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The frequency equation of Rayleigh waves in a
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Abstract—The frequency equation of the Rayleigh wave
propagating in an anisotropic smart piezoelectric material is
obtained. The non-dimensional velocity of the Rayleigh wave is
computed for Barium Titanate. The surface mechanical
displacements and electric fields are found as a function of
layer thickness and are presented graphically. This theoretical
work may be helpful in further experimental works on surface
wave propagation in piezoelectric materials and surface
acoustic wave filter devices.
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1. Introduction
In recent years, piezoelectric materials have been

increasingly applied to different engineering structures,
especially to smart or intelligent systems as intelligent
sensors, damage detectors, etc. Rayleigh waves are the most
important of the surface acoustic waves which are
essentially considered as mechanical waves. Surface
Acoustic Waves (SAWSs) were first explained in 1885 by
Lord Rayleigh, who described the surface acoustic mode of
propagation and predicted its properties in his classic paper
[1].

Basic discoveries of piezoelectricity were made in the late
19th century by Pierre and Paul-Jacques Curie [2]. After
that, there has been a tremendous growth in the
telecommunications industry over the past few decades with
a subsequent increase in demand for high-quality
components which were based on the piezoelectricity
phenomenon. In particular, usage of SAW devices in
wireless communication systems demands higher operating
frequencies, wider bandwidths, smaller sizes and lower
insertion losses. Consequently, there is a pressing need for
improved techniques for device fabrication and response
prediction. Further development of photolithographic
techniques for computer chips and telecommunication
devices to optically transfer micro- and nanostructure
patterns onto a substrate, allowed fabrication of micro- and
nanostructures implemented in modern biosensors [3].

There are many studies that focused on  investigating
Rayleigh waves in different anisotropic media without
piezoelectric effects such as [4] and [5]. While, using a
different method or additional fields such as the thermal
field and/or magnetic field, many authors obtained explicit
Rayleigh wave speeds for isotropic materials, e.g. [6], [7]
and [8]. The anisotropic behavior of the medium
extremely modifies the existence and the structure of the
SAW and BAW that propagates at the free surface of the
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medium [9] and [10]. Anisotropy, therefore, induces
considerable difficulties in analytically and explicitly
studying wave propagation. Attempts to derive explicit
secular equations have been reported in [11] and [12]. In
seismology, Rayleigh waves cause destructive vibration to
the structures. However, due to nonlinearity, it is difficult to
get the exact solution of the characteristic equation of
Rayleigh waves in anisotropic media [13]. Lately, The
propagation of surface Rayleigh waves in a half-space under
the effect of pre-stress was examined by many authors such
as: [14] and [15]. The piezoelectric materials (are called
smart materials) are capable of altering the structure's
response through sensing, actuation and control [16] and
[17]. Piezoelectricity may be used in many other useful
different applications for examples see, [18] and [19]. The
nonlinear constitutive equations for magnetoacoustic or
thermo-electro-elastic materials which are considered the
basic tools for studying the propagation of surface acoustic
waves in isotropic or anisotropic materials may be found in
many works of literature such as [20]-[25].

Recently, There are several papers concerning various
problems based on the theory of surface acoustic waves,
especially, a Rayleigh surface waves propagation problem in
many hypotheses (see, e.g., Chirita et al. [26], Sharma [27],
Bucur et al. [28], Torelloet al. [29], Lin et al. [30] and
Singh [31].

The present paper investigates Rayleigh surface acoustic
waves in anisotropic piezoelectric materials. A details
solution giving plots for variations of fields and
displacements as a function of distance from the free surface
are obtained. The secular equation under suitable
mathematical boundary conditions of the wave motion is
derived. The characteristics of surface waves propagating in
piezoelectric elastic half-space and their dependence upon
the physical parameters are investigated.

