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Abstract—The aim of research is to simulate a large scale 

bioreactor using Lattice Boltzmann method (LBM). Design and 

scale up a bioreactor is a highly complex process since it 

involves various physical phenomena occurring together. 

Computational Fluid Dynamics (CFD) has been developed over 

the years to simulate complex phenomenon occurring in a 

bioreactor and can make up for the shortcomings associated 

with traditional scale-up methods. It allows the simulation of 

all the relevant physics like species and thermal transport 

along with millions of bubbles. Due to various recent advances 

in numerical techniques and computer hardware (particularly 

the Graphical Processing Units-GPUs, aimed at number 

crunching applications), the simulation of an industrial scale 

reactor is now possible in reasonable time. While conventional 

pressure based solvers, such as the SIMPLE algorithm and its 

variants, do not scale well with large number of processors and 

may not utilize the GPUs cores effectively, Lattice Boltzmann 

Methods are highly parallelizable and scale almost linearly 

with number of cores. In this paper we present the 

development and validation of a basic LBM code which will be 

used for the bioreactor simulation. The Bhatnagar-Gross-

Krook (BGK) model is used and is validated by theoretically 

computed parameters for Poiseuille’s flow and with 

experimentally determined parameters for Vortex Street in a 

channel flow. Velocity profile, Strouhal number and vortex 

distance are compared. Reynolds numbers (Re) of 30, 60, 120, 

and 140 have been considered. 

Keywords—Lattice Boltzmann Method, Computational 

Fluid Dynamic, Bhatnagar-Gross-Krook, Von karman vortex 

street 

I. Introduction  
Recently, Lattice Boltzmann Method (LBM) has 

emerged as a valuable simulation technique for solving fluid 
flow problems and modeling physics in fluids. It evolves 
from the continuous Boltzmann transport equation. The 
main advantage of LBM is that it computes a flow field 
through localized operations of streaming and collision. 
These increase the parallelizability of the algorithm. Also, 
the particle based bounce-back boundary conditions 
decrease the complexity, but then only a stair stepped 
boundary is possible. LBM has been shown to predict the 
flow parameters accurately for turbulence, magneto 
hydrodynamic flows across complex geometries to 
multiphase flows with phase change [1].  

This paper presents, simulation of Poiseuille’ flow and    
flow past a square cylinder in a channel using LBM. This 
flow is laminar at very low Reynolds numbers (Re), and as  
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the Reynolds number goes on increasing the flow separates 
from the stagnation points but remain laminar and steady up 
to Re=50. Beyond this Reynolds number unsteadiness 
develops, and flow become periodic [2]. 

Furthermore, on the basis of these results, we would 
simulate the numerous parameters to scale-up large scale 
stirred tank reactor (~100m

3
) for the production of 

Escherichia Coli (E.coli). Stirred tank reactors are among 
the most popularly used reactor in chemical and 
pharmaceutical industries. E.coli is a prokaryote commonly 
found in the lower intestine of human and warm blooded 
organisms. The optimal growth of E.coli is dependent upon 
pH, temperature, dissolved oxygen concentration and 
nutrient availability in the medium [3]. It is necessary to 
scale-up numerous parameters of stirred tank reactor, which 
include bubble interaction, multiphase flows, bubble 
diameter, impeller speed, biogas volume fraction, turbulence 
kinetic energy and shear strain rate, etc to achieve the 
optimal growth of E.coli [4].  

II. Methods 
Lattice Boltzmann method is relatively a new method in 

the field of Computational Fluid Dynamics (CFD). It can be 
used to simulate incompressible as well as compressible 
flows with heat and species transfer. LBM time step 
translates to a very small physical interval. Hence it is also 
called mesoscopic model. LBM is also efficient for solving 
complex fluid flow problems such as complex boundary 
conditions, miscible and immiscible fluid and thermal 
effects, when compared with conventional CFD techniques 
[5].  

Conventional CFD techniques based on continuum 
theory, solve macroscopic fluid dynamics equations by 
using various numerical partial differential discretization 
method (such as finite difference method (FDM), finite 
volume method (FVM) and finite element method (FEM)), 
whereas LBM solves problem at mesoscopic scale with the 
real- valued particle distribution functions f(x,c,t), it depends 
on the position vector x, the velocity vector c and time t. In 
each simulation time step, values of particle distribution 
function are updated through two sequential stages: 
streaming and collision. In the streaming stage, particle at 
position x after time dt move to x+dx in the direction of its 
velocity. The collision stage involves only those, real valued 
particle distribution function arriving at each node although 
in some other cases (such as multicomponent and 
multiphase flows) particle distribution function at other 
nodes may also influence the collision step [6]. 

