
 The Influence of Various Workload Descriptions on
a Grid Scheduling Mechanism �

Arkaprava Bhaduri Mandal
Department of Computer Science and Engineering

National Institute of Science and Technology
Berhampur, India

arkabhaduri@gmail.com

Motahar Reza
Department of Mathematics

National Institute of Science and Technology
Berhampur, India

nist_reza@yahoo.com

Abstract—Grid Computing is a form of distributed Computing
that has emerged as a viable solution to meet the ever increasing
needs for computational power and data management capability.
Designing solutions in such grid computing framework entails
addressing much more complicated issues compared to chore
software development, namely concurrency, heterogeneity,
scalability and so forth; just to name a few. In order to simplify
the task of programming in grid environment a software layer is
employed to mask off the massive underlying heterogeneity in
network, hardware, operating system and programming
languages, known as the middleware. Moreover, resources in a
grid are dynamic and thus incorporating appropriate scheduling
mechanism becomes a challenging proposition.

This paper addresses some major issues in context of job
scheduling in computational grids: namely, average active jobs,
busy time of CPU, heap memory and average CPU load. They
are treated as Work Load Description (WLD) in a grid scenario.
For experimentation purposes, Grid Gain has been incorporated
as middleware. Experiments have been conducted and
subsequent results presented herein demonstrate the efficacy of
Grid Gain as a platform of implementation of grid computing for
catering to future generation computational needs, including load
balancing.

Keywords-GridComputing,Scheduling,Work Load Description,
GridGain;

I. INTRODUCTION

Grid computing ties together unexploited processing cycles
of all computers in a network for solving problems too
intensive for any stand-alone machine. It is a form of
networking unlike conventional networks that focus on
communication among devices. It sets aside unemployed CPU
capacity in all participating machines to be allocated to one
application that is extremely computation intensive and
programmed for parallel processing. Grid computing facilitates
the virtualization of distributed computing and data resources
such as processing, network bandwidth and storage capacity to
create a single system image, granting users and applications
seamless access to vast IT capabilities. An internet user can
view an unified instance of content via the Web; a grid user
essentially sees a single, large virtual computer [1].

A grid system is formed using many heterogeneous or
homogeneous resources to deal with large-scale scientific

problems. There are many issues in using grid computing. How
to appropriately and efficiently assign resources to tasks,
generally called job scheduling, is one of the important issues.
The main purpose of job scheduling is to shorten the job
completion time and enhance the system throughput. A grid
scheduling system should take the various characteristics of
grid applications and resources into account [2]. In a grid
environment, the resource providers and tasks are all changing
constantly, so the traditional scheduling algorithms may not be
suitable for a dynamic grid system. It is very important to
assign appropriate resources to tasks. Through a good
scheduling method, the system can perform better and
applications can avoid unnecessary delays.

Grid computing suggests a model for solving massive
computational problems by making use of the idle resources
(CPU cycles and/or disk storage) of large numbers of disparate
computers, often desktop computers, treated as a virtual cluster
embedded in a distributed telecommunications infrastructure.
Grid computing focus on the ability to support computation
across administrative domains sets it apart from traditional
computer clusters or traditional distributed computing. Grid
computing has the design goal of solving problems too big for
any single supercomputer, whilst retaining the flexibility to
work on multiple smaller problems. Therefore Grid computing
provides a multi-user environment. Its secondary aims are
better exploitation of available computing power and catering
for the intermittent demands of large computational exercises.
The Grid computing infrastructure mainly focuses on the
networking services and connections of a large number of
computational resources within a grid environment. A Grid is a
seamless environment incorporated with the computational and
storage capability. The end users can interact with the interface
to Grid middleware in order to solve their problems. The basic
activities performed by the middleware are resource discovery,
scheduling, and the processing of user’s jobs on the globally
disseminated Grid resources. The scheduling in Grid
emphasizes the problem of mapping the task to the best fit
node which is again the essential part of grid computing. The
tasks or jobs in the task-set may be independent or dependent
to each other. In some Independent task model the size and
quantity of tasks are known beforehand where the application
comprises some amount of load that may be subdivided into n
independent parts. This divisible load theory [3, 4] has already
been studied for last few years and applied in a wide variety of
different domains [5,6,7,8,9,10,11,12].

