieve Bell, Divining a digital future, 2011.
- [54] Xiang Song, Seamless Mobility In Ubiquitous Computing Environments, PhD Thesis, Georgia Institute of Technology, August 2008
- [55] Kevin O Mahony, Jian Liang, Kieran Delaney, User-Centric Personalization and Autonomous Reconfiguration Across Ubiquitous Computing Environments, NIMBUS Centre Cork Institute of Technology, Cork, Ireland, UBICOMM 2012
- [56] Pablo Vidales, Seamless mobility in 4G systems, Technical Report, University of Cambridge, Computer Laboratory, Number 656, November 2005
- [57] João Pedro Sousa and David Garlan, Aura: An Architectural Framework for User Mobility in Ubiquitous Computing Environments, School of Computer Science, Carnegie Mellon University, USA, August 2002
- [58] Dennis Lupiana, Ciaran O'Driscoll, Fredrick Mtenzi,

- Defining Smart Space in the Context of Ubiquitous Computing, Dublin Institute of Technology, Ireland, Special Issue on ICIT 2009 Conference Web and Agent Systems, 2009
- [59] N.S.V.Shet1, Prof.K.Chandrasekaran2 and Prof. K.C.Shet3, WAP Based Seamless Roaming In Urban Environment with Wise Handoff Technique, International Journal of UbiComp (IJU), Vol.1, No.4, October 2010
- [60] Yipeng Yu Dan He Weidong Hua Shijian Li Yu Qi Yueming Wang Gang Pan, FlyingBuddy2: A Braincontrolled Assistant for the Handicapped, Zhejiang University, UbiComp'12, September 5-8, 2012.
- [61] Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal de Lara Christophe Diot, Ashvin Goel, Meng How Lim, and Eben Upton, Haggle: Seamless Networking for Mobile Applications, 2007
- [62] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo*, Michelle Osmond, Enabling cost-aware and adaptive elasticity of multi-tier cloud applications, Future Generation Computer Systems, 2012
- [63] Byrav Ramamurthy, K. K. Ramakrishnan, Rakesh K. Sinha, Cost and Reliability Considerations in Designing the Next-Generation IP over WDM Backbone Networks, 2012.
- [64] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar Chitnis, Chitra Muthukrishnan, Ram Ramjee and George Varghese, EndRE: An End-System Redundancy Elimination Service for Enterprises, NSDI 2010, San Jose, CA
- [65] Ashok Anand, Vyas Sekar and Aditya Akella, SmartRE: An Architecture for Coordinated Network-wide Redundancy Elimination, SIGCOMM 2009, Barcelona, Spain
- [66] John Breeden II, "Smart-phone battery life could double without better batteries", Nov 14, 2012
- [67] Andy Boxall, "When will your phone battery last as long as your kindle", December 5, 2012.
- [68] Imielinski, T. and Navas, J.C. (1999). GPS-based geographic addressing, routing, and resource discovery. *Comms. ACM*, Vol. 42, No. 4, pp. 86-92.
- [69] Hightower, J. and Borriello, G. (2001). Location Systems for Ubiquitous Computing. *IEEE Computer*, Vol. 34, No. 8, August, pp. 57-66.
- [70] Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P. (2002). The Anatomy of a Context-Aware Application. Wireless Networks, Vol. 8, No. 2-3, Mar-May, pp. 187-197.
- [71] Hightower, J., Brumitt, B. and Borriello, G. (2002). The Location Stack: A Layered Model for Location in Ubiquitous Computing. Proceedings of the 4th IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2002), Callicoon, NY, USA, June, pp. 22-28.
- [72] Graumann, D., Lara, W., Hightower, J. and Borriello, G. (2003). Real-world implementation of the Location Stack: The Universal Location Framework. Proceedings of the 5th IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003), Monterey, CA, USA, October, pp. 122-128.
- [73] Ko, Y., & Vaidya, N. H. (2000). Location-aided routing (LAR) in mobile ad hoc networks. Wireless Networks, 6(4), 307-321.
- [74] Liao, W.-H., Tseng, Y.-C., & Sheu, J.-P. (2001). GRID: a fully location-aware routing protocol for mobile ad hoc networks. *Telecommunication Systems*, 18(1), 37-60.
- [75] Kuhn, F., Wattenhofer, R., Zhang, Y., & Zollinger, A. (2003). Geometric ad-hoc routing: of theory and practice. In Proceedings of the ACM (PODC'03) (pp. 63-72).
- [76] Jiang, X., & Camp, T. (2002). Review of geocasting protocols for a mobile ad hoc network. In Proceedings of the Grace Hopper Celebration (GHC).
- [77] Ko, Y. & Vaidya, N. H. (1999). Geocasting in mobile ad hoc networks: location-based multicast algorithms. In Proceedings of the IEEE (WMCSA'99) (pp. 101).
- [78] Mauve, M., Fuler, H., Widmer, J., & Lang, T. (2003). Position-based multicast routing for mobile ad-hoc networks (Technical Report TR-03-004). Department of Computer

- Science, University of Mannheim.
- [79] Xu, Y., Heidemann, J., & Estrin, D. (2001). Geographyinformed energy conservation for adhoc routing. In Proceedings of the ACM/IEEE (MOBICOM'01) (pp. 70-84).
- [80] Hu, Y.-C., Perrig, A., & Johnson, D. (2003). Packet leashes: a defense against wormhole attacks in wireless ad hoc networks. In *Proceedings of the INFOCOM' 03* (pp. 1976-1986).
- [81] Patwari, N., Hero III, A. O., Perkins, M., Correal, N. S., & O'Dea, R. J. (2003). Relative location estimation in wireless sensor networks. *IEEE Transactions on Signal Processing*, 51(8), 2137-2148.
- [82] Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A Survey on Context Aware Systems. International Journal of Ad Hoc and Ubiquitous Computing, Inderscience Publishers. forthcoming. Pre-print from: http://www.vitalab.tuwien.ac.at/~florian/papers/ijahuc2007.pdf
- [83] Hong, D., Chiu, D.K.W., & Shen, V.Y. (2005). Requirements elicitation for the design of context-aware applications in a ubiquitous environment. In *Proceedings of ICEC'05* (pp. 590-596).
- [84] Neeraj Tantubay, Dinesh Ratan Gautam and Mukesh Kumar Dhariwal, A Review of Power Conservation in Wireless Mobile Ad hoc Network (MANET)", International Journal of computer Science Issues, Vol 8, Issue 4, No 1, July 2011.
- [85] Wenrui Zhao, Mostafa Ammar and Ellen Zegura, "A Message Ferrying Approach for Data Delivery in Sparse Mobile Ad Hoc Networks", MobiHoc'04, May 24–26, 2004, Roppongi, Japan.
- [86] Sgroi et al., "Designing Wireless Protocols: Methodology and Applications, February 2000.
- [87] Gyula et al., "Simulation-based optimization of communication protocols for large-scale wireless sensor networks", 10 October 2002
- [88] Rao and Sharma, "Cross Layer Protocols For Multimedia Transmission in Wireless Networks", June 2012
- [89] Herms et al, "Realism in Design and Evaluation of Wireless Routing Protocols", 2007.

About Author (s):

Associate Professor Nawaz Mohamudally works at University of Technology, Mauritius (UTM) and has undertaken supervision of MPhil/PhD Students for many years.

M. Kaleem Galamali is a part-time student (achieved M Phil Transfer on 28.10.2014, currently PhD student) at UTM under supervision of A.P. Nawaz Mohamudally.

