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Abstract— The 12-cyliner camless engine breathing process 

will be modeled with artificial neural networks (ANN's). The 

inputs to the net are the intake valve lift (IVL) and intake valve 

closing timing (IVC) whereas the output of the net is the 

cylinder air charge (CAC). In camless engine a control system 

should be designed to track desired cylinder air charge as 

demanded by the driver and thus satisfy torque requirement. 

For efficient engine performance the pumping loss (PL) must 

be minimized while tracking the cylinder air charge. Towards 

this end, the pumping loss as a function of the intake valve lift 

and intake valve closing timing is modeled with the aid of the 

neural networks. The developed neural net model predicts the 

cylinder air charge and pumping loss well and can be used for 

camless engine control design. 
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I.  Introduction 
One of the major challenges in the camless IC engine 

design is controlling the cylinder air charge (CAC) rapidly 
and accurately based on conventional measurements. A 
feedback control system that is responsible for this task has 
been developed by [1]. It consists of a feedforward 
controller, a CAC estimator and an on-line parameter 
estimator which is used to adapt the feedforward controller 
parameters using the CAC estimate. It has been shown in [2] 
that the feedforward controller can be modeled by inverting 
the camless engine breathing process ANN model where the 
results for a 4-cylinder camless engine were presented. 
Furthermore, ANN modeling and control of the 8-cylinder 
camless engine breathing process was performed in [3].  

In this research, we will model the more challenging 12-
cyliner camless engine breathing process with artificial 
neural networks (ANN's). The inputs to the net are the IVL 
and IVC whereas the output of the net is the CAC. Another 
important output that will be taken into account in neural net 
modeling is the pumping loss (PL) which is usually 
minimized in camless engine control applications. The ANN 
is trained with engine input output data at a constant speed 
of 1500 rpm. The ANN model forecasts the CAC and the 
pumping loss at this speed. 

Artificial neural networks (ANN’s) have received a lot 
of attention in recent years due to their attractive capabilities 
in forecasting, modelling of complex nonlinear systems and 
control. Applications of neural networks include many 
various  fields  among  which are  engineering and  business.             
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ANN’s have been used for forecasting load [4,5], gasoline 
consumption [6], energy [7], space weather [8], outdoor 
sound transmission [9], streamflow [10], wind waves [11] 
and financial indicators [12-14]. Examples of industrial 
processes for which modelling and control using neural 
networks have been investigated include internal 
combustion engines [2,15], two-stage combustor burning 
ethylene in air [16], hot-wire temperature sensor [17,18] and 
steel making process [19]. 

Artificial neural networks are widely used for 
forecasting. A large number of successful applications have 
shown that neural networks can be a very useful tool for 
time series modelling and forecasting [20,21]. In addition, 
the simulation experiments of [22] show that neural 
networks are valuable tools for forecasting nonlinear time 
series when compared to other traditional linear methods. 
Even though it may sound that ANN’s are not needed for 
modelling and forecasting linear time series due to the well 
developed linear system theory, they are competent in this 
[23]. Numerous articles comparing performances of 
statistical and neural networks models are available in the 
literature [24]. The ANN model is trained with historical 
time series input-output process data or observations and is 
then used to predict the output in the future.  

II. Neural Networks 
Artificial neural networks were originally inspired as 

being models of human nervous system. They have been 
shown to exhibit many abilities, such as learning, 
generalization, and abstraction [25]. Useful information and 
theory about ANN’s can be found in [26]. These networks 
are used as models for processes that have input-output data 
available. The input-output data allows the neural network 
to be trained such that the error between the real output and 
the estimated (neural net) output is minimized. The model is 
then used for different purposes among which are estimation 
and control.  

     The neural net structure to be used for modeling the 
camless engine breathing process is shown in Figure 1. The 
inputs are the intake valve lift (IVL) and intake valve 
closing timing (IVC) whereas the outputs are the important 
variables for control design, namely, the cylinder air charge 
(CAC) and pumping loss (PL). CAC needs to be tracked 
based on the driver’s torque demand while minimizing the 
pumping loss.  IVL and IVC feed forward through a hidden 
layer  to  the  CAC  and   PL.   The   hidden   layer   contains  
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Figure 1.  Camless engine neural net structure 

 

processing units called nodes or neurons. Each neuron is 
described by a nonlinear sigmoid function. The inputs are 
linked to the hidden layer which is in turn linked to the 
outputs. Each interconnection is associated with a 
multiplicative parameter called weight. Note that the feed-
forward neural net of Figure 1 has only one hidden layer and 
this is the case that we are going to consider. A number of 
results have been published showing that a feed-forward 
network with only a single hidden layer can well 
approximate a continuous function [27,28]. In practice, most 
of the physical processes such as the camless engine are 
continuous.  However, the results of this paper can easily be 
extended to include multi layer neural networks. 

