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The Formulation and Discretization Analysis 

Using the BEM  
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Abstract— Boundary discretization has been has been an ideal 

technique in solving boundary problems that are a common 

phenomenon in mathematics. The boundary element method (BEM) 

is one of the methods which has had an advantage of discretizing the 

boundary than the finite element method (FEM) and the finite 

difference method FDM) for quite so long. The curved and straight 

elements are crucial for the discretization process. In this study, the 

BEM has been used to analyze and compare curved or straight 

boundary discretization.        

       The BEM and its applications was reviewed in relation to curved 

and straight elements. The Laplace equation with its boundary integral 

formulation was done and the BEM applied. The Dirac-Delta and the 

Green’s functions were behind the use of the BEM. Finally, three model 

problems were tested for analysis of the BEM with curved and straight 

elements in relation to solving the Laplace problem. The MATLAB 

programs and subprograms were used among others to solve the 

problem and also used in the analysis. 

       Findings showed the fundamental advantageous stage of the curved 

to straight elements, the easy formulation of the latter to the former, and 

the suitability of the former to the latter when considering the curved 

and straight boundaries respectively. 
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1. INTRODUCTION  
     Several mathematical problems arise in various daily life 

encounters. Some of these problems are the boundary problems [1] 

[2]. Such problems can be solved by several analytical and numerical 

methods which include the BEM, among others. The BEM simply 

requires the discretization of the boundary than the whole domain. It 

should be noted that the BEM is more recent than the other two and 

has several advantages over the others that include among others: 

Discretizing at infinity [3], and its application to solving acoustic and 

general engineering science problems [2]. 

     This manuscript mainly entailed the formulation of the straight 

and curved elements for integral formulation, and the use of the BEM 

on these elements. The Dirac-delta distributions, the Green’s 

functions, the Laplace equation, the BEM and the divergence 

theorem were necessarily reviewed.  

1.1 The Laplace equation  
     The equation is used in electro-statistics, incompressible fluid 

flow systems and for the heat conduction in the steady state [2], [4]. 

For a Laplace equation, the solutions within a given region say , 

can be found given the specification of the potential or field around 

the boundary. Solutions of Laplace’s equation are called harmonic 

functions [5]. The Laplace’s boundary integral form required us to 

transform the PDE only unlike the FEM. A function u was 

considered to be satisfying the equation to give the following integral 

formulations:     
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Where G is the Green’s function, D is the interior domain, S is the 

boundary and E is the exterior region. Equation (1) is simplified by 

applying Green’s function properties, and by cosmetic changes. This 

accomplishes the first stage of the BEM [1], [2]. 

1.2The Boundary Element Method (BEM) 

1.2.1 Introduction 

     The BEM as applied to the Laplace’s equation is the most recent 

than the FEM and FDM [2], [6] and [7]. In the last three decades, the 

method has been developed into a robust technique for especially 

modeling elasticity and acoustics [2], [8] and [9]. The term “element” 

meant the geometry and type of approximation to a given variable. 

The term “node” was used to define the element geometry or the 

variables involved in the problem.  

     From [2], we noted that in using the BEM on the interior Laplace 

problem, two relevant things were noted about elements; 

     The different number of nodes were used for the variable 

approximations; and the approximation being be linear, quadratic or 

otherwise. But some of these approximations like the linear and 

quadratic use global basis functions which are continuous over the 

boundary.  

      It was also noted from [2] that the change of the 

derivative
v

n

u






 at these nodes may be difficult to overcome. It is 

advantageous however to use the interior nodes only as with the 

constant or Guass-Legendre points especially when the geometry is 

not smooth.  

     We sometimes use straight line segments to represent the 

geometry, and the mid-points of such elements to represent the 

nodes. We also let the global approximations to be: 
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Where 
)(s

c


, are the boundary element basis functions, and n 

represents the nodes number.  

