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Abstract—The frequency equation of the Rayleigh wave 

propagating in an anisotropic smart piezoelectric material is 

obtained. The non-dimensional velocity of the Rayleigh wave is 

computed for Barium Titanate. The surface mechanical 

displacements and electric fields are found as a function of 

layer thickness and are presented graphically. This theoretical 

work may be helpful in further experimental works on surface 

wave propagation in piezoelectric materials and surface 

acoustic wave filter devices. 

Keywords—Rayeigh wave, frequancy equation, Piezo-

electric material, Barium Titanate.  

1. Introduction 
In recent years, piezoelectric materials have been 

increasingly applied to different engineering structures, 

especially to smart or intelligent systems as intelligent 

sensors, damage detectors, etc. Rayleigh waves are the most 

important of the surface acoustic waves which are 

essentially considered as mechanical waves. Surface 

Acoustic Waves (SAWs) were first explained in 1885 by 

Lord Rayleigh, who described the surface acoustic mode of 

propagation and predicted its properties in his classic paper 

[1]. 

Basic discoveries of piezoelectricity were made in the late 

19th century by Pierre and Paul-Jacques Curie [2]. After 

that, there has been a tremendous growth in the 

telecommunications industry over the past few decades with 

a subsequent increase in demand for high-quality 

components which were based on the piezoelectricity 

phenomenon. In particular, usage of SAW devices in 

wireless communication systems demands higher operating 

frequencies, wider bandwidths, smaller sizes and lower 

insertion losses. Consequently, there is a pressing need for 

improved techniques for device fabrication and response 

prediction. Further development of photolithographic 

techniques for computer chips and telecommunication 

devices to optically transfer micro- and nanostructure 

patterns onto a substrate, allowed fabrication of micro- and 

nanostructures implemented in modern biosensors [3]. 

There are many studies that focused on   investigating  

Rayleigh waves in different anisotropic media without 

piezoelectric effects such as [4] and [5]. While, using a 

different method or additional fields such as the thermal 

field and/or magnetic field, many authors  obtained explicit 

Rayleigh wave speeds for isotropic materials, e.g. [6], [7] 

and [8].  The anisotropic behavior of the medium 

extremely modifies the existence and the structure of the 

SAW and  BAW  that  propagates  at  the free surface of  the  
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medium [9] and [10]. Anisotropy, therefore, induces 

considerable difficulties in analytically and explicitly 

studying wave propagation. Attempts to derive explicit 

secular equations have been reported in [11] and [12]. In 

seismology, Rayleigh waves cause destructive vibration to 

the structures. However, due to nonlinearity, it is difficult to 

get the exact solution of the characteristic equation of 

Rayleigh waves in anisotropic media [13]. Lately, The 

propagation of surface Rayleigh waves in a half-space under 

the effect of pre-stress was examined by many authors such 

as: [14] and [15]. The piezoelectric materials (are called 

smart materials) are capable of altering the structure's 

response through sensing, actuation and control [16] and 

[17]. Piezoelectricity may be used in many other useful 

different applications for examples see, [18] and [19]. The 

nonlinear constitutive equations for  magnetoacoustic  or 

 thermo-electro-elastic  materials which are considered the 

basic tools for studying the propagation of surface acoustic 

waves in isotropic or anisotropic materials may be found in 

many works of literature such as [20]-[25]. 

Recently, There are several papers concerning various 

problems based on the theory of  surface acoustic waves, 

especially, a Rayleigh surface waves propagation problem in 

many hypotheses (see, e.g., Chirita et al. [26],  Sharma [27], 

Bucur et al. [28],  Torello et al. [29], Lin et al. [30] and 

Singh [31]. 

The present paper investigates Rayleigh surface acoustic 

waves in anisotropic piezoelectric materials. A details 

solution giving plots for variations of fields and 

displacements as a function of distance from the free surface 

are obtained.  The secular equation under suitable 

mathematical boundary conditions of the wave motion is 

derived. The characteristics of surface waves propagating in 

piezoelectric elastic half-space and their dependence upon 

the physical parameters  are investigated. 