     An artificial neural net mathematical model that 
represents the structure shown in Figure 1 is written as 

 

where, Y is a column vector which contains the 2 outputs of 
the process, U is a column vector that contains the 2 inputs 
of the process, Wo is a matrix of size 2xn that contains the 
weights of the neural net model from the hidden layer to the 
outputs with n being the number of neurons in the hidden 
layer, Wi is a matrix of size nx2 that contains the weights of 
the neural net model from the inputs to the hidden layer, Bi 
(not shown in Figure 1) is a column vector of size n that 
contains the biases from the inputs to the hidden layer and 
Bo (not shown in Figure 1) is a column vector of size 2 
which contains the biases from the hidden layer to the 
outputs. 

The weights and biases of the ANN are determined by 
training with the historical input-output data. 
Backpropagation is an example of a training algorithm. The 
available data is divided into two parts: one part is used for 
training the net whereas the other usually smaller part is 
used to test the performance of the ANN. The number of 
hidden neurons n affects the performance of the neural net 
over the training and test sets of data. More neurons make 
the fitting of data more accurate over the training region. It 
is more important to check the generalization performance 
of the model over the test set of data since it was not used to 
calculate the parameters of the model. The number of nodes 
is usually chosen by trying different values and selecting the 
one that gives best results over both the training and test 
regions. The neural net modeling of the 4-cylinder and 8-
cylinder camless engine breathing processes was performed 
in [2] and [3], respectively. Similar ideas are used in this 
research to model the 12-cylinder engine breathing process 
with neural networks. 

III. The 12-Cylinder Camless 
Engine Model 

The 12-cylinder camless engine operation has to be 
based on controller design that regulates the cylinder air 
charge (desired torque as determined by the diver) and 
minimizes the pumping losses by adjusting the intake valve 
lift and closing timing. The engine torque is set by the 
amount of air that enters the cylinder during the intake 
(breathing) stroke. The intake valve motion is the main 
factor that specifies the cylinder air charge (CAC) and 
pumping loss (PL). Thus, it is essential to regulate the intake 
valve lift (IVL) and closing timing  (IVC) to achieve the 
best engine performance. The intake valve opening timing 
(IVO) will be set at the top dead center or zero degrees of 
crank angle. It has been shown in [29] that setting the IVO 
equal to zero degrees of crank angle does not influence the 
camless engine performance. An important remark to point 
out here is that the camless engine pumping loss is much 
less than the conventional engine pumping loss. This is due 
to the fact that the camless engine does not have a throttle. 

During breathing air enters into the engine cylinders 
while the intake valve is open. The mass of air that enters 
the cylinder during the breathing process is called cylinder 
air charge (CAC). This quantity depends on IVL, IVC and 
engine speed (S).  We will consider IVL and IVC as inputs 
whereas the engine speed S will be considered as a system 
parameter.  The outputs are CAC and PL. A model based on 
thermodynamics laws was developed for the breathing 
process in [29]. The cylinder air charge and pumping loss 
one time unit ahead are written as 

 

where, f and g are nonlinear functions. Based on this model 
input-output data have been generated at a speed S = 1500 
RPM and are represented graphically as shown in Figure 2. 
The data contains 112 patterns. Each pattern includes data 
about the two inputs and the corresponding two outputs. The 
intake valve lift ranges from 0.5 to 8 mm with a 0.5 mm 
increment, whereas the intake valve closing timing ranges 
from 60 to 180 degrees with a 20 degree increment of crank 
angle. Ninety six of the one hundred twelve data patterns are 
used to train an artificial neural net model for the breathing 
process, whereas the remaining sixteen data patterns are 
used to test the performance of the model. The training was 
done with the software package Matlab. We ran experiments 
for different numbers of hidden neurons. It was observed 
that the quality of the results depends on the number of 
hidden neurons. The results are summarized in Table 1.   We 
choose the neural net with eight hidden neurons since it is 
the minimum number of neurons with lowest training and 
test errors for both CAC and PL. Note that for hidden 
neurons larger than 8 the training error keeps dropping but 
the test error goes up due to over fitting which is not 
desirable in neural net modeling. The real and predicted 
(ANN) values of cylinder air charge are plotted in Figure 3 
as a function of  the index.  Similarly, the  real  and  
predicted   (ANN)  values  of  pumping  loss  are  plotted  in 
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Figure 2.  CAC and PL surfaces for the 12-cylinder camless engine 

 

Figure 4 as a function of the index. Note that the predicted 
values are very close to the real ones. Therefore, the 
developed neural net model is accurate.  