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering
Editor In Chief Dr. R. K. Singh. Copyright © 2012 Universal Association of Computer and Electronics Engineers.
All rights reserved. ISBN: 978-981-07-1847-3
doi:10.3850/978-981-07-1847-3 P0765

260

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

 In this paper we explore the performance and efficiency of
grid with respect to the different workload description. The
mean response time or Makespan [13] is the key aspect here in
order to evaluate the performance of grid. The experimental
setup has been developed using the GridGain middleware.
Figure 1 shows the in general architecture of a Grid with
geographically distributed resources.

Figure 1. Grid Computing Environment

The rest of the paper is organized as follows. Section 2 deals
with the functional and fundamental aspects of Grid
Computing. In Section 3 we describe in detail the different
methods used to collect the statistical node information along
with the entire experimental setup. Experimental results are
presented in Section 4 and some conclusion and future works
are provided in Section 5.

II. GRID COMPUTING

Grid computing is an approach which describes a
distributed computing infrastructure. It groups together the
other technology trends such as Internet, distributed computing
and peer-to-peer computing. The explicit focus of grid
computing has been identified as synchronized resource
sharing and problem solving in dynamic, geographically
dispersed virtual organizations. Grid computing involves a
growing set of open standards for Web services and interfaces
that enable services, or computational resources, accessible
over the Internet. Very often grid technologies are used on
clusters which can add value on them by supporting with
scheduling or making availability of the resources in the
cluster. The term grid, and its allied technologies, applies
across this entire continuum [14].

Grid computing is a form of parallel and distributed
computing that involves coordination and sharing of
computing, application, data storage and network resources
across dynamic and geographically distributed organizations .
It is a back-bone infrastructure for web services. Like Internet,
which allows sharing of the information, a grid provides

sharing of computational power and resources such as data
storage, databases, and hardware and software architectures.
This integration creates a virtual organization wherein a
number of mutually distrustful participants with varying
degrees of prior relationship want to share resources to perform
some computational tasks [15].

III. GRID ENVIRONMENT SETUP USING GRIDGAIN

In grid computing environment for Java, GridGain [16] is
used as a popular middleware developed in Java for Java
developers and is an innate annex of the latest Java
development methodologies. The Grid Gain released under the
terms of GNU General Public License (GPL) from Grid Gain
Systems Inc and used as an open source product. Grid Gain is
also suitable for networking systems and applications due to its
modern architecture based on Java programming language. It
provides a commanding and smart technology to build and run
applications on grid computing environment enabling
developers to code any custom grid compatible applications or
make the sequential one grid compatible and seamlessly deploy
it on the grid captivating the fullest benefit of the concepts like
affinity load balancing, map-reduce, and peer-to-peer class
loading etc. During the deployment of grid using GridGain
different working nodes have been created on different
machines. There is a management node that is responsible to
take the scheduling decisions. A task submitted to a node can
be processed locally or can be distributed among the different
other working nodes. In this paper mainly the scheduling
aspects and the performance of Grid has been analyzed while
implementing the grid using GridGain.

The grid set up has been deployed using Grid Gain 2.0.0 as
middleware incorporated with 14 nodes. The experiments have
been conducted on a set of heterogeneous machines having the
following configuration:

Eight individual machines with:

Processor- Intel (R) Core(TM) 2 Duo CPU
E7400@2.66GHz., CPU Core Count- 2.Memory- 1024MB,
Memory Bus Speed- 800MHz, Hard Drive- 320GB. Ethernet
Card. Operating System: Windows (R) XP Professional, SP 2.

Four individual machines with:

Processor- Intel (R) Core (TM) i3-380M Processor (3M
Cache, 2.53 GHz), CPU Core Count- 2.Memory- 3GB,
Maximum Memory Bandwidth-17.1 GB/s, Hard Drive-
500GB. Ethernet Card. Operating System: Windows (R) 7
Home Premium, SP1 64-Bit.

Two individual machines with:

Processor- Intel (R) Core(TM) i5-2430M Processor (3M
Cache, 2.40 GHz)., CPU Core Count- 2.Memory- 4GB,
Maximum Memory Bandwidth-21.3 GB/s, Hard Drive-
500GB. Ethernet Card. Operating System: Windows (R) 7
Home Premium, 64-Bit.

Each node configured with: Middleware: Grid Gain 2.0.0
along with JDK- 6u-10 and Java Runtime Environment with
Eclipse 3.2.

261

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

All the machines were connected via a switch using RJ-45
cable with a maximum transmission speed of 100.0 Mbps.