2- The basic equations 
In the quasi-static approximation, the governing field 

equations of piezoelectricity can be expressed as [23]: 

ijij uT , .                                                                   (1) 

Propagation on piezoelectric crystals is usually complicated 

by the presence of a piezoelectric surface wave which 

contains electromagnetic field quantities. These field 

quantities must satisfy Maxwell's equations for magnetically 

isotropic dielectric [22],  

0,0,, ,,,,  iijjijkijkijkijk DHDHHE 
   (2) 

A combination of Eqs. (2)1 and (2) 2  which eliminates the 

magnetic field, iH , is of particular use here, 

ijjiijj DEE 
 ,, .                                                      (3) 

Where the definition of all the symbols are written in 

Appendix B.  In a piezoelectric material, the mechanical 

equations of motion and Maxwell’s equations for the 
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electrical behavior are coupled through two constitutive 

equations given by: 

- The stress tensor for piezoelectric materials is: 

,kkijkijkij EeSCT                                                  (4) 

- The components of the electric displacement are given by: 

. kikkiki SeED                                                     (5) 

- The strain tensor is related to the displacements, iu , by: 

).( ,,2
1

ijjiij uuS                                                        (6) 

Elastic and piezoelectric wave propagation for piezoelectric 

crystals can be summarized as a solution of equations of 

motion (1) with constitutive relation (2) subjected to the 

following boundary conditions: 

(i) The surface of propagation is stress-free, 

(ii) The electromagnetic field components have 

appropriately matched the surface. 

For simplicity, engineering notation will now be employed 

to reduce the number of subscripts. Engineering notation 

allows designation of elastic constants by two subscripts, 

stress components by one and similar reductions of other 

appropriate quantities.  

Solutions of interest are those that describe surface wave 

propagation. A nonuniform plane wave solution will be 

assumed with propagation in one coordinate direction, 

attenuation in another, and independence in the third. 

Examination of equations (4) and (1) indicates the optimum 

choice to be in the 3x  direction, attenuation in the 2x  

direction and no variation in the 1x  direction. solutions of 

the following form are assumed for a crystal occupying the 

half-space ,02 x  

}],)({exp[ 32 txxkiAu jj         

}],)({exp[ 32 txxkiBkE jj                               (7)  

where 3,2,1j ,   is the angular frequency, jA , jB  are 

unknown arbitrary amplitude constants, k ,  are the wave 

number and a dimensionless decay constant respectively,  

that to be determined and t is the time. jE  amplitudes 

include the factor of k  for later convenience. 

Substitution of Eqs. (7) successively into Eqs. (6), (4), (1) 

and (3) gives the following homogeneous system of 

equations for surface wave propagation: 

   0

00

00

00

00

0000

0000

3

2

3

2

1

1

66656463

56555453

46454443

36353433

2221

1211



B

B

A

A

B

A

aaaa

aaaa

aaaa

aaaa

aa

aa

                  (8) 

where 
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2
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2
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2
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44 CCva                              (9) 

,12
11055  va   

,5665 aa  

.22
33066   va  

,31
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064 eviava    

Examination of Eqs. (8) indicates the existence of two 

uncoupled modes of propagation. One of these contains 1u  

and 1E  which is described by: 

0,0,0 323211  EEuuEu ,  

0
1

1

2221

1211


B

A

aa

aa
                                                     (10) 

This equation contains nonzero components transverse to the 

direction of propagation and is referred to as the uncoupled 

transverse mode. 

The second solution is described by 

 0,0,0,0,0 323211  EEuuEu , 

0

3
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36353433


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A

aaaa

aaaa

aaaa
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.                                (11) 

Here the nonzero components of displacement and electric 

field are coplanar, in the plane normal to the surface and 

parallel to the direction of propagation, such a plane is 

referred to as the sagittal plane and the mode is referred to as 

the Rayleigh mode. These two possible modes will be 

discussed in details later.  

3. Electromagnetic field outside 
the crystal 

The assumed solutions, Eqs. (7), are valid for the half-space 

02 x  occupied by the material. The displacement 

components, iu , will certainly be zero outside the material,   

02 x , but the electromagnetic field will not. To assure 

matching of the fields along the surface, space and the time 

dependence of those fields outside must be of the same form 

as those inside differing by amplitude constants, wave 

number, and decay constants only. These fields must also 

obey Maxwell's equations in free space, 

ijjiijj EEE 
 ,, ,                                                 (12) 

Considering  solutions in the form for Eqs. (12) where 

( 02 x ), 

}],)({exp[ 32 txxkiCkE jj       )3,2,1( j     (13) 

 where   is the decay constant, jC  are the amplitudes and 

k  is the wave number are to be determined. Substituting 

from Eqs. (13) into (12) produces a set of homogeneous 

equations which govern the propagation of fields above the 

surface. replacing the phase velocity, k/  , by v  and 

expressing in determinant form these equations are given by: 
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where 

,1 2
00

2
11 va        ,1 2

0022 va     

2
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2
33 va   ,  ,012 a 0,0 3121  aa  