IV. Conclusions 
A control oriented artificial neural net model was developed 
for the breathing process of the 12-cyliner camless engine. 
The model predicts the cylinder air charge and pumping 
losses as functions of the intake valve lift and closing timing 
well and thus represents an excellent model of the 12-
cylinder camless engine. The developed model can be used 
in the future for controller design which is vital for the 12-
cylinder camless engine operation. 

 

TABLE I.   Neural net modelling errors for different numbers of 
neurons n 

n CAC 

training least 

square error 

PL 

training 

least 
square 

error 

CAC test 

least square 

error 

PL test least 

square error 

1 0.6777 0.3672 1.5372 4.0988 

2 0.0450 0.1056 0.4203 0.6767 

3 0.0282 0.0877 0.3109 0.3926 

4 0.0050 0.0112 0.1122 0.3038 

5 0.0012 0.0016 0.2768 0.3557 

6 0.0018 0.0023 0.0409 0.1554 

7 0.0010 0.0005 0.0140 0.0492 

8 0.0001 0.0003 0.0167 0.0195 

9 0.0012 0.0012 0.0848 0.1631 

10 0.0000 0.0001 0.0053 0.0563 

11 0.0000 0.0001 0.0198 3.6036 

12 0.0000 0.0001 2.0790 6.3887 

 

 

Figure 3.  ANN modeling results for CAC of the 12-cylinder camless 
engine 

 

 

Figure 4.  ANN modeling results for PL of the 12-cylinder camless 
engine 

 

References 

 
[1] M. S. Ashhab, A. Stefanopoulou, J. Cook, and M. Levin, “Control of 

camless intake process (part II),” Journal of Dynamic Systems, 
Measurement, and Control, vol. 122, pp. 131–139, 2000. 

[2] M. S. Ashhab, “A combination of neural net modeling and 
constrained optimization towards inverse control,” Proceedings of the 
Fourth IASTED International Conference on Modeling, Simulation 
and Optimization, Kauai, USA, pp. 66–71, 2004. 

[3] M. S. Ashhab, “Intelligent neural network control of an 8-Cylinder 
camless engine,” The Second International Conference on Kansei 
Engineering & Affective Systems, Nagaoka-Japan, 2008. 

[4] I. Vajk and J. Hetthessy, “Load forecasting using nonlinear 
modeling,” Control Engineering Practice, vol. 13, pp. 895–902, 2005. 

[5] J. Massana, C. Pous, L. Burgas, J. Melendez, and J. Colomer, “Short-
term load forecasting in a non-residential building contrasting models 
and attributes,” Energy and Buildings, vol. 92, pp. 322–330, 2015. 

[6] G. Nasr, E. Badr, and C. Joun, “Backpropagation neural networks for 
modelling gasoline consumption,” Energy Conversion and 
Management, vol. 44, pp. 893–905, 2003. 

[7] K. Reddy and M. Ranjan, “Solar resource estimation using artificial 
neural networks and comparison with other correlation models,” 
Energy Conversion and Management, vol. 44, pp. 2519–2530, 2003. 



 

20 

Proc. of The Fifth Intl. Conf. On Advances in Mechanical, Aeronautical and Production Techniques - MAPT 2016 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-090-3 doi: 10.15224/ 978-1-63248-090-3-44 

 

[8] J. Vandegriff, K. Wagstaff, G. Ho, and J. Plauger, “Forecasting space 
weather: Predicting interplanetary shocks using neural networks,” 
Advances in Space Research, vol. 36, pp. 2323–2327, 2005. 

[9] M. Mungiole and D. Keith Wilson, “Prediction of outdoor sound 
transmission loss with an artificial neural network,” Applied 
Acoustics, vol. 67, pp. 324–345, 2006. 

[10] Y. Chiang, L. Chang, and F. Chang, “Comparison of static-
feedforward and dynamic-feedback neural networks for rainfall–
runoff modeling,” Journal of Hydrology, vol. 290, pp. 297–311, 2004. 

[11] O. Makarynskyy, “Improving wave predictions with artificial neural 
networks,” Ocean Engineering, vol. 31, pp. 709–724, 2004. 