     Now, S, the actual boundary was replaced by  S  (union of 

straight elements). Hence by applying the variable approximation and 

considering the BEM for the exterior form, equation (1) was 

simplified to: 
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     These variables were assumed to be constant on each element. For 

this case we chose one node per element, hence the same number of 

nodes and elements. As earlier noted, two steps are used in the 

method: Obtaining 
u

 and 
v

 or using 
u

 and 
v

to obtain u at some 

general point. For the former, the collocation method was applied. It 

is at the collocation point that the relation between 
u

 and 
v

 is 

forced to hold. With this method the variable point x is brought to 

each of the boundary nodes in turn. The point 
q

r  was let to be the 

mid-point of element r. This led to the following equivalent 

equations [2]: 
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Where r = 1… n, and n is the number of nodes. The exterior 

formulation simply negates the RHS of equation (4). 

      It was noted that equation (4) could be written in matrix form as 

0)5.0(  uMvL  for the exterior case [6]. For a Dirichlet 

problem where 
u

 is given, 
v

 can be found. We also noted on the 

other hand if it is a mixed problem, the resulting matrices have to be 

ordered and re-partitioned. The matrices Lrc  and M rc  were 

resolved using the equations below for both the straight and curved 

elements. 
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To resolve these integrals, we assumed the availability of the 

coordinates of the collocation point 
q

r  and the end points a, b. The 

diagonal entries arise when 
q

r coincides with the element node. 

This accomplished the first step, because at this stage 
v

 could be 

calculated for a Dirichlet problem [6]. In the second step 
u

 at a 

general point could be found by 

vxLuxMxu )()()(                                 (8) 

Resolving the matrix and integral forms for the straight and curved 

elements can be found in the findings of this manuscript. 

2. METHODOLOGY  
The BEM, Dirac-Delta and the Green’s functions were also briefly 

reviewed in relation to the Laplace problem in the finite space. The 

Laplace equation with its boundary integral formulation was done 

and the BEM applied. The algebra behind the straight and curved 

elements was done followed by three model problems that were 

tested for analysis. Several MATLAB programs were used in the 

analysis. They included among others:  

     Beintc.m: This uses the BEM for solving the Laplace’s equation in 

the interior of the unit circle as applied to curved elements for a 

Dirichlet type problem. The element data (discretization), is done by 

the file Elts.m while the u  data is calculated from the exact solution 

by using the sub-program Mant2.m. This function Mant2.m computes 

vectors ML rr
,

 which are the rows of the boundary element 

matrices  and . The ML xx
,

vectors in the second stage of the 

BEM also use this function. It also uses a function called Trapez.m to 

solve quadratic-in-sine integrals (Semo, 2015). 

      Beint.m: This uses the BEM for solving the Laplace’s equation in 

the interior of the unit square as applied to Straight elements for a 

Dirichlet type problem. This did not require sub-programs but the 

actual programming of the sub-functions. The formulation analysis 

details were not done in this manuscript since they are found in [2]. 

3. FINDINGS  

3.1 Computation of the matrix terms for 

straight elements 

      The straight element considered was represented as a straight line 

from A to B. In this section, we show how the entries for the matrices 

M and L are computed with respect to straight elements. The 

integrals for M and L are evaluated by mapping the straight element 

AB on to [-1, 1] by means of  

s lct
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Fig. 1 below illustrates the setting that was used to compute the 

matrix terms for straight elements. 

From Fig. 1 and the mapping above,  

)(5.0 baq
c


; ddl c .2 ; 

r
c

qqc 
 

clddn /)]1(),2([2 ; ctdqtqtr r  )()(              (8)                                                                                                                                                                                    

Hence,  

ncnr ..  and   ttrrr 2. 22

                    (9) 

Where dd. , dc. , cc.  

Therefore,           
 




cs
rrc dssq

n

G
M );(

 

 

                           


1

1 24

).(

r

dtlnr c

                                           (10)                                                                       


cs

rrc dssqGL );(
 

                                              


1

1 4

ln



rdtl c

                                (11)                                                                                                                                                 

In order to resolve the integrals in (10) and (11), we assumed the 

availability of the coordinates of the collocation point rq , and the 

end points a and b. The diagonal entries arise when the collocation 

point coincides with the element node. These integrals have 

singularities but are still integrable. 
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Figure. 1. The Setting for Computing the Matrix Terms for Straight Elements 

3.2 Computation of the matrix terms for 

curved elements 

     Some element-discretization procedures and variable 

approximation techniques like those above remained the same as for 

the straight elements. We therefore began the computation of the 

terms for the matrices Lrc  and M rc already considered in the 

previous section. A curved boundary element, as an arc of a circle, 

AB [2].                                                                                                                  

 

Figure 2. The Setting for Computing the Matrix Terms for Curved Element [2]. 