, ,013 a     .2332  aa  

This set of equations shows two uncoupled modes; one 

contains the 1E  component of the field only, corresponding 

to the transverse mode, and the second contains 2E  and 3E  

components representing the Rayleigh mode. From Eq. (14) 

to obtain a nontrivial solution requires the coefficient 

determinant to be zero. Therefore, the decay constant   is 

found as 

)1( 2
00 vi                                                      (15) 

using the boundary conditions requiring fields to vanish at 

infinity leads to the correct root to be 

)1( 2
00 vi                                                          (16) 

where the negative root is discarded as physically 

unrealizable. The propagation velocity of electromagnetic 

waves in free space is 

00
0

1


v                                                                     (17) 

Substituting from Eq. (15) into Eq. (14) yields 

2

0

)(1(
v

v
i                                                               (18) 

The ratio of acoustic wave velocity to light wave velocity 

squared is of the order 1010  and gives .1 i  

The amplitude ratio 32/CC is determined from Eq. (13) to 

be 



1

)1(

1

2
00

3

2 





v

i
C

C
.                                       (19) 

Substituting from Eq. (19) into Eqs. (13), the electric fields 

outside the crystal ( 02 x )become 

}])({exp[),,(),,( 323
3

1321 txxkiC
C

CkEEE 


 ,                                    

                                                                                      (20) 

Accompanying the electric field in this region is a magnetic 

field found by using Maxwell's curl equation for free space. 

Therefore, from Eq. (2)1  and Eqs. (20), the magnetic fields 

outside ( 02 x ) the material become: 

}],)({exp[),,(),,( 32121231321 txxkiCFCFCFHHH  

                                                                                         (21) 

where 
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It should be remarked that for uncoupled transverse mode 

.03 C  Thus Eqs. (20) yield 

 }])({exp[ 3211 txxkikCE                             (22) 

and Eqs. (21) yield 

}],)({exp[),(),( 32121232 txxkiCFCFHH   (23) 

Therefore, for the external electromagnetic fields, the 

transverse mode is represented by Eqs. (22) and (23). 

Moreover, for the Rayleigh mode 01 C , Eqs. (20) and 

Eqs. (21) reduce to the following system. 

}])({exp[),(),( 323
3

32 txxkiC
C

kEE 


 ,   (24) 

}])({exp[)()( 32311 txxkiCFH   .                    (25) 

4. Rayleigh Mode of piezoelectric 
materials 

A solution of  the Rayleigh mode consists of  satisfying the 

secular equation found from Eqs. (14) and the boundary 

conditions associated with this mode. The secular equation 

for the Rayleigh mode with the phase velocity v  ( where 

kv / ) is the expanded coefficient determinant of Eq. 

(12). Expansion of the coefficient determinant yields an 

algebraic equation of order six with real coefficients. The six 

roots of this equation are either real or complex conjugate 

pairs. Only the complex roots with negative imaginary parts 

allow Rayleigh surface waves to exist.  Therefore, from the 

total six roots, only three of them are related to Rayleigh 

surface waves. These roots which concern to Rayleigh 

surface wave propagation may occur in different forms 

giving different types of solutions [26]. 

 In view of Rayleigh mode in piezoelectric materials has the 

coupling of the electromagnetic field and the elastic wave by 

the piezoelectric constants. Therefore, the secular equation 

which found by the expanding Eq. (11) becomes an 

algebraic equation of the sixth order  with real coefficients. 

The three roots are used to obtain the assumed solution as a 

linear combination  

The three acceptable roots are used to obtain the assumed 

solution as linear combination in the form: 

}],)({exp[)( 3222 txxkiAu j
j

j       
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j                 (26) 
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j     

}])({exp[)( 3233 txxkiCkE j
j

j                   (27) 

where 3,2,1j  ، 02 x  and the amplitude ratios are 

defined as: 
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which can be found from equation (12) as follows: 
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Where the elements of the previous determinants in Eqs. 

(27) are defined in Appendix A. 

The amplitude ratios (29) can be applied to express the 

solutions in terms of the amplitude constants jA )( 2  as: 

}],)({exp[

})(,){(},{

32

2232

txxki

ANAuu

j

j
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 



              (30) 

}],)({exp[

})(,)({),{
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2232

txxki

APADkEE

j

j
jjjj

 



 

 ,3,2,1j  .02 x                                            (31) 

5. The boundary conditions 
Boundary conditions for piezoelectric materials required  the 

following: 

(i)  A stress free surface, i.e. 

