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Abstract—In this paper a method for the estimation of the 

optimum sensor positions for acoustic emission localization on 

ship hull structures is presented. The optimum sensor positions 

are treated as a classification (localization) problem based on a 

deep learning paradigm. In order to avoid complex and time-

consuming implementations, the proposed approach uses a 

simple feature extraction module, which significantly reduces the 

extremely high dimensionality of the raw signals/data. The 

optimum sensor position is defined by the maximum localization 

rate. In simulation experiments, where a stiffened plate model 

was partially sunk into the water, the localization rate of acoustic 

emission events in a noise-free environment is greater than 99.5 

%, using only a single sensor. 
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I. Introduction 
Acoustic emission (AE) has gained increasing credibility 

in recent years [1]. AE only needs the signals from one or 
more relatively small sensors, attached to a structure or 
specimen. These sensors mainly are piezoelectric sensors and 
are operating in the region of kHz or MHz. The structure or 
specimen can be exanimated in-service or in-laboratory 
operation while the AE system is continuously monitoring the 
progressive damage [1, 2]. The damage mechanisms within 
the structure release small amounts of energy in the form of 
ultrasound, this travels through the structure and can be 
detected by AE sensors. This amount of energy could be crack 
initiation, crack growth, crack opening, crack closure, 
dislocation movement, phase transformation in monolithic 
materials, fiber breakage, fiber-matrix debonding in 
composites etc. 

A key strength of the AE technique lies in the ability to 
locate sources of damage. At first the problem appears trivial: 
Using the known positions of a set of sensors, and the 
differences in the time-of-arrival (DTA) between the sensors, 
calculate the intersection of a series of hyperbolae about the 
transducers. The location of a signal source using DTA data is  
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 a wide applicable problem such as target detection for radar, 
sonar and seismic signals [3]. Current AE source location 
methods, using DTA [1, 4] and single sensor modal analysis 
location (SSMAL) [5] require a large number of sensors and 
careful planning to accurately locate a source. Significant 
complications arise due to (a) the dispersive, modal nature of 
ultrasound in most real structures, (b) homogeneities in the 
wave propagation medium and (c) the presence of noisy 
environment. The modal nature of the waves is countered by 
ensuring that the fastest mode is used at all times, but the 
homogeneities and complexities in the structure are less 
simple to overcome. Complex geometric structures make 
theoretical wavepath analysis difficult and time consuming. 
Additionally, in practice, various types of noise distort the 
DTA measurements, introducing differences between the 
estimated and the real source position. The number and the 
positions of sensors significantly affect the accuracy of AE 
source location [6, 7].  

One of the most important, complex and large offshore 
structures is the ship hull, of which structural members must 
properly monitoring and rectified in order to avoid 
catastrophic failure with many losses of human lives and 
unanticipated out-of-service time. Ship hull structures suffer 
from several kinds of damages, including corrosion, cracking, 
buckling, indent etc. Corrosion and fatigue cracking are the 
most pervasive types of structural problems experienced in 
ship structures [8]. The damage modes, if not properly 
monitored and rectified, can potentially lead to catastrophic 
failure or unanticipated out-of-service time. The most 
corrosive areas are both the bottom plating and the side shell 
plating since in these areas the steel is always in contact with 
the corrosive salt water. The fatigue cracks observed in the 
areas with high stress concentrations, such as at the connection 
between the longitudinal and the heavy transverse members of 
the side shell [9]. The ship hull structures can be monitored by 
AE techniques [10-14] during the application of an external 
stress. The external dynamic stress introduced by the sea-
waves and cargo movements in the outside and in the inside of 
shell respectively is an excellent source of AE phenomena. In 
order to achieve better performance of the localization system, 
the optimum position of sensors need to be defined. 

One of the ways to tackle the definition problem of the 
optimum AE sensor positions is to treat this as a typical 
classification problem. In the current work, this definition 
problem is approached, using a deep neural network using 
autoenconders for fast pretraining and different number of 
input vectors as well as a combination of all sensor 
measurements. To the best of our knowledge, this is the first 
application of a deep learning paradigm in this field. 
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II. Classification and background 
theory 

The standard way to build a classifier, given a signal 
(usually also referred as a time series in the computer science 
literature), is to extract useful and robust features which 
represent the original series in a relative low dimensional 
space. In this way, the quite high dimensionality of the signals 
is reduced. Then, the features are fed into a classifier 
(statistical, neural network, rule based etc.), which has already 
been train using a representative set of historic data. 