From Figure.2, there are various expressions that were resolved as 

shown in [2]. This manuscript simply entailed some few details about 

the curved elements. The integrals M and L were evaluated by 

mapping the curved element on to [-1, 1] as seen in [2]. 
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The integrals in equations (13) were elevated using the trapezoidal 

rule with a varying number of ordinates. However the diagonal 

elements given by the integrals M rr  and Lrr
 required a different 

approach because a singularity cannot be avoided. In order to 

simplify the singularity problem, we resolved that [2], [9]: 
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3.3 Model Problems 

3.3.1 Problem 1 

     It was required to recover the solution of  

yxyxu  sinhsin),(                             (15) 

at (0.5, 0.5) on the unit square, with Dirichlet conditions taken from 

the solution.  

At the four nodes, the following ),( yxu was obtained: 

u [0 0 11.5487 0]                                     (16) 

The computation of the matrix terms was easy. Only two entries were 

evaluated as a sample: 
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Therefore, the entries of the matrices M and L were finally given as: 



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0000.01762.01476.01762.0

1762.00000.01762.01476.0

1476.01762.00000.01762.0

1762.01476.01762.00000.0

M

 



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0533.02695.00533.00062.0

0062.00533.02695.00533.0

0533.00062.00533.02695.0

L
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Then                  uIMLv )]5.0([ 1  

 

                                  [-0.5797 -12.9859 26.5515 -12.9859]
T
     (19)                                  

But also,      cn

u
v






 

                         [-0.5797 -12.9859 26.5515 -12.9859]
T
               (20)                                              

   

                               L(x) [0.0893 0.0893 0.0893 0.0893] and   

  

                               M(x) [-0.2500 -0.2500 -0.2500 -0.2500]      (21)                                 

Thus,                        u(0.5, 0.5) 2.8872                                      (22)                                                                                          
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By varying the number of elements on the unit square, the Matlab 

program Beint.m gave the following error bounds: 

TABLE I. THE ERROR BOUNDS AS N VARIES ON A UNIT SQUARE 

Nodes (n) 16 80 160 320 

Error 

e


 

0.4400*100 0.3830*10-1 0.8070*10-3 0.1870*10-3 

3.3.2 Problem 2 

The solution of ),( yxu  in equation (15) was required at (0,0) on a 

unit circle, where the Dirichlet conditions are excluded in the 

solution[2]. At the four nodes,  

u
[3.6252 -3.6252 3.6252 -3.6252]

T
. The singular integrals were 

solved by use of the trapezium rule and Gaussian quadrature. The 

following matrices show the evaluated entries: 





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
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
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0000.00118.00053.00118.0

0118.00000.00118.00053.0

0053.00118.00000.00118.0

0118.00053.00118.00000.0

M
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
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


















2802.00632.01135.00632.0

0632.02802.00632.01135.0

1135.00632.02802.00632.0

0632.01135.00632.02802.0

L

(23) 

v
[6.4137 -6.4137 6.4137 -6.4137]

T
 compared to the exact 

v
[2.1148 -2.1148 2.1148 -2.1148]

T
, 

)(xL
[-0.0409 -0.1299 -

0.1223 0.2802]
T
 and )(xM [-0.0145 -0.0043 -0.0053 0.0000]

T
. 

Therefore 
)0,0(u

-1.9545 compared to the exact value 

)0,0(u
0. Table 2 gives the error bounds with varying nodes 

(element number) as seen below: 

TABLE II. THE ERROR BOUNDS AS n VARIES ON A UNIT CIRCLE 

Nodes (n) 8 16 32 64 128 

Error 
e



 

0.1097*

101 

0.4323*

100 

0.1286*

100 

0.3820*

10-1 

0.1100*

10-1 

3.3.3 Problem 3 

This problem looked at the convergence rates of either element types 

for the circle approximated by a polygon (straight elements) or 

exactly (curved elements). A circular boundary with known analytic 

solutions was considered. Figure 3 below shows the circular 

boundary and conditions considered. The Neumann conditions on the 

boundary were considered to be produced by a source point at (0, 1). 