 0)0()0( 42 TT                                               (32) 

(ii) Tangent component of the electric field 3E  must be 

continuous at  02 x , i.e. 

).0()0( 33
  EE                                                  (33) 

(iii) Component of the electric displacement must be 

continuous at  02 x , i.e. 

).0()0( 202
  ED                                              (34) 

Applying the boundary conditions given by Eqs. (32)-(34) 

can be summarized by the following  homogeneous system: 
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This system requires the coefficient determinant to be zero 

for a nontrivial solution, 

0
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
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,                                             (36) 

Equation (36) is called the secular equation or sometimes 

called the dispersion equation where   

jjjjjj PieDieNCCCCb 3122141314111 )()(    
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Numerical  procedure must be used to determine the values 

of  321 ,,   and v  that simultaneously satisfy the 

coefficient determinants of Eq. (12) and Eq. (36). 

Assign values to the speed of the phase v and the constants  

321 ,,   to investigate transactions determinants in 

equations (12), (36). The latest  format of the solutions may 

be written as: 
)(

3121122
3232221 )()( tkxikxikxikxi eeMeMeAu   , 

,)()( )(
31211213

3232221 tkxikxikxikxi eeNeNeANu  
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0,0 211  xuE .                                             (37) 

The amplitude ratios 111 ,, jjj DNM   and 1jP  are 

determined using the same method used before, and the 

determinant in Eq. (36) can be written as: 
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Where: 

),( 13222312 bbbb   and the other relations can be found 

as follows: 
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12. Numerical Results and 
Discussion 

The numerical solution involves finding the roots of the 

secular Eq. (11) for various values of propagation velocity. 

These sets of values and three decay constants are 

substituted into Eq. (37) to find which set simultaneously 

satisfied both the secular equation and the boundary 

conditions. The necessary values of elastic constants, 

piezoelectric constants and permittivities  for Barium 

Titanate )( 3BaTiO are given in table 1.  

Table 1. Physical properties of 3BaTiO [23] 

211
11 1073.2  Nmc  211

12 1079.1  Nmc  

211
13 1052.1  Nmc  211

33 1065.1  Nmc  

211
44 1043.5  Nmc   = 910)36/1(  MKS 

211
66 1013.1  Nmc  3.2115 e 2/ mC  

64.333 e 2/ mC  65.131 e 2/ mC  

11
11 10744.1  F/m 

331002.6  mKg  

11
33 1097   F/m  

The frequency equations have been solved to obtain the 

velocity of the Rayleigh wave propagation and the decay 

constants which they have been used to calculate the 

components of the  displacement, the electric field. 

After obtaining analytical solutions,  the numerical 

computations  were represented on the curves in order to 

facilitate the discussion. The results have been presented 

graphically to illustrate the nondimensional components of 

the displacement 
)0(2

2*
2

u

u
u   and 

)0(3

3*
3

u

u
u  and the 
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electric field 
)0(2

2*
2

E

E
E   and 

)0(3

3*
3

E

E
E  versus the depth 

of penetration measured in wavelengths d, where )0(2u   and 

)0(2E   are the values of the displacement and the electric 

field in the 2x - direction at the material surface, 

respectively. The results are complex numbers for the 

variation of the relative depth d.  

 

 
Figures (1) and (2) show the real and  imaginary parts of  the 

nondimensional displacement components *
2u  and *

3u versus 

the relative depth d.    

 
 

The graphs (1) and (2)  give information about the variation 

of the amplitude ratios of the displacements as a function of 

relative depth d. While the Figures (3) and (4) present  the 

variation of the amplitude ratios of the electric field versus 

d. As can be seen, from the Figures  there were different 

trends for  the oscillatory  behavior of  real and imaginary 

values of these compounds with increasing relative depth. 

This fluctuation is a big  in the case of the electric field 

components than in the case of relative displacement 

components. Furthermore, It is noticed that the electric field 

of the piezoelectric surface wave exists outside the material 

as well as inside. 

 

 
Figures (3) and (4) show the real and imaginary parts of  the 

nondimensional displacement components *
2E  and 

*
3E versus the relative depth d. 
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Appendix A.  
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and also: 
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Appendix B 

ijT  is the stress tensor 

kS  is the strain tensor  

ike  is the piezoelectric tensor 

ijkc  is the stiffness tensor 

ik  is the symmetric permittivity tensor  

ijk  is the rotation tensor 

iu  is the displacement tensor  

iD  is the component of electric displacement, 

iE  is the electric field 

jH  is the magnetic field intensity, 

  is the mass density of the elastic medium 

  is the permeability of field space 

  is the permittivity of free space 
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