Currently, the most popular LBM method used is lattice-
BGK model (LBGK). It has  been applied in variety of 
complex flows. LBGK model is about relaxing non-
equilibrium velocity distributions to equilibrium value 𝝉. 
Since the value of 𝝉 is same for all the conservation 
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equations (mass and momentum) it is called a single 
relaxation model. In this model, collision process is 
represented to be a single-time relaxation to the local 
equilibrium distribution [7]. The evolution of lattice 
Boltzmann equation from the continuous Boltzmann-BGK 
model is given by [8]: 

)(
1

),(),( eq

jjjjjjj
fftxfdttdtcxf 




              (1) 

where dt is increment in time, fj is the particle velocity 
distribution along the j direction, 𝝉 is the dimensionless 
relaxation time parameter towards local equilibrium and fj

eq
 

is the equilibrium distribution function. 

In the LBGK model, the structure of DmQb model for m 
(microscopic) velocity models in b directions are the most 
popular ones [6]. All the numerical simulation in this paper 
considered two-dimensional square lattice structure. D2Q9 
has been broadly and effectively utilized for simulation of 
two-dimensional fluid flow problem. This model also 
referred as nine-velocity square lattice model. Fig.1 shows 
the representation of D2Q9 lattice arrangement.  

                                                                                                                  

Figure 1. Structure of two dimensional nine velocity square lattice (D2Q9) 
model. 

In the D2Q9 model cj, denotes the discrete velocity set 
and can be expressed as [7]: 
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where e = dx/dt. The equilibrium distribution function 
for the D2Q9 model is given by [5]:  
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where u=(ux, uy) be the macroscopic velocity, w be the 
weighting factor expressed as: 
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Eq.1 is referred as the Lattice Boltzmann Equation 
(model) for BGK model. It consist of following two steps, 
which updated after every time step dt.      

Collision step: 
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Streaming step: 
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The relaxation time parameter 𝝉 is related to the 
viscosity that fixes the rate of approach to equilibrium given 
by [5]: 

dt

dx 2)(
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The macroscopic property such as density per node and 
momentum density are evaluated from the real-valued 
particle distribution function by [7]: 
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This density and momentum density satisfy the 
conventional pressure based equations (i.e. Navier-Stokes 
equations) in the low Mach number limit explained by using 
the Chapman-Enskog expansion [9]. 

Fig .2 shows flow chart of algorithm involved in LBGK 
model [10]. 

Figure 2. Flowchart of algorithm involved in LBGK model [10]. 
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III. Problem Description and 
Formulation 

We study the flow past a square cylinder with diameter 
D, that is residing centrally inside a plane channel having 
height H with blockage ratio B = D/H = 1/8 and at a fixed 
channel length of L/D = 50. An inflow length of l = L/4 or 
12.5D has been chosen [11]. Fig.3 shows the schematic 
representation of flow past a square cylinder in a channel. 

                                                                                                                     

Figure 3. Schematic representation of flow past a square cylinder placed 
centrally inside a channel. 

The LBM simulation were performed at moderate 
Reynolds number Re=uxD/𝝼, where ux is the inflow velocity, 
D is the diameter of square cylinder and 𝝼 is the kinematic 
viscosity of water. The physical inflow velocity ux is 0.014 
m/s.  

The parameters involved in simulation for Poiseuille’s 
flow and Vortex Street in a channel flow is given in table.1 
and table.2 respectively. 

TABLE I.  SIMULATION PARAMETERS FOR POISEUILLE’S FLOW 

S. No. 
Parameters 

Values in lattice 

unit 

1 No. of grid points in x-direction 250 

2 No. of Grid points in y-direction 40 

3 Inlet velocity 0.1 

4 Relaxation time (𝝉) 0.6 

TABLE II.  SIMULATION PARAMETERS FOR FLOW PAST A SQUARE 

CYLINDER 

S. No. 
Reynolds 

number 

Diameter 

(physical 

unit)(m) 

Diameter 

(lattice 

unit) 

Grid Size 

1 30 0.0336 10 500x80 

2 60 0.0672 20 1000x160 

3 120 0.1344 40 2000x320 

4 140 0.1568 48 2400x384 

5 160 0.1792 54 2700x432 

 

IV. Boundary Conditions 
Boundary conditions based on non-equilibrium bounce 

back condition given by Zuo and He are used [12]. 

A. Bottom and Top Wall of Channel 
The boundary of the bottom wall of channel is aligned 

with x-direction. For example, take the case of a bottom 
node, where f4, f7, f8 pointing into the wall. After the 
streaming process, value of f0, f1, f3, f4, f7, and f8 particle 
distribution function are known. As, no slip boundary 
condition on the wall, provides ux = uy = 0, Eq. (8) has used 
to evaluate f2, f5, f6,  and 𝞀 which can be put into the form:  
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Solving Eqs. (9) and (10) gives: 
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However, the value of distribution functions f2, f5, and f6 

remains unchanged. Thus, bounce back scheme is used to 
determine f2, f5, and f6 given by [12]: 
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Using Eq. (8) similar procedure can repeat to determine 
f4, f7, f8 particle distribution function for the top boundary 
wall. 