For the developers the GridGain provides a lot of flexibility
in order to code and deploy their program on grid computing
environment. Figure 2 shows the prototype of the experimental
setup used for our work

Figure 2. Grid Setup employing GridGain

GridGain has some inbuilt methods by which the various
statistical information regarding the various properties of each
individual resources can be obtained without any difficulties,
like getAverageCpuLoad(),getAverageActiveJobs(),getAverage
CancelledJobs(),getAverageJobWaitTime(),getCurrentCpu
Load(),getHeapMemoryUsed(), getHeapMemoryInitialized().

Initially a simple program of Matrix multiplication has been
chosen as the key problem to be used to provide the load on the
nodes. A set of task ranging from 50 to 400 is used as load in
order to execute the problem on grid.

As the primary objective of this work is to unearth the
solution for grid scheduling problem, the working Zone refers
to the mapping of the jobs to the fittest nodes. Now the
difficulty lies on the selection procedure of the fittest node for a
particular job. The Modified Dynamic Fittest Processor Largest
Task First (MDFPLTF) algorithm is used to schedule the jobs
to the specific nodes. Here the fittest processor has been chosen
by the corresponding relative value of the WLD. In our work
the various Workload Descriptions have been used as the key
aspect to recognize the fittest nodes. The performance of the
algorithm has been analyzed with respect to the makespan. The

following code is used to get the statistical information of the
various grid nodes.

The method node.getMetrics().getAverageCpuLoad is used
to get the average CPU load information of a node. The
variable Logic is used to select the appropriate WLD. The
nodeId refers to the corresponding node of which the WLD is
acquired.

In this above mentioned code the taskSet contains the set of
jobs submitted to the grid where as the gridList contains an
ordered list of all the active nodes in grid with respect to the
WLD specified. The method jobs.put() along with the method
mappingReduce.deployingInGrid(getArgument() is used here
to map the job from the taskSet to the node from the gridList
as prescribed by the MDFPLTF algorithm.

The experiments have been conducted numerous times for
each individual workload descriptions with varying size of task
set.

IV. RESULT AND DISCUSSION

In this paper we investigate the impact of the different
WLD in scheduling in order to find out the most suitable
WLD using which the proposed algorithm may outperform the
inbuilt one as well as provide the better performance as
compared to the other WLD. There are several different
mechanisms in GridGain using which getting the various

if(logic==1){

//Logic 1 is for only considering average
CPU load.

 nodeId = nodeIdPassed;

 node = nodePassed;

 parameter =

 node.getMetrics().getAverageCpuLoad()

}

for(int k=0;k<taskSet.length;k++){

jobs.put(new
GridJobAdapter<String>(taskSet[k]) {

 execute(){

 return

mappingReduce.deployingInGrid(getArgumen
t());

 },gridList.get(k).node);

 }

}

262

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

statistical information regarding the different heterogeneous
resources is very easy.

Here we make a comprehensive study of the performance
of different WLD with varying size of taskset. Near about 250
times the experiments have been conducted with various WLD
and with varying Task size.

In case of our experiment we choose Average CPU Load
(ACL) ,Heap Memory Committed (HMC), Average Active Jobs
(AAJ) and Busy Time Percentage (BTP) as WLD. Here we
study the comprehensive impact of each individual WLD
when used with our proposed MDFPLTF algorithm to
evaluate the performance and efficiency of the algorithm in
grid computing environment
 From Figure 3 it can be observed that initially though the
basic algorithm outperforms the MDFPLTF with AAJ, but as

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50 100 150 200 300 400

Taskset

m
ak

es
p

an
(m

s)

ACL

HMC

AAJ

BTP

Figure 3. Performance of different workload descriptor for different size of
taskset

the load/taskset goes on increasing the AAJ rules over both the
MDFPLTF with ACL as well as with HMC, although HMC
provides better solution than the ACL. If we compare the
efficiency of the different WLD among themselves, it can be
found that initially the AAJ gives poor performance as
compare to the HMC and BTP. Though Initially the HMC
provides better performance but with the increasing taskset it
goes down. If we compare the performance curve of AAJ and
HMC it is observed that they are converse to each other.
Initially the HMC gives better results but as the load goes on
increasing it falls where as the AAJ provides poorer solution
initially but with increasing load it also increase it’s
performance. But the optimal solution is provided by the BTP.
From the initiation of the experiment to the end it provides a

constant best output in comparison with all the other flavours
of MDFPLTF algorithm. The different WLD has its own
impact on the different versions of the MDFPLTF algorithm.

