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Abstract— In this work, we establish Heisenberg-type 

uncertainty principle for the Dunkl-type Fock space )( d
k CF . 

Next, we give an application of the classical theory of 

reproducing kernels to the Tikhonov regularization problem for 

operator HCFL d
k )(: , where H  be a Hilbert space. 

Finally, we come up with some results regarding the Tikhonov 

regularization problem and the Heisenberg-type uncertainty 

principle for the Dunkl-type Segal-Bargmann transform kB . 

Keywords—component, Dunkl-type Fock spaces, extremal 

functions, Tikhonov regularization, Heisenberg-type uncertainty 

principle. 

 

I- Introduction 
 

In this work, by using the theory of operators on Hilbert 

spaces [3, 4] we establish  Heisenberg-type uncertainty 

principle for the Dunkl-type Fock space )( d
k CF  [1, 11]. In 

the Dunkl setting, the Heisenberg-type uncertainty principle 

for the Dunkl transform kD  [2,5], is studied by Rosler in [7] 

and by Soltani in  [15]. This is an important support for show 

in this work, the Heisenberg-type uncertainty principle for the 

Dunkl-type Segal-Bargmann transfor kB  [1, 11]. Next, 

building on the ideas of  Matsuura et al. [6], Saitoh [10], and  

Soltani [12] , we give an application of the classical theory of 

reproducing kernels [9] to the Tikhonov regularization 

problem on the Dunkl-type Fock space )( d
k CF . More 

precisely, let HCFL d
k )(: be a bounded operator 

from )( d
k CF into a Hilbert space H , 
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for all 0 , Hh , the infimum 

 22

)()(
inf

HCFCFf
Lfhf d

kd
k




 , is attained at one 

function 


hf , , called the extremal function. As applications, 

we study the extremal functions associated to the following 

operators: 

- the operator )()()( 1 wfBwLf k
 ,  

- the operator )()()()( 11 wfBDwLf kk
 , 

- and the operator  )()( iwfwLf  . 

In the Dunkl setting, the extremal functions are studied by 

Soltani in several directions, where L  is the Dunkl-type 

Weierstrass transform [12], L is the Dunkl multiplier 

operators [13,16] and L is the dual Dunkl-Sonine operator  

[14]. 

The contents of the paper are as follows. In Section 2, we 

recall some properties of the Dunkl-type Fock space 

)( d
k CF  and we establish Heisenberg-type uncertainty 

principle for this space. In Section 3, we give an application of 

the classical theory of reproducing kernels to the Tikhonov 

regularization problem for bounded 

operator HCFL d
k )(: , where H  be a Hilbert 

space.The last section is devoted to give some results 

concerning the Tikhonov regularization problem and the 

Heisenberg-type uncertainty principle for the Dunkl-type 

Segal-Bargmann transform kB . 

 
II- Dunkl-type Segal-Bargmann 

space 
 
The Dunkl operators )(kTj ; dj ,...,1 , on 

dR associated with the positive root system   and the 

multiplicity function k are given, for a function f  of  class 

1C  on 
dR , 

by










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


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x
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j
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where 

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,2
:

x
xx  . 
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For 
dRy , the initial problem 

),())((.,)( yxuyxyukT jj  , dj ,...,1 , with 

1),0( yu  admits a unique analytic solution on
dR , which 

will be denoted by ),( yxEk  and called Dunkl kernel  [2]. 

This kernel has a unique analytic extension to 
dd CC   (see 

[8]). 

For  
dCwz , ,  we define ),(:),( wzEwzK k . 

From the properties of the Dunkl  kernel  [2, 8],  the kernel  

K  is continuous and the function  ,.)(zKz   is 

holomorphic for all 
dCw . Further, ),(),( zwKwzK   

and ),( wzK is a positive definite kernel. Then, there exists a 

Hilbert space )( d
k CF  of  holomorphic functions 

on
dC such that  K  is its reproducing kernel. The Hilbert 

space )( d
k CF  contains the C -algebra )( dCP  of 

polynomial functions on 
dC  as a dense subspace. In 

particular, if we denote by 
)(

.,. d
k CF

 the inner product in 

)( d
k CF , then 

)(,,)())((, 0)(

d

zCF
CPqpzqkTpqp d

k

  , 

where ))(( kTp   is the operator formed by replacing  jz  by  

)(kTj for dj ,...,1 . We shall call )( d
k CF  the Dunkl-

type  Fock space. 

 

III- Heisenberg-type uncertainty 
principle 

 

We consider  the following general result from functional 

analysis. 

Theorem 3.1. (See [3, 4]). Let A  and B  be self adjoint 

operators on a Hilbert space H . We define the commutator 

of  A  and B  to BAABBA :],[ . Then we have that 

HHH
ffBAfbBfaA ,],[

2

1
)()(  ,for all 

)()( BADomABDomf  , and all Rba , .By 

applying Theorem 3.1 we establish the Heisenberg-type 

uncertainty principle for the Dunkl-type Fock space 

)( d
k CF . 

