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Analytical applications on the Dunkl-type Fock
Space Frc
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Abstract— In this work, we establish Heisenberg-type
uncertainty principle for the Dunkl-type Fock space F, (Cd).

Next, we give an application of the classical theory of
reproducing kernels to the Tikhonov regularization problem for

operator L: Fk(Cd)—>H , where H be a Hilbert space.

Finally, we come up with some results regarding the Tikhonov
regularization problem and the Heisenberg-type uncertainty

principle for the Dunkl-type Segal-Bargmann transform Bk .
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I- Introduction

In this work, by using the theory of operators on Hilbert
spaces [3, 4] we establish  Heisenberg-type uncertainty

principle for the Dunkl-type Fock space (CY) 11, 111. In
the Dunkl setting, the Heisenberg-type uncertainty principle
for the Dunkl transform D, [2,5], is studied by Rosler in [7]

and by Soltani in [15]. This is an important support for show
in this work, the Heisenberg-type uncertainty principle for the

Dunkl-type Segal-Bargmann transfor Bk [1, 11]. Next,

building on the ideas of Matsuura et al. [6], Saitoh [10], and
Soltani [12] , we give an application of the classical theory of
reproducing kernels [9] to the Tikhonov regularization

problem on the Dunkl-type Fock space F (C"). More
precisely, let L:F (C%)—>H be a bounded operator
from F (C")into a Hilbert space H ,
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A>~0 , heH |
V[ oy +In—LE,) . is attained at one

for all the infimum

inf
feR(C)
function f;h, called the extremal function. As applications,

we study the extremal functions associated to the following
operators:

- the operator  Lf (W) =(B,)™ f (W),

- the operator Lf (W) =(D,)(B,) ™" f (W),
- and the operator  Lf (w) = f(—iw).

In the Dunkl setting, the extremal functions are studied by
Soltani in several directions, where L is the Dunkl-type
L is the Dunkl

operators [13,16] and L is the dual Dunkl-Sonine operator
[14].

The contents of the paper are as follows. In Section 2, we
recall some properties of the Dunkl-type Fock space

Fk(Cd) and we establish Heisenberg-type uncertainty

principle for this space. In Section 3, we give an application of
the classical theory of reproducing kernels to the Tikhonov
regularization problem for bounded
operator L:F (C')—>H , where H be a Hilbert

space.The last section is devoted to give some results
concerning the Tikhonov regularization problem and the
Heisenberg-type uncertainty principle for the Dunkl-type

Segal-Bargmann transform B, .

Weierstrass transform [12], multiplier

Dunkl-type Segal-Bargmann
space

The Dunkl operators on

Tj(k) ;o j=1..d ,
RY associated with the positive root system R+ and the
multiplicity function Kare given, for a function f of class
ct R¢
by
TR () ::axi £(x)+
i

on

f(¥) - f(o,X)

Z k(o) <a, X>

aeR+

2(a, X) "

where o, X'=X— 3
o
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For y eR? : the initial

T,(QuC. ) =yuxy) . j=1l..d .
u(0, y) =1 admits a unique analytic solution on R?, which
will be denoted by E, (X,Y) and called Dunkl kernel [2].

problem
with

This kernel has a unique analytic extension to C% xC? (see

[8D.

For zZ,weCY, wedefine K(z,w):=E,(z,W).

From the properties of the Dunkl kernel [2, 8], the kernel
K is continuous and the function Z—>K(z,.) is

holomorphic for all We C?. Further, K(z,W) = K(w,2)

and K(z,W) is a positive definite kernel. Then, there exists a

Hilbert F.(C") of
K is its reproducing kernel. The Hilbert

space holomorphic  functions
on C%such that
space F (C") contains the C -algebra P(C") of
polynomial functions on CY as a dense subspace. In

particular, if we denote by <.,
F.(C%), then

(P.0) ooy = PT(KNA@),, P.A€PC),
where P(T (K)) is the operator formed by replacing Z; by

T;(K)for j=1,...d. we shall call F (C?) the Dunkl-
type Fock space.