19500

20000

20500

21000

21500

22000

22500

23000

23500

24000

overall
makespan

(ms)

ACL HMC AAJ BTP

Figure 4. Overall Performance of different workload descriptor

Figure 4 shows the overall performance of the different
versions of MDFPLTF algorithm. The empirical result shows
that in our experiment in heterogeneous environment, the
MDFPLTF with AAJ gives the 2nd best performance whereas
the MDFPLTF with BTP provides the optimal solution.

V. CONCLUSION

 In this paper we have reviewed and investigated the various
aspects of grid regarding the performance and efficiency. For
our experimental setup GridGain is used as middleware. The
various workload descriptors such as busy time percentage ,
average active jobs, heap memory committed as well as the
GridGain’s own scheduling algorithm are used to evaluate the
efficiency and performance of the grid computing
environment. Among them the MDFPLTF with BTP provides
the superior performance in an overall aspect of makespan and
tasksize.
 The evaluation of efficiency as well as the performance of
grid using workload description is always problem specific. In
case of our problem of Matrix Multiplication the BTP gives
better performance. In future, the various other workload
descriptors can be used to assess the performance and
efficiency of grid for the different kind of problems.

REFERENCES

[1] Y. C. Lee, A. Y. Zomaya, “Practical Scheduling of Bag-of-Tasks
Applications on Grids with Dynamic Resilience,” IEEE Transaction on
computers, vol. 56, no. 6, pp. 815-825, 2007.

[2] N.Malarvizhi, V.Rhymend Uthariaraj, “A Minimum Time To Release
Job Scheduling Algorithm in Computational Grid Environment”, Proc
Fifth Int’l Joint Conf. on INC, IMS and IDC (NCM ’09),pp. 13-18, 2009.

263

Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering

[3] B. V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi,
SchedulingDivisible Loads in Parallel and Distributed Systems. IEEE
CS Press,1996.

[4] Cluster Computing, special issue on divisible load scheduling,vol. 6, no.
1, 2003.

[5] M. Drozdowski and P. Wolniewicz, “Experiments with Scheduling
Divisible Tasks in Clusters of Workstations,” Proc. Int’l Conf.Parallel
and Distributed Computing (Europar), pp. 311-319, 2000.

[6] V. Bharadwaj and S. Ranganath, “Theoretical and ExperimentalStudy on
Large Size Image Processing Applications Using Divisible Load
Paradigm on Distributed Bus Networks,” Image and Vision Computing,
vol. 20, nos. 13-14, pp. 917-1034, 2002.

[7] C.K. Lee and M. Hamdia, “Parallel Image Processing Applications on a
Network of Workstations,” Parallel Computing, vol. 21, pp. 137-160,
1995.

[8] G. Miller, D.G. Payne, T.N. Phung, H. Siegel, and R. Williams, “Parallel
Processing of Spaceborne Imaging Radar Data,” Proc. Int’l Conf. High
Performance Computing and Comm. (SC ’95), 1995.

[9] Y.-J. Chiang, R. Farias, C.T. Silva, and B. Wei, “A Unified
Infrastructure for Parallel Out-of-Core Isosurface Extraction and
Volume Rendering of Unstructured Grids,” Proc. IEEE Symp. Parallel
and Large-Data Visualization and Graphics, pp. 59-66, 2001.

[10] W. Bethel, B. Tierney, J. lee, D. Gunter, and S. Lau, “Using Highspeed
WANs and Network Data Caches to Enable Remote and Distributed
Visualization,” Proc. Int’l Conf. High Performance Computing and
Comm. (SC ’00), 2000.

[11] A. Garcia and H.W. Shen, “Parallel Volume Rendering: An Interleaved
Parallel Volume Renderer with PC-Clusters,” Proc. Fourth
Eurographics Workshop Parallel Graphics and Visualization, pp. 51-59,
2002.

[12] VisibleHumanProject,2003,http://www.nlm.nih.gov/research/visible/visi
ble_human .html.

[13] Y. Yang, K. Raadt and H. Casanova, “Multiround Algorithms for
Scheduling Divisible Loads”, IEEE Transactions on parallel and
distributed systems, vol. 16, no. 11, nov 2005.

[14] M. Ali, Z.Y. Dong, P. Zhang, “Adoptability of grid computing
technology in power systems analysis, operations and control”, IET
Generation, Transmission & Distribution, Vol. 3, Issue 10, pp. 949–959,
2009.

[15] I. Foster, C. Kesselman. “Computational Grids”. Chapter 2 of "The
Grid: Blueprint for a New Computing Infrastructure", Morgan-
Kaufman, 1999.

[16] GridGainMiddleware. http://www.gridgain.com/online_resources .html

264