A. Discrete Cosine Transform 
Discrete cosine transform (DCT) is usually used for 

compression purposes [15]. However, it can also be used for 
feature extraction, transforming the original time domain 
signal into DCT coefficients. There are many DCT 
implementations. One of the most common and popular is the 
following [15, 16]: 

Given a discrete signal  x n  of length N , let  s n  be  
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The DCT creates a sequence of coefficients that have the 
same length as the original signal. Usually, for compression 
purposes, only a fraction of them (the ones with the highest 
magnitude) is retained. In this work, a different path was 
followed, applying Piecewise Aggregate Approximation 
(PAA) to come up with a reduced representation instead of the 
standard approach of retaining only part of the DCT 
coefficients and setting the rest equal to zero. 

B. Piecewise Aggregate Approximation 
PAA, was independently introduced by Error! Reference 

source not found., and by Error! Reference source not 

found.. Given a discrete signal  x n  of length N  (or a time 

series – since both terms were used in the literature) PAA 
creates a representation of length w ,  
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Practically speaking, PAA, divides the series into equally 

sized windows taking the mean value of the data falling within 
a frame. If is not divided exactly by w a slightly modified 
version can be applied [19, 20].  

C. Deep Neural Networks 
Deep neural networks have drawn much attention lately, 

and have been successfully applied in numerous applications 
and competitions [21]. On the other hand very few 
applications can be found in the available literature in the field 
of condition monitoring. In [22] and [23], Deep Belief 
Networks (DBN)s were used for the diagnosis of faults in 
power transformers, and reciprocating compressor valves 
respectively. 

One of the problems of DNN is that training can be time 
consuming. To alleviate this, a pretraining approach was 
proposed, which involved pre-training the weights of each 
layer as the weights of an autoencoder Error! Reference 
source not found.. An autoencoder is a neural network that 
learns to map the input to an output which is a copy of the 
input. The weights of a series of autoencoders are stuck 
together to form the DNN. 

The whole procedure consists of a pretraining step which 
involves the training of a sequence of shallow autoencoders, 
greedily one layer at a time, using unsupervised data and two 
(supervised) trainings steps: a) training of the last layer of the 
DNN using labeled data, and b) use of backpropagation to 
fine-tune the entire network (end to end) again using labeled 
data. This sequential training allows quite deep architectures 
not only to be trained within reasonable amount of time but 
can also lead to increased performance. 

III. Experimental setup and 
procedure 

A stiffened plate was used to model the side shell of a ship 
structure. The dimensions of the stiffened plate model (SPM) 
are: i) side shell 56x56x1cm, ii) longitudinal a) 56x1x15cm b) 
56x10x1cm, iii) heavy transverse member a) web 1x56x37cm, 
b) face 20x56x1cm. 

The outside side shell is dyed with oil paint in order to 
simulate as much as possible the outer surface of a real ship’s 
side. Reflections at the end of the SPM were reduced by 
wrapping the ends in putty. In order to investigate the 
influence of water, the SPM and its supports were fixed in a 
water tank. The putty at the edges of the SPM prevents the 
passage of the water on the inside shell of the plate. The putty 
is dyed with oil paint for better water-tightness and to avoid 
putty corrosion. The fixed boundary condition of the model 
was obtained by clamping the side shell to three heavy bases. 
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Insulation material was placed between the SPM and the three 

 

Figure 1. The stiffened plate and the sensor positions. 

 

bases, the three bases and the bottom of the tank, at the bottom 

of the tank and on the floor to eliminate external noise. 