[12] S. Heravi, D. R. Osborn, and C. R. Birchenhall, “Linear versus neural 
network forecasts for European industrial production series,” 
International Journal of Forecasting, vol. 20, pp. 435–446, 2004. 

[13] A. Chen, M. Leung, and H. Daouk, “Application of neural networks 
to an emerging financial market: Forecasting and trading the taiwan 
stock index,” Computers & Operations Research, vol. 30, pp. 901–
923, 2003. 

[14] G. Tkacz, “Neural network forecasting of canadian GDP growth,” 
International Journal of Forecasting, vol. 17, pp. 57–69, 2001. 

[15] M. Hafner, M. Schüler, O. Nelles, and R. Isermann, “Fast neural 
networks for diesel engine control design,” Control Engineering 
Practice, vol. 8, pp. 1211–1221, 2000. 

[16] T. Slanvetpan, R. Barat, and J. Stevens, “Process control of a 
laboratory combustor using artificial neural networks,” Computers & 
Chemical Engineering, vol. 27, pp. 1605–1616, 2003. 

[17] A. Al-Salaymeh and M .S. Ashhab, “Modelling of a novel hot-wire 
flow sensor with neural nets under different operating conditions,” 
Sensors and Actuators, vol. 126, pp. 7–14, 2006. 

[18] M. S. Ashhab and A. Al-Salaymeh, “Optimization of hot-wire thermal 
flow sensor based on a neural net model,” Applied Thermal 
Engineering, vol. 26, pp. 948–955, 2006. 

[19] A. Datta, M. Hareesh, P. Kalra, B. Deo, and R. Boom, “Adaptive 
neural net (ANN) models for desulphurization of hot metal and steel,” 
Steel Research, vol. 65, pp. 466–471, 1994. 

[20] G. Zhang and B. Patuwo, and M. Hu, “Forecasting with artificial 
neural networks: The state of the art,” International Journal of 
Forecasting, vol. 14, pp. 35–62, 1998. 

[21] M. Ghiassi, H. Saidane, and D. K. Zimbra, “A dynamic artificial 
neural network model for forecasting time series events,” 
International Journal of Forecasting, vol. 21, pp. 341–362, 2005. 

[22] G. Zhang, B. Patuwo, and M. Hu, “A simulation study of artificial 
neural networks for nonlinear time-series forecasting,” Computers & 
Operations Research, vol. 28, pp. 381–396, 2001. 

[23] G. Zhang, “An investigation of neural networks for linear time-series 
forecasting,” Computers & Operations Research, vol. 28, pp. 1183–
1202, 2001. 

[24] M. A. Razi and K. Athappilli, “A comparative predictive analysis of 
neural networks (NNs), nonlinear regression and classification and 
regression tree (CART) models,” Expert Systems with Applications, 
vol. 29, pp. 65–74, 2005. 

[25] D. Patterson, Introduction to artificial intelligence & expert systems, 
Englewood Cliffs, NJ: Prentice-Hall, 1990. 

[26] S. Haykin, Neural networks: a comprehensive foundation, Englewood 
Cliffs, NJ: Prentice-Hall, 1998. 

[27] G. Cybenko, “Approximations by superpositions of a sigmoidal 
function,” Math. Control Signal Systems, vol. 2, pp. 303–314, 1989. 

[28] K. Funahashi, “On the approximate realization of continuous 
mappings by neural networks,” Neural Networks, vol. 2, pp. 183–192, 
1989. 

[29] M. S. Ashhab, A. Stefanopoulou, J. Cook, and M. Levin, “Control-
oriented model for camless intake process (part I),” Journal of 
Dynamic Systems, Measurement, and Control, vol. 122, pp. 122–130, 
2000. 

 

 

 

 

 

 

 

About Author: 

 

 

 

 

 

 

 

Moh’d Sami Ashhab earned his M.S. and 

Ph.D. degrees in mechanical engineering / 

control and dynamics from The University 

of California, Santa Barbara, U.S.A. in 

1996 and 1998, respectively. After 

working for about four years in industry in 

the U.S.A., he joined the Hashemite 

University in Jordan in year 2002 where 

he is now a mechanical engineering 

Professor. He is currently spending his 

sabbatical leave at the mechanical 

engineering department, American 

University of Ras Al Khaimah, UAE. His 

primary interests are in the areas of 

control, dynamics, automation, MEMS 

and NEMS, artificial intelligence, 

optimization, simulation, energy and 

industrial applications. 

 