2- The basic equations
In the quasi-static approximation, the governing field
equations of piezoelectricity can be expressed as [23]:
Tij,j = Adi. )
Propagation on piezoelectric crystals is usually complicated
by the presence of a piezoelectric surface wave which
contains electromagnetic field quantities. These field
quantities must satisfy Maxwell's equations for magnetically
isotropic dielectric [22],
gijkEk,j =—,uoHi, gijk Hk,j = Div Hj,j =O, Di,i =0 (2)
A combination of Egs. (2); and (2), which eliminates the
magnetic field, Hj, is of particular use here,

Ejij —Eijj =D ®)

Where the definition of all the symbols are written in

Appendix B. In a piezoelectric material, the mechanical
equations of motion and Maxwell’s equations for the
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electrical behavior are coupled through two constitutive
equations given by:

- The stress tensor for piezoelectric materials is:

Tij = Cijke Ske —€xijEx 4)

- The components of the electric displacement are given by:
D; = &ik Ex +€ikeSke- (5)

- The strain tensor is related to the displacements, u;, by:

Sij =5 (Ui j +uj,)- (6)
Elastic and piezoelectric wave propagation for piezoelectric
crystals can be summarized as a solution of equations of
motion (1) with constitutive relation (2) subjected to the
following boundary conditions:

(i) The surface of propagation is stress-free,

(i) The electromagnetic field components
appropriately matched the surface.

For simplicity, engineering notation will now be employed
to reduce the number of subscripts. Engineering notation
allows designation of elastic constants by two subscripts,
stress components by one and similar reductions of other
appropriate quantities.

Solutions of interest are those that describe surface wave
propagation. A nonuniform plane wave solution will be
assumed with propagation in one coordinate direction,
attenuation in another, and independence in the third.
Examination of equations (4) and (1) indicates the optimum
choice to be in the Xg direction, attenuation in the Xo

direction and no variation in the X; direction. solutions of

the following form are assumed for a crystal occupying the
half-space X, <0,

uj = Aj explk(ex; +x3) —at}],

E; =k Bj explik(ax, +x3) —et}], ©

have

where j=1,23, @ is the angular frequency, Aj, Bj are
unknown arbitrary amplitude constants, k, « are the wave

number and a dimensionless decay constant respectively,
that to be determined and t is the time. EJ- amplitudes

include the factor of K for later convenience.

Substitution of Egs. (7) successively into Egs. (6), (4), (1)
and (3) gives the following homogeneous system of
equations for surface wave propagation:

a; a2 0 0 0 O0OfA
dp1 dpy 0 0 0 0 B_]_
0 0 &g ag ags ag|A
a3 A s Aue||As

=0 8

0 (8)

0 0 as3 asy ass ase|Br
0

a3 aps A5 aep|B3
where
a1 = —V2p + 2C140! + C66a2 + C44,

2 L2
1 = HoVayp =ipgV” (815 —€20%),

2 2
ag = Hoar V. —a” -1,
azz = —V2p + C11a2 —2C14a+Cyy,
2

ay3 =agq =Cyga+Cza —Cyya”,

2 .
as3 = HoV - azs =iugV” (e +€15),

agq =2 p+Cyga® +Cas, 9)

2
a5 = HpenV© —1,
ag5 =856 =,

_ 2_,2
age = HpE3V" —a”.

ag3 = gV>ags = itV esia,

asy = tov°ays =iV ersa,

agq = UV aye =it10V7egs,

Examination of Eqgs. (8) indicates the existence of two
uncoupled modes of propagation. One of these contains u;
and E; which is described by:

wm#0, E#0 uy=u3=E,=E3=0,

a3 ap|A

ay axp|B
This equation contains nonzero components transverse to the
direction of propagation and is referred to as the uncoupled
transverse mode.