'>Fk(Cd) the inner product in

m- Heisenberg-type uncertainty
principle

We consider
analysis.

Theorem 3.1. (See [3, 4]). Let A and B be self adjoint
operators on a Hilbert space H . We define the commutator

of Aand B to [A B]:= AB—BA. Then we have that

A=) ], JB-D)f, >Z(ABIFf), ] for an

f e Dom(AB)"Dom(BA) , and all a,beR .By

applying Theorem 3.1 we establish the Heisenberg-type
uncertainty principle for the Dunkl-type Fock space

F.(C%).
Theorem 3.2. Let f € (C"). For all a,beR, we
have

Ty +2, -3

the following general result from functional

- oK)=z +iD ] =N (F)

where

N (D) =% oy + (RGO T, T)
and P, (k) f(2)= D k(a)(a;)* f(c,2).

acsh+
This uncertainty principle can be written as the following.

Theorem 3.3. Let f € (C"). Then
M (MG ()22 o) (N (F))?

where
M3 (F) =7 o | CDI],  ~(5(. )
AL =T (0 £2,)F

R(C?)

R.(C%)

iv- Extremal functions on F (C%)

Let A>=0and let L:F (C*)—>H be a bounded linear
operator from F, (C)into a Hilbert space H . We denote
by <f ,g)m the inner product defined on the space F, (C?)
by

< f ! g>|_,/1 = ﬂ’< f ! g>|=k(cd) +<Lf ! Lg>H :

By using the theory of extremal function and reproducing
kernel of Hilbert space [9,10] we establish the extremal
function associated to the operator L on the Dunkl-type Fock

space F, (C?).
Theorem 4.1. Let A>0

F (CY),(.,. possesses a  reproducing
k LA

The Fock space

kernel
K,(Wz); wze CY, which satisfying the equation

(A +LL)K ,(W,.)=K(W,.) .Moreover the kemel
K. ; (W, Z) satisfies the following properties

_JEw)
) A

() HKLJ (w, 'X‘Fk(cd -

, E, (W, W)
LK 0 B

i) UL, (W) ) SYE(WW).
( ) L,/i( Fk(cd) k( )
From this theorem we obtain the main result of this section .
Theorem 4.2. For any heH and for any A >0, there
exists a unique function f, , where the infimum

. 2 2). .
it I oy +In— LA, ) is aines.

Moreover, the extremal function f;’h is given by
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frn(w) = <h, LK, (W, )>H and satisfies the inequality

. E (w w)
£ (W) <=5,
v-  Dunkl-type Segal-Bargmann
transform
Let y denote the weight function
2k(a)
a () =[1[ey) " yveR"
aeR+
Let C, be the Mehta-type constant given by
2 1
Ck = (J‘Rd eiM a)k(y)dy) :
We denote by f4 the measure on R¢ given by
deg (Y) =c.o, (Y)dy, and by LZ(R?), the space of

measurable functions f on Rd , such that

1
) 2
”f”Lﬁ(Rd) ::(_[Rd|f(y)| dyy < 0.

We denote by U kK the kernel given for Z,W e ok , by
(z,2)+(w,w))
U@zw=e 2 E2zw).

The kernel U, gives rise to an integral transform
Bk , which is called Dunkl-type Segal-Bargmann transform on

C® and defined for f in L2(R"), by
B.(f)(2) ::IRdUk(Z’X)f(X)dﬂk(X)7 zeC".
The transform
L2(R")onto F (C"),and for f €2(R") we have
”Bk(f)”Fk(Cd) :”f”Lﬁ(Rd)’

. d
B.D ()W) =B, (f)(-iw), WeC",
where Dk is the Dunkl transform [2,5].
Application 5.1. (i) If H=L3(R") and L=(B,)*,
then L' =B, and L'L=1. Thus, by Theorem 4.1, we

