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Abstract:  

In this paper we have introduced a computational 

method for a class of Telegraph Equation change to 

two-dimensional nonlinear Volterra integral equations,  

based on the expansion of the solution as a series of 

Haar functions. Also, by using the Banach fixed point 

theorem, we get an upper bound for the error of our 

method. Since our examples in this article are selected 

from different references, so the numerical results 

obtained here can be compared with other numerical 

methods. 
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I. Introduction 
The first working telegrapher's equation was built by 

Atlantic Telegraph Company In December 1856. 

That Thompson's mathematical model for the signal 

conduction through cables was based on Fourier's 

equations for heat conduction in a wire. But early 

1850s the question of a transatlantic telegraph line 

was raised, and the question appealed so much to the 

physicist William Thomson, later Lord Kelvin, that 

he started developing a mathematical theory for 

signal decay in underwater telegraph cables. In 

telegrapher's equation describing the variation of 

voltage u along an electrical cable as function of time 

and position, 
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 which consists of a 

resistor ofresistance  , a coil of inductance,  , a 

resistor of conductance  , or a capacitor of 

capacitance  . In 1893, the physicist Oliver  

 

 

Department of Science, School of Mathematical 

Sciences, University of Zabol, Zabol, Iran  

Department of Applied Mathematics, School of 

Mathematical Sciences, Ferdowsi University of 

Mashhad, Mashhad, Iran  

 

Heavyside showed that if 
 

 
 could be made equal to 

 

 
 

(or      ), a constant velocity of propagation 

would result and the attenuation would be minimized. 

 The equation is a special case of nonlinear Cauchy 

problem as follow: 
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With the integration of the       we have: 
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If  

 (   )   ∫  (      (    ))   
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  (   )   (   )   (   )  (  ) 

Then from (2) and (3)  the equation (1) is equivalent 

to the following 2D Volterra integral equation as  

 (   )  ∫ ∫  (       (     ))      
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The first work for the solution of two-dimensional 

linear Volterra integral equations has been done by 

Brunner and Kauthen [2], who introduced collocation 

and iterated collocation methods (VIE). Kauthen has 

extended this study to the case of linear Volterra-

Fredholm integral equations (VFIE) [8] and Brunner 

has considered in [11], the case of nonlinear VIE. 

In general form,  2D Volterra integral equation can 

be rewritten as 
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Where         ,   - ,      (,   - ) and 

      and  ,   -    ,  

         ,   -         
are assumed to be known continuous 

functions satisfying the Lipschitz condition, that 

is, there exist            such that: 

|  (      (   ))    (      (   ))|

             

 |  (      (   ))    (      (   ))|

             

|  (      (   ))    (      (   ))|

             
where           , and the unknown function to be 

determined is   ,   -     . The numerical results 

presented in that paper show a fast convergence of 

another method, when applied to integral equations. 

To achieve this aim it is necessary to define the 

integral operator,   (        )  (        ).  

By applying this operator in Eq (1), we have 
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The Banach fixed point theorem guarantees that 

under certain assumptions [1], the operation of 

equation (1) has an unique fixed point; that is, the 

two-dimensional Volterra integral equation has 

exactly one solution.  

II. RH functions 
The orthogonal set of Haar functions is a group of 

square waves with magnitude of   
 

     
 

  and 0, for 

any         [9]. Lynch and Reis [5] have 

rationalized the Haar transform by deleting the 

irrational numbers and introducing the integral 

powers of two. This modification results in what is 

called the rationalized Haar transform. The RH 

transform preserves all the properties of the original 

Haar transform and can be efficiently implemented 

using digital pipeline architecture [14]. The 

corresponding functions are known as RH 

functions. The RH functions are composition of only 

three amplitude +1,-1 and 0. 

Definition 2.1 

The RH wavelet is the function defined on the real 

line   as follows: 
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The RH functions   ( )  for any          where 

      , with         and             
 , are defined by   ( )   (      ) ,   -. That is: 
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Also, we define   ( )     for all   ,   )  and 

integer           , indicates the level of the 

wavelet and                is the translation 

parameter.  