The second solution is described by

U]_:El =0, Uo ¢0, Uz 750, E2 #0, E3 #0,

=0 (10)

azg| Ao
) fs| _

a3z d34 ass
g3 Ay g5
as3 A4 as5  as|Bp

A3 apy Aps Apg|Bs

Here the nonzero components of displacement and electric
field are coplanar, in the plane normal to the surface and
parallel to the direction of propagation, such a plane is
referred to as the sagittal plane and the mode is referred to as

the Rayleigh mode. These two possible modes will be
discussed in details later.

3. Electromagnetic field outside
the crystal

The assumed solutions, Egs. (7), are valid for the half-space
Xo <0 occupied by the material. The displacement

components, Uj, will certainly be zero outside the material,
Xo >0, but the electromagnetic field will not. To assure

matching of the fields along the surface, space and the time
dependence of those fields outside must be of the same form
as those inside differing by amplitude constants, wave
number, and decay constants only. These fields must also
obey Maxwell's equations in free space,

Ejij —Ei ji =—¢E. (12)
Considering
(x2 >0),
Ej =k Cj expl{k(fk +x3)—at}], (j=123) (13)

where £ is the decay constant, C j are the amplitudes and

11)

solutions in the form for Eqgs. (12) where

K is the wave number are to be determined. Substituting
from Egs. (13) into (12) produces a set of homogeneous
equations which govern the propagation of fields above the
surface. replacing the phase velocity, w/k , by v and
expressing in determinant form these equations are given by:
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a1 a;p a3|C
ayp ayp ang|Cy =0, (14)
az ag ags|Cs
where

—_52_1 2
ayy =—p° —1+gouv”,

2 2

agg =" —eoupV”, a1 =0, a3 =0, ag =0
» 893=0, agp=ag=-F.
This set of equations shows two uncoupled modes; one
contains the E; component of the field only, corresponding
to the transverse mode, and the second contains E, and Ej

components representing the Rayleigh mode. From Eq. (14)
to obtain a nontrivial solution requires the coefficient
determinant to be zero. Therefore, the decay constant S is

found as

B =iy (- g0 110v?) (15)

using the boundary conditions requiring fields to vanish at
infinity leads to the correct root to be

B =iy (- gouov?) (16)

where the negative root is discarded as physically
unrealizable. The propagation velocity of electromagnetic
waves in free space is

1

\Eoko

Substituting from Eq. (15) into Eq. (14) yields

ﬂ=i]/(1—(%)2 18)

The ratio of acoustic wave velocity to light wave velocity
squared is of the order 10%0 and gives S =1i.

The amplitude ratio C,/Cgis determined from Eq. (13) to
be

Gy 1 _ 1

G Ju-su?t) P

Substituting from Eq. (19) into Egs. (13), the electric fields
outside the crystal ( Xy >0)become

(Ef' B3 E3)=k( Cl,—% Cg) expli{k (B +x3) — A},

(20)
Accompanying the electric field in this region is a magnetic
field found by using Maxwell's curl equation for free space.

Therefore, from Eq. (2)1 and Egs. (20), the magnetic fields
outside ( Xy >0) the material become:

2
ag =1-gpupV”,

Vo = (17)

(19)

(Hi', HZ  H3) =(RCs, F2C1,—F»/5C1 ) expli{k (Bxp +x3) —at}],

(21)

where

_ i (‘,‘Oll,lov2 E = %)
S . F=
HOV® 11— 2quv HoV

It should be remarked that for uncoupled transverse mode
C3 =0. Thus Egs. (20) yield

Ey" =kG exp[{k(Bxz +x3) —at}] (22)
and Eqgs. (21) yield

(H3,H3) = (F2C1,—F2 AC1) expli{k (B2 +X3) — at}], (23)
Therefore, for the external electromagnetic fields, the
transverse mode is represented by Egs. (22) and (23).
Moreover, for the Rayleigh mode C; =0, Egs. (20) and

Egs. (21) reduce to the following system.