Theorem 3.2. Let )( d
k CFf  . For all Rba , , we 

have

)())(())((
)()(

fNfibzkTfazkT kCFjjCFjj d
k

d
k



where
)(

2

)(
,)()(

d
k

d
k CFjCFk ffkPffN  , 

and 





 )())(()()( 2 zfkzfkP jj . 

This uncertainty principle can be written as the following. 

Theorem 3.3. Let )( d
k CFf  . Then 

22

)(
))(()()( fNffMfM kCFkk d

k


  

where 
2

)(

2

)(

2

)(
),()()(

d
k

d
k

d
k CFkCFkCFk ffAfAffM  

fzkTfA jjk ))(()( 
. 

 

IV- Extremal functions on )( d
k CF  

 

Let 0 and let HCFL d
k )(: be a bounded linear 

operator from )( d
k CF into a Hilbert space H . We denote 

by
,

,
L

gf the inner product defined on the space )( d
k CF  

by 

HCFL
LgLfgfgf d

k

,,:,
)(,



. 

By using the theory of extremal function and reproducing 
kernel of Hilbert space [9,10] we establish the extremal 

function associated to the operator Lon the Dunkl-type Fock 

space )( d
k CF . 

Theorem 4.1. Let 0 . The Fock space 

).,.),((
,L

d
k CF possesses a reproducing kernel 

),(, zwKL  ; 
dCzw , ,  which satisfying the equation 

,.)(,.)()( , wKwKLLI L  
 .Moreover the kernel 

),(, zwKL  satisfies the following properties 

(i) 




),(
,.)(

)(,

wwE
wK k

CFL d
k

 , 

(ii) 




),(
,.)(,

wwE
wLK k

HL  , 

(iii) ),(,.)(
)(, wwEwLKL kCFL d

k


 . 

From this theorem we obtain the main result of this section . 

Theorem 4.2. For any Hh and for any 0 , there 

exists a unique function 


hf , , where the infimum 

 22

)()(
inf

HCFCFf
Lfhf d

kd
k




  is attained.  

Moreover, the extremal function 


hf , is given by 



 

41 

 

Proc. of The Fifth Intl. Conf. On Advances in Applied Science and Environmental Engineering - ASEE 2016 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-086-6 doi: 10.15224/ 978-1-63248-086-6-09 

 

HLh wLKhwf ,.)(,)( ,,  
 and satisfies the inequality 

H

k
h h

wwE
wf




),(
)(, 

. 

 

V- Dunkl-type Segal-Bargmann 
transform 

 

Let k denote the weight function 

)(2
,:)(






k

k yy 


 ,   
dRy . 

Let kc be the Mehta-type constant given by 

  1

)(:
2 



 dyyec k
R

y

k d
 . 

We denote by k the measure on 
dR given by 

dyycyd kkk )(:)(   , and by )(2 d
k RL ,  the space of 

measurable functions  f on 
dR , such that 






  

2

1
2

)(
)(:2 dyyff

dd
k RRL

. 

We denote by kU
 the kernel given for 

dCwz , , by  

),2(:),( 2

),,(

wzEewzU k

wwzz

k




 . 

The kernel kU  gives rise to an integral transform 

kB , which is called Dunkl-type Segal-Bargmann transform on 

dC , and defined for f  in )(2 d
k RL , by 

)()(),(:))(( xdxfxzUzfB k
R

kk d
 ,  

dCz . 

 The transform  kB  is an isometric isomorphism of 

)(2 d
k RL onto )( d

k CF , and  for )(2 d
k RLf   we have 

)()( 2)( d
k

d
k RLCFk ffB  , 

))(())(( iwfBwfDB kkk  ,   
dCw , 

where kD  is the Dunkl transform [2,5]. 

Application 5.1. (i) If )(2 d
k RLH   and  

1)(  kBL , 

then kBL 
 and ILL 

. Thus, by Theorem 4.1, we 

deduce that ),(
1

1
),(, zwKzwKL





 , and for 

)(2 d
k RLh ,  ))((

1

1
)(, whBwf kh





 . 

(ii) If )( d
k CFH   and )()( iwfwLf  , then 

)()( iwfwfL 
 and ILL 

. Thus, by Theorem 4.1, we 

deduce that ),(
1

1
),(, zwKzwKL





 , and for 

)( d
k CFh ,  )(

1

1
)(, iwhwf h





 . 

Application 5.2. By applying  Heisenberg-type uncertainty 

principle for the Dunkl transform ([15], Theorem 2), we 

deduce the following Heisenberg-type uncertainty principle 

for the  Dunkl-type Segal-Bargmann transform kB . 

Let 0a . There exists 0aC  such that for all 

)(2 d
k RLf   we have 

22
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1
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2
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2 )(

2
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2
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