Therefore 
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Figure 3. The Circular Boundary 

Equation (24) had the exact solution on the boundary given by  






2

)cos817ln(
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u

                                 (25) 

Where  is the angle that x subtends clockwise about the centre of 

the circle from the point (0, 4). The mean relative error (mre) to 

estimate the accuracy with respect to the direct methods only. This 

was given by: 









n

j j

jj

u

uu

n
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1

1

                                  (26) 

Where ju
 and ju



 are respectively the computed and exact values of 

u at the collocation points. The results for the different element types 

and numbers were displayed in the following tables [10].  

TABLE III. mre FOR THE CONSTANT ELEMENTS ON THE CIRCLE 

APPROXIMATED EXACTLY 

Nodes (n) 8 16 32 64 128 

mre 0.2260*

10-4 

0.7100*

10-5 

0.1930*

10-5 

0.5030*

10-6 

0.1280*

10-6 

Log2mre -

0.8790*
101 

-

0.1046
*102 

-

0.1234
*102 

-

0.1428
*102 

-

0.1625
*102 

TABLE IV. mre FOR THE CONSTANT ELEMENTS ON THE CIRCLE 

APPROXIMATED BY A POLYGON 

Nodes (n) 8 16 32 64 128 

Mre 0.6970*

10-3 

0.1800*

10-3 

0.4550*

10-4 

0.1150*

10-4 

0.2870*

10-5 

Log2mre -

0.3840*

101 

-

0.5800*

101 

-

0.7780*

101 

-

0.9770*

101 

-

0.1177*

102 

TABLE V. THE RATE OF CONVERGENCE OF MRE ON THE CIRCLE 

REPRESENTED EXACTLY AND BY A POLYGON ON VARIOUS ELEMENTS 

Function 

Approximation 

Exact Geometry 

 

Polygon Geometry 

Constant (0.2)n-2 (4.7)n-2 

Hat (0.4)n-2 (5.2)n-2 

Gauss (0.3)n-3 (16.2)n-2 

4. DISCUSSION  
 In problems 1 and 2 above, we were trying to recover the solution of 
equation (20) for the unit square and circle. For instance, with four 
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elements, u was approximated with highest value of 11.5487 and 
3.6252 for the square and circle respectively. For the square, there is 
a big absolute difference between the calculated and the exact v of 
9.8657. The circle had exact v compared with the calculated one gave 
an absolute difference of only 4.2989. A better accuracy was realized 
when more elements on each side of the square or circle is increased. 
The programs Beint.m and Beintc.m were used for this analysis for 
the square and circle respectively. Noted also was that the maximum 
absolute errors in the approximation become smaller as you move 
from the left to the right of the boundary and reduce for increased n 
(See tables 1 and 2 above; Figure 4) [2].  

     Regarding problem 3, we majorly minded the domain that the 
circle or polygon enclosed as analyzed in the tables 3, 4, and 5. The 
behavior of the mre reflects proportionality to n

-2
. If for example if n 

= 128, the constant proportionality is 0.21 and therefore the error is 
approximated by 0.2(n

-2
). If the geometry is exactly represented, the 

Gauss elements (do not represent a continuous approximation) give a 
higher order of convergence which is o(n

-3
). The hat and constants 

elements give slightly the same order of convergence o(n
-2

). On the 
contrary, the polygon geometry gave an order of convergence for the 
Gauss elements of o(n

-2
) [10], [11]. 

 

 
          Figure. 4. Beintc.m results for n = 8 and n = 64 [2]. 

Similarly, when straight elements are applied to such cases, they are 
either too much of approximations or they completely fail to work. 
For example, unless we use the curved elements, it becomes very 
difficult to establish the charge on the elliptic problem as the problem 
above. 
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