B. Inlet and Outlet 
Using pressure boundary condition at the inlet, along y-

direction. In a plane channel flow uy=0 at the inlet. After 
completion of streaming process, f2, f3, f4, f6, and f7 are 
known. We need to evaluate ux and f1, f5, and f8 from Eq. (8) 
given by: 
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Solving Eqs. (14) and (15) gives: 
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From the bounce back scheme we have to find out the 
value of f1, f5, and f8. 
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A similar procedure can be applied for the outlet.  

C. Corner Nodes 
The corner node normal to inlet/outlet and boundary wall 

requires some special treatment. As an example, take the 
case of bottom node at the inlet. After the streaming step, f3, 
f4, and f7 are known, density 𝞀 is specified, and from no slip 
ux = uy = 0. The bounce back rule for non-equilibrium part of 
particle distribution function, is used to determine f1, f2, f5, f6, 
and f8 given by:  

44422
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Inserting values of f1 and f2 from Eq. (9) in Eqs. (15), 
(16) gives: 
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D. Obstacle Walls 
A half way bounce back scheme is used as the boundary 

condition on the obstacle walls given by: 

86751342 ,,, ffffffff                     (21) 

V. Results and Discussion 
The simulation was carried out using LBGK at different 

Reynolds numbers with fixed blockage ratio. For all cases, 
simulations were performed for 50,000 iterations (1200 sec 
in physical space). Then, LBGK code is validated 
theoretically computed parameters for Poiseuille’s flow and 
experimentally determined parameters for flow past a square 
cylinder.   

A. Poiseuille’s Flow 
To validate, LBGK model, we compare our simulation 

results for Poiseuille’s flow with its analytical solution. Eq. 
(22) represent the differential equation of plane Poiseuille’s 
flow given by [13]: 

2

2

dy

ud

dx

dp
                                                                (22) 

Solving Eq. (22) analytically gives: 
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where, 𝚫p is calculated from the Darcy-Weisbach 
equation [14],  

2/****32 HuLp
in

                                         (24) 

where, L= is the channel length, H is channel width and 
uin is the inlet velocity, 𝞀 is the density of water, and 𝝼 is the 
kinematic viscosity of water. Fig.4 shows the comparison of 
velocity profile in a plane Poiseuille’s flow in y-direction 
between LBGK model and analytical solution.  

                                                                                                                 

Figure 4. Comparison of velocity profile in a plane Poiseuille’s flow 
between LBGK model and analytical solution.                                                                                                     

B. Flow Past a Square Cylinder 
The flow past a square cylinder were investigated at 

moderate Reynolds numbers (Re). All the simulation were 
carried out at fixed blockage ration B = D/H = 1/8, using 
SRT/ LBGK D2Q9 model. Fig.5 shows the velocity contour 
around square cylinder at different Reynolds numbers (Re). 

                                                                                                             

Figure 5. Velocity contour around square cylinder at Re = (a) 30, (b) 60, (c) 
120, and (d) 140. 

To validate the simulation results for the vortex shedding 
pattern, we compared the distance between two vortices and 
Strouhal number at Re=140, with its experimentally 
determined value evaluated earlier by researchers [15, 16]. 

The distance between two vortices is 1.05cm through our 
simulation result and 1.16cm from available experimental 
data at Re = 140 [15]. 

Strouhal number is a dimensional less quantity used to 
describe oscillating flow mechanism given by [6]: 
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where, f is the vortex shedding frequency, D is the 
diameter of square cylinder and u is the flow velocity. To 
calculate the vortex shedding frequency, FFT analysis of the 
time series data of the flow velocity at different location for 
Re =140 was performed. Fig. 6 shows the time series graph 
of the flow velocity at different locations for Re =140 and its 
FFT analysis. 

                                                                                                                   

Figure 6. Time series graph of flow velocity at different locations and its 
FFT analysis for Re = 140. 

The value of Strouhal number (St) at Re = 140 estimated by 
our simulation is 0.186 and 0.182 from available 
experimental data provided by Williamson [15].   

VI. Conclusion 
In this paper, simulations are carried out for the plane 

Poiseuille’s flow and flow past a square cylinder using 
LBGK model of Lattice Boltzmann method. Initially, the 
basic LBGK code is developed for Poiseuille’s flow and 
then validated with its analytical solution. The simulation 
results give the parabolic curve for velocity profile in the y-
direction, which is consistent with its analytical solution. 
Furthermore, LBGK code is used to simulate the flow past a 
square cylinder, and study the effect of Reynolds number 
(Re) on the flow behavior. Results show that flow starts 
separating from the stagnation point but remain laminar at 
Re = 30, but as the Reynolds number goes on increasing 
unsteadiness develops and flow become periodic. The 
distance between two vortices at Re = 140 are then 
measured both for the simulation result and for available 
experimental data. The simulation shows almost identical 
results with the experimental result. The Strouhal number 

for Re = 140 also calculated to compare it with the 
experimental value. The simulated value of Strouhal number 
for Re = 140 found very much close to it experimental 
value. Basing on the work presented here, we continue to 
develop the code and model for the simulation to scale-up 
the various parameters involved in stirred tank bioreactor 
such as multiphase flows, bubble interaction, thermal 
transport for E.Coli production using LBM. 
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