(Ez,Eg)=k(—C—;,c3>exp[i{k(ﬂxz rxg)—at}], (24)

(H1") = (FC3)expligk(Bxz +X3) — at}]. (25)
4. Rayleigh Mode of piezoelectric
materials

A solution of the Rayleigh mode consists of satisfying the
secular equation found from Egs. (14) and the boundary
conditions associated with this mode. The secular equation
for the Rayleigh mode with the phase velocity v ( where
v=w/k) is the expanded coefficient determinant of Eq.

(12). Expansion of the coefficient determinant yields an
algebraic equation of order six with real coefficients. The six
roots of this equation are either real or complex conjugate
pairs. Only the complex roots with negative imaginary parts
allow Rayleigh surface waves to exist. Therefore, from the
total six roots, only three of them are related to Rayleigh
surface waves. These roots which concern to Rayleigh
surface wave propagation may occur in different forms
giving different types of solutions [26].

In view of Rayleigh mode in piezoelectric materials has the
coupling of the electromagnetic field and the elastic wave by
the piezoelectric constants. Therefore, the secular equation
which found by the expanding Eq. (11) becomes an
algebraic equation of the sixth order with real coefficients.
The three roots are used to obtain the assumed solution as a
linear combination
The three acceptable roots are used to obtain the assumed
solution as linear combination in the form:

Up = %(Az)j exp[{k(ajxz +X3) —at}],
Uz =2(Ag) j expli{k(carjXz +X3) —at}], (26)
j

Ep = JZk(Cz)j expli{k(ajxa + x3) —at}],

Ez =2Kk(C3) j exp[H{k(ajXz +X3) —at}] (27)
J
where j=1,2,3 «x, <0 and the amplitude ratios are
defined as:
N =i g ()i g (C9)i o o)
(A2) | (A2) | (A2)j

which can be found from equation (12) as follows:

(Ag) &1 a2 a3
NjZ(A)J_ =5 [Pt 82 s,
27) Ylag; az ags
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L L L
) 1 Lll le L13
Ty~ a |l b L3
o ler Ly Les
P, P, B
o), 11 P2 P
=~ =" |P1 P2 Pl
B)i Al p, P
31 P Pa3
G G2 Gi3
Aj=[Gyy Gy Gpg. (29)
Gg1 Gz Gss

Where the elements of the previous determinants in Egs.
(27) are defined in Appendix A.

The amplitude ratios (29) can be applied to express the
solutions in terms of the amplitude constants (Ap); as:

{U2,U3}=%{(A2)j Nj(A2) jIx

(30)
exp[{k(ajxo +x3) —at}],
{E2,E3)=2K{Dj(A2)j,Pj(A2) j }x
j
expli{k(arjxz +x3) —a}],
=123 Xo <0. (31)

5. The boundary conditions
Boundary conditions for piezoelectric materials required the

following:

(i) A stress free surface, i.e.

T2(0)=T4(0) =0 (32)

(ii) Tangent component of the electric field E3 must be
continuous at X, =0, i.e.

E3(0)=E3(0). (33)
(iii) Component of the electric displacement must be
continuous at X, =0, i.e.

D3 (0) = &E3 (0). (34)
Applying the boundary conditions given by Eqgs. (32)-(34)
can be summarized by the following homogeneous system:

by b bigf(Ar)y
Po1 byo  D23f(A2)2|=0.
b3 b3y bs3|(Ar)3

This system requires the coefficient determinant to be zero
for a nontrivial solution,

by by b3
bp1 bpy bo3[=0,

b31 bz baz

Equation (36) is called the secular equation or sometimes
called the dispersion equation where

bij =(jC11—C14) +(Cr3 —jCra)Nj —iexoDj —ies P
boj =(Ca4 —jCra) +CaqexjNj —iessD;j

(35)

(36)

Assign values to the speed of the phase v and the constants
oq,00,a3 1o investigate transactions determinants in

equations (12), (36). The latest format of the solutions may
be written as:

UZ — (Az)l(elalkxz + M21eia2kX2 + Mgleiask)(z )el(kX3 —a)t) ,
U3 = Ny (Ag)1 (€% + Nyye! 2% 4 Ngjelase )elks—at),
E, = le(AZ)l(eialkxz 4 DZleiazkxz 4 Dgleia3kx2 )ei(k><3—a;t) ,
E3 — kH(Az)l(elalkXZ + P21eia2kX2 + P31e|0!3kX2 )el(kX3 —at) ,
E]_ =U =0, X2 <0. (37)

The amplitude ratios Mj,Nj;,Dj;  and Pj are
determined using the same method used before, and the
determinant in Eq. (36) can be written as:

— (AZ)Z — _l Doq —b
2="a), - A (braboz —bo1by3), o
= EZ%? =%(b11b22 ~b12ba1)

Where:
A =(bobyz —byoby3), and the other relations can be found
as follows:
Njt =M g, Dy = (b g, Py = (1M s, (39)
j1 =0 M P =)V, Fin =50V,
J N; J J D, J J P J

12. Numerical Results and

Discussion
The numerical solution involves finding the roots of the
secular Eq. (11) for various values of propagation velocity.
These sets of values and three decay constants are
substituted into Eqg. (37) to find which set simultaneously
satisfied both the secular equation and the boundary
conditions. The necessary values of elastic constants,
piezoelectric constants and permittivities  for Barium
Titanate (BaTiOz)are given in table 1.

Table 1. Physical properties of BaTiO;[23]
C1p =2.73x101'Nm?  ¢;, =1.79x10 ' Nm2
C13 =152x101'Nm™  cg5 =1.65x10 Nm™
Caq =543x101NM? &, = (1/367) x10 0 MKS
Ces =1.13x101Nm? =213 C/m?
eq3 =3.64 C/m? eq; =—1.65C/m?
£11=1784x10" 1 Fm  p=6.02x103Kgm=

£33 = 97)(10_11 F/m

The frequency equations have been solved to obtain the
velocity of the Rayleigh wave propagation and the decay
constants which they have been used to calculate the
components of the displacement, the electric field.

After obtaining analytical solutions, the numerical
computations were represented on the curves in order to
facilitate the discussion. The results have been presented

. . ig raphically to illustrate the nondimensional components of
bsj =i(e0erj +e15) +ierser N +£25D; — ((——2—)p; PV P
2 . * Us * us
V1-é&oov the displacement U, =—=— and U3 = and the
Numerical procedure must be used to determine the values U2(0) Us(0)
of o,a0,03 and V that simultaneously satisfy the
coefficient determinants of Eq. (12) and Eq. (36).
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L « E _— This fluctuation is a big in the case of the electric field
electric field E; = E and Eg = Ean ToUS the depth  components than in the case of relative displacement

20) 3(0) components. Furthermore, It is noticed that the electric field
of penetration measured in wavelengths d, where Uy and  of the piezoelectric surface wave exists outside the material
as well as inside.

Ex) are the values of the displacement and the electric

field in the X,- direction at the material surface,
respectively. The results are complex numbers for the

12

T T
variation of the relative depth d. . Fig. (4) III](E;)

1 Trrr— . /

Fig. (1) -
., Im(u}) 0
l} . -. .'
.. /
- Re(EB) ..
RE‘(U:, ) .'. _ 1: | | | |
< . “0 02 04 4 06 0.8 1

Figures (3) and (4) show the real and imaginary parts of the
nondimensional  displacement components EZ and

E; versus the relative depth d.
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Appendix A.
1= —V2P+0110512 —2Caj +Cyy, B3 =le310j,
ayp =i(epaj +e15), a1 =-Craarf +Caaarj +Cuaarj,
Ay =iesaj, apg=iegs, Agy =iugv’ (€20 +e15),

2
ap =M eV -1 agz=aq;
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