B, is an isometric isomorphism of

deduce that and for

1
KL,/I (w,z) = m K(w,z)

1

——= B(h)(w).

heli(R%), Tl

fon(w)=

41

i) f H=F (C") and Lf(W)=f(-iw) , then

L*f(w)=f(iw) and L'L=1. Thus, by Theorem 4.1, we

K., (W,2)= ﬁK(w )

heF (CY), fi(w)= h(IW)

Application 5.2. By applylng Helsenberg-type uncertainty
principle for the Dunkl transform ([15], Theorem 2), we
deduce the following Heisenberg-type uncertainty principle

for the Dunkl-type Segal-Bargmann transform Bk.
Let @a>0 . There exists C,~0 such that for
f eLZ(R?) we have

deduce that and for

all

1

It L [ 2
2 2
e 2 f <C,[x% 2 f ZHz B (f)HW
2(RY) HCOR
Acknowledgment
This work was supported by the Deanship of the Scientific
Research of  Jazan University, Saudi Arabia

(Project N"588- Sabic 2 - 36).

References

[1] S. Ben Said and B. drsted, Segal-Bargmann transforms
associated with Coxeter groups, Math. Ann. 334 (2006) 281-
323.

[2] C.F. Dunkl, Hankel transforms associated to finite
reflection groups, Contemp. Math. 138 (1992) 123-138.

[3] G. Folland, Harmonic analysis on phase space, Annals of
Mathematics Studies 122, Princeton University Press,
Princeton, New Jersey, 1989.

[4] K. Grochenig, Foundations of time-frequency analysis,
Birkhauser, Boston, 2001.

[5] M.F.E.de Jeu, The Dunkl transform, Inv. Math. 113 (1993)
147-162.

[6] T. Matsuura, S. Saitoh and D.D. Trong, Inversion formulas
in heat conduction multidimensional spaces, J. Inv. Ill-posed
Problems 13 (2005) 479-493.

[7] M. Rdosler, An uncertainty principle for the Dunkl
transform, Bull. Austral. Math. Soc. 59 (1999) 353-360.

[8] E.M. Opdam, Dunkl operators, Bessel functions and the
discriminant of a finite Coxeter group, Compositio Math. 85
(3) (1993) 333-373.

[9] S. Saitoh, Hilbert spaces induced by Hilbert space valued
functions, Proc. Amer. Math. Soc. 89 (1983) 74-78.

[10] S. Saitoh, Best approximation, Tikhonov regularization
and reproducing kernels, Kodai Math. J. 28 (2005) 359-367.
[11] F. Soltani, Generalized Fock spaces and Weyl
commutation relations for the Dunkl kernel, Pacific J. Math.
214 (2004) 379-397.

SEEK

(t

DIGITAL LIBRARY



Proc. of The Fifth Intl. Conf. On Advances in Applied Science and Environmental Engineering - ASEE 2016

Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.
ISBN: 978-1-63248-086-6 doi: 10.15224/ 978-1-63248-086-6-09

[12] F. Soltani, Inversion formulas in the Dunkl-type heat

conduction on R , Appl. Anal. 84 (2005) 541-553.
[13] F. Soltani, Best approximation formulas for the Dunkl

L2-multiplier operators on RY , Rocky Mountain J. Math. 42
(2012) 305-328.

[14] F. Soltani, Multiplier operators and extremal functions
related to the dual Dunkl-Sonine operator, Acta Math. Sci.
33B(2) (2013) 430-442.

[15] F. Soltani, A general form of Heisenberg-Pauli-Weyl
uncertainty inequality for the Dunkl transform, Int. Trans.
Spec. Funct. 24 (5) (2013) 401-409.

[16] F. Soltani, Dunkl multiplier operators and applications,
Int. Trans. Spec. Funct. 25 (11) (2014) 898-908.

42

(t

SEEK

DIGITAL LIBRARY



