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  Abstract— In this work, we introduce the Fock space )(CF  

associated to the Airy operator , and we establish Heisenberg-type 

uncertainty principle for this space. Next, we give an application 

of the theory of extremal function and reproducing kernel of 

Hilbert space, to establish the extremal function associated to a 

bounded linear operator HCFT )(: 
, where H  be a 

Hilbert space. Finally, we come up with some results regarding 

the extremal functions, when T  is  the difference operator and 

the Dunkl-difference operator, respectively. 

 

Keywords—component, Airy-type Fock space, Tikhonov 

regularization, Heisenberg-type uncertainty principle. 

 

I- Introduction 
The study of several generalizations of  the classical Fock  

spaces  has a long and rich history in many different settings 

(see for instance  [11], [12]). In this work,  we will try to 

generalize Airy-type Fock space, to establish Heisenberg-type 

uncertainty principle for this space; and to  give an application 

of the theory of reproducing kernels to the Tikhonov 

regularization on this generalized Fock space.  

The generalized Airy operator (or hyper-Bessel operator [14, 

15])  is third singular differential operator given by 

dx
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where is a nonnegative real number. When 0 , this 

operator becomes the third derivative operator for which some 

analysis were studied by Widder [18] and for some special 

value of   the operator L  appeared as a radial part of the 

generalized Airy equation of a nonlinear diffusion type partial 

differential equation in 
nR . Recently, in a nice and long 

paper, Cholewinski and Reneke [2] studied and extended, for 

the operator L , the well known theory related to some 

singular differential operator of second order for which the 

literature is extensive. 
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Next,  Fitouhi et al. [7, 8] established a harmonic analysis 

related to this operator for examples  the eigenfunctions, the 

generalized translation, the Fourier-Airy transform, the heat 

equation, the heat polynomials, the transmutation operators, … 

During the last years, the Airy operator have gained 

considerable interest in various field of mathematics [3-6], [13-

15] and in certain parts of quantum mechanics [1]. The results 

of this work will be useful when discussing the Fock space 

associated to this operator. 

This space is the background of some applications in this 

contribution. Especially, 

• we study the Airy operator and its adjoint operator on the 

Airy-type  Fock space. 

• We establish Heisenberg-type uncertainty principle for the 

Airy-type  Fock space. 

• We give an application of the theory of extremal function and 

reproducing kernel of Hilbert space, to establish the extremal 

function associated to a bounded linear 

operator HCFT )(:  , where H  be a Hilbert space. 

• We come up with some results regarding the extremal 

functions associated to the following operators: 

- - The  difference operator  )0()(
1

:)(
3

fzf
z

zTf  . 

- - And the Dunkl-difference operator  )()(
2

1
:)(

3
zfzf

z
zTf   

The contents of the paper are as follows. In Section 2, we 

introduce the Airy-type Fock space )(CF  . In Section 3,  

we establish Heisenberg-type uncertainty principle for this 

space. In Section 4, we give an application of the theory of 

reproducing kernels to the Tikhonov regularization problem 

for bounded linear operator HCFT )(:  , where H  be a 

Hilbert space. Next, we come up with some results regarding 

the Tikhonov regularization problem for  the difference 

operator and the Dunkl-difference operator, respectively. 

 
II- Airy-type  Fock  space 

Let Cz and 3
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is called 3-even if )()( zuzu k  . 

For C , the initial problem )()( 3 zuzuL   , with 

1)0( u   and 0)0()( ku , 2,1k admits a unique 

analytic solution on C , which will be denoted by 

)( zG  and expanded in power series as   
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,  where  

Generalized  Fock space for the Airy operator  
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 The function )( zG   is 3-even and defined as the 

hypergeometric function (see [2]), 
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In particular  
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We define the Airy-type Fock space )(CF as the 

prehilbertian space of 3-even entire functions 

n

n
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Let f  and g  be in )(CF  such that n

n
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The space )(CF  satisfies the following properties. 

(i) The function K  given by  zwGzwK  ),(  is a 

reproducing kernel for the space )(CF . 

(ii) If )(CFf  , then  
)(

2
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(iii) The space )(CF equipped with the inner product 
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.,.

CF
 is a Hilbert space; and the set 

Nnn

nz














)(3

3


forms 

an Hilbert’s basis for the space )(CF . 

 

III- Heisenberg-type uncertainty 
principle 

 

We consider  the following lemmas. 

Lemma 3.1.  Let )()(: CFCFL   , then its adjoint 

operator 

L  is given by )()( 3 zfzzfL 

 . 

Lemma  3.2.       )96(:],[ LLLLLL ,  
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Lemma 3.3.  Let )(CF .  Then 
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By applying Lemma 3.1, Lemma 3.2, Lemma 3.3 and the 

following theorem. 

Theorem 3.4. (See [9, 10]). Let A  and B  be self adjoint 

operators on a Hilbert space H . Then we have  

HHH
ffBAfbBfaA ,],[

2

1
)()(  , 

for all )()( BADomABDomf  , and all Rba , . 

 

We obtain the following Heisenberg-type uncertainty principle 

for the Airy-type Fock space )(CF . 

Theorem 3.5. Let )(CFf  . For all Rba , , we have 

ffibzLfazL
CFCF 
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This uncertainty principle can be written as the following 

form. 

Theorem 3.6. Let )(CFf  . Then 
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IV- Extremal functions on )(CF  
Let 0 and let HCFT )(:  be a bounded linear 

operator from )(CF into a Hilbert space H . We denote 

by
,

,
L

gf the inner product defined on the space )(CF  

by 

HCFL
TgTfgfgf ,,:,

)(,







. 

By using the theory reproducing kernels of Hilbert space and 

building on the ideas of Saitoh [16,17] we establish the 

extremal function associated to the operator T on the Airy-type 

Fock space )( dCF . 
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Theorem 4.1. Let 0 . The Fock space  
 ,

.,.),(
T
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possesses a reproducing kernel ),(, zwKT  ; Czw , ,  

which satisfying the equation 

,.)(,.)()( , wKwKTTI T   
. Moreover the kernel 

),(, zwKT  satisfies the following properties. 
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From this theorem we obtain the main result of this section . 

Theorem 4.2. For any Hh and for any 0 , there 

exists a unique function 


hf , , where the infimum 

 22

)()(
inf

HCFCFf
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 and satisfies the inequality 
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Application 4.3.  Let H be  the prehilbertian space of 3-

even entire functions 
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(i) Let T  be the difference operator  defined on )(CF by 

 )0()(
1
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The operator T  maps continuously from )(CF  into H , and 

we have 
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(ii) Let T   be the Dunkl-difference operator  defined on 

)(CF by  )()(
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1
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z
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The operator T  maps continuously from )(CF  into H , and 

we have 
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