 

Physical Acoustics Corporation (PAC) R15-Alpha sensors 

were used to detect waves in the steel stiffened plate. The 

sensors were stuck on the plate with grease couplant. In real 

applications, where installation cost is a significant factor, the 

number of sensors must be reduced and, simultaneously, the 

sensors must be configured at maximum sensitivity to cover 

the greatest possible ship hull area. In our experiments, the 

pulser amplitude was decreased, and the gain was set within 

the specification limits of the amplifiers used. This setting was 

close to a real-life application, where the received signal is 

propagated through several adjacent stiffened plates and the 

signal reflection at the plate edges is minimized. The sensor 

signals were amplified at 58 dB (two sensors), 70.7 and 80 dB, 

digitized at 1 MHz, 16 bit accuracy and stored in the AE 

analysis system PAC Mistras 2001. The fourth channel’s AE 

system triggers, when the signal on any channel exceeded a 

pre-defined threshold, and the four channel simultaneous 

recordings, were stored on a hard disk. The AE source was 

simulated with a piezoelectric pulse-generator, which is in 

common use [25]. 
AE source was simulated with a Piezoelectric Pulse-

Generator and in each location ten repeated measurements 
were recorded. Three locations/classes were simulated: (i) AE-
source in the welding seam between the longitudinal and the 
heavy transverse member (web), (ii) AE-source in the welding 
seam between the longitudinal and the side shell, (iii) AE-
source in the welding seam between the heavy transverse 
member (web) and side shell. The collected signals, each one 
30720 samples long, from four different AE sensors were used 
for the evaluation of the proposed method. A detailed 
description of the experimental set up can be found in [13]. 

IV. Optimum sensor positions 
procedure on ship hull structure 

In this paper a method for the estimation of the optimum 
sensor positions for accurate AE localization on ship hull 
structures is presented. The estimation AE sensor is treated as 
a classification problem. Firstly, the AE signals are 
transformed, using the DCT, followed by the dimensionality 
reduction stage using PAA. After, a DNN is employed for the 
classification module. The optimum AE sensor position is 
defined at the maximum location rate.  

Ten AE signals were acquired from 15 different locations 
for each location/class [13] as close as possible to the welding 
seam, resulting in a total of 3x15x10=450 signals for each one 
of the four sensors. In each scenario the 10 fold cross 
validation procedure was employed [26]. 

As in [14], a feature vector of dimension 200 was created 
after the consecutive application of DCT and PAA. In this 
work however, the classification performance of the proposed 
scheme was evaluated using all 200 features, the first 100 
features and the first 50 features (an inspection of the values 
for the Area Under the Receiver Operating Characteristic 
Curve (AUC) [27], revealed a decreasing trend of the utility of 
the features). 

As in [14] using the rule of thumb that smaller layers 
should be used as we move from the input to the output, to 
force the neural network to generalize rather than overfit [28] 
three different architectures were employed depending on the 
size of the input vector: 200-50-10-3, 100-50-10-3 and 50-50-
10-3. 

As in our previous work [14], sensor no 2 yields (Table I) 
very poor results due to the confusion of two out of three 
classes. This is probably due to its almost equidistance 
placement from the corresponding seams. Sensor 4 (Table I 
and Table II) achieves very high classification accuracy 
indicating that with the strategic placement of a sensor almost 
all classes can be successfully covered.  

 

V. Conclusions 
This article presented the potential use of DNNs for 

localization of AE events on the extreme complex ship hull 
structures. To the best of our knowledge, this is the first 
application of a deep learning paradigm in this field. Four 
different sensors where used in the experimental set-up. AE 
signals were acquired from different locations all of them as 
close as possible to the welding seam. The result was to 
acquire 450 signals for each one of the four sensors. Signals, 
first, are passing from a transformation stage using DCT, 
followed by the dimensionality reduction stage using PAA. 
After, a DNN is employed for the classification module. The 
localization rates achieved where, greater than 99.56%, using 
only a single sensor. 
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TABLE I. CLASSIFICATION PERFORMANCE. 

 Features 

 200 100 50 

Sensor 1 93.33 94.89 92.44 

Sensor 2 64.44 64.89 66.00 

Sensor 3 94.67 97.33 96.89 

Sensor 4 95.56 98.00 99.56 

 

TABLE II. AGGREGATE CONFUSION MATRIX FOR SENSOR 4, ACCURACY = 

99.56%. 

 

  Predicted Class 

  A B C 

TRUE  

Class 

A 150 0 0 

B 1 149 0 

C 1 0 149 
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