Note that the basic multiplication properties of RH 

functions are as follows: 

  ( )  ( )    ( )              ( )  

 Also, it can be shown that the sequence *  +   
  is a 

complete orthogonal system in   ,   -    
Note that the orthogonality property is : 
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Where      ( )  , and               . And 

for     ,   -  the series ∑     〈    〉    converges 

uniformly to  , (see e.g.. [16]), where 
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Thus the function  ( ) in   (,   -) can be expanded 

with finite terms of RH functions as 

  ( )  ∑     ( )   
       ( )  

where         that           , and the RH 

function coefficients     are given by: 
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That vectors   and   are defined by 
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and the integral   ( ) is given by 
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Also we have: 
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where   is a      operational matrix for 

integration and is defined by 
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wherein       , -,      ,
 

 
-, and  ̂   is given 

by (7), while 
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III. Numerical 
approximation of the 
solution 

 

 In this paper we have used the successive 

approximations method for (5), with initial condition  

    (     ) that     (,   - )  (usually 

  (   )). This iterative process will continue until a 

suitable error. For any      ,   -  and     and 

           we define recursively 
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we can expand     
  for           in terms of RH 

functions as 
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If    be an orthogonal projection with following 

interpolation property we have 
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with              where  

                              
                                

Now, by using the RH function vector  ( ), the 

matrix  ̂    is defined as: 
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For example, the eight  RH functions can be written 

in the matrix form as 
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Thus by using this equation we have 
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where  ̂  [( ̂ )  ]    
  for        , and 
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and          . Thus for the 2D Volterra integral 

equation as we have: 
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Error analysis 
 In this section, by using the Banach fixed point 

theorem, we get an upper bound for the error of the 

our method, and the order of convergence is 

analyzed. 

Lemma 4-1 



 

77 
 

Proc. of The Fifth Intl. Conf. On Advances in Applied Science and Environmental Engineering - ASEE 2016 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-086-6 doi: 10.15224/ 978-1-63248-086-6-55 

 

Let           ,   -         be continiouse 

and Lipschitzian with Lipschitz constants       and 

  such that    (   )      for        , then   has 

an unique fixed point and for all       (,   - )  

‖    (  )‖ 
  ‖ (  )    ‖  ∑    

   ,(21) 

where                   and   is the fixed 

point of   . 

Proof: 
For the Fredholm Hammerstein integral equations if 
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By induction, for the 2D Volterra integral equation  

and every       we have 

     ( )    ( )                 , 

since     thus we have: 

∑ ‖  ( )    ( )‖ 
 
     . 

Thus   has a unique fixed point which means that (5) 

has a unique solution and (21) follows from the 

Banach fixed-point theorem  
Theorem 4.1. 

Assume that   
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If we define 
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 and interpolating property and the mean value 

theoremfor two variables with       and 
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thus we have 
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     , for          , that 
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Applying the triangle inequality and we achieve 4.  
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From (4.1) and (4.6) we conclude 
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IV. Numerical examples 
 In this section by using the method presented in (20) 

is solved some examples from different references. 
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The main characteristic of this technique is that does 

not lead to a nonlinear algebraic equations 

system. The following algorithm, based on the 

method presented in Section3, has been used to solve 

Examples. 

Algorithm 5.1 

1. Produce matrices   ( )  ̂           
2. For     to   do, 

3. Product Matrix      ̂   for         from (14) to 

(17) and (18). 

4. Compute   (   )(   ) for         from (11) to 

(13). 

5. Compute   (   ) from (20) for the assumed point. 

6. Go to step 2. 

Example 5.1. [15] consider the special case of 

Cauchy problem equation on   ,   -   ,   - 
 (   )

 
 

 
∫ ∫ {   ( (   ))    .

   

 
/    (

   

 
*

 

 

 

 

    ( (   ))    .
   

 
/    (

   

 
*}      

 
 

 
∫ *   ( (   ))     ( (   ))     ( (   ))

 

 

    ( (   ))+   

 
 

 
∫ *   ( (   ))     ( (   ))     ( (   ))

 

 

 

    ( (   ))+       .
 

 
/      (

 

 
*  

The exact solution is  (   )     (
   

 
)   (

   

 
). 

The comparison between the approximate solutions 

obtained byHaar wavelet method and Legendre 

polynomials method( [13]) is given in Table1. There 

is a good agreement between these methods. In 

Fig. 1, we have showna error equations. Inthis 

example the run time for      is about  46.828 

seconds.  
Table 1. Numerical results for Example 5.1 

(     ) 
 

Legendre 

polynomials 

method  

( [13]) 

Presented 

method 

With 

      

Presented 

method 

With 

      

(0.0.2)              

(0.2,0.4)                              

(0.3,0.6)                              

(0.4,0.8)                              

(0.8,1)                              

 

  
Figure 1: Error function for Example 5.1 
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