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The Obtaining of Dynamic Equations for Three 

Degree of Freedom Parallel Robot 
 [Muhammet Aydin & Hasan Alli ] 

 
Abstract— The purpose of this study is to find dynamic 

equations for three degree of freedom triglide parallel robot, 

which is a member of the family of delta parallel robot. The 

Lagrangian method has been used for this aim. Dynamic 

equations have been obtained by utilizing abbreviation 

symbols. In addition to that, mathematical operations have 

been given for one arm of the robot in this paper.  
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I.  Introduction 
Parallel architecture consists of mobile platform 

connected to a fixed platform with several kinematic chains. 
Movement of the mobile platform is achieved with spurred 
extensions of the kinematic chains simultaneously. In the 
same way, load carried by mobile platform is supported by 
the various kinematic chains; therefore, this architecture is 
referred to as parallel architecture. In contrast to serial 
manipulators having an open kinematic chain structure, 
parallel manipulators consists of closed kinematic chain. In 
addition, parallel manipulators exhibit several advantages 
and disadvantages. The disadvantages of parallel robots are 
limited workspace, low-skill ability, complexity of forward 
kinematic solution and singularities. However, parallel 
robots have advantages such as high stiffness, ease of 
obtaining inverse kinematic solution, light weight, high 
accuracy, low inertia of moving parts and high agility. Ease 
of obtaining inverse kinematics solution provides ability to 
control readily. Hybrid robots comprise a combination both 
of parallel and serial robot structures (Sciavicco 1996; 
Merlet 1996).  

Relatively small workspace of parallel robots can reveal 
an important safety characteristic if designed correctly. 
Parallel robots move safely near singularity. Forces needed 
from engines reach high values, when the robot follows a 
path towards a singular position.  The singular positions in 
serial robots require very high value of joint speeds. This 
situation reveals a danger for working conditions (Merlet 
1992; Bi & Lang 2009; Merlet 1995). 
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II. Triglide Parallel Robot 
Delta robot, which has been used in wide application 

fields in recent years, is one of the types of parallel 
manipulators. In delta robot system, end effector can be 
made to move to any location (x, y, z )  within workspace 
via a third motor mounted on a fixed limb. The arm 
connected to each motor is driven and the arms are fastened 
to end effector plate by parallelogram mechanisms. 
Therefore, mobile platform has to be parallel to fixed 
platform every time. The system, with a small movement of 
the motors, may reach high accelerations and can be 
positioned very quickly. Rigidity of the system depends on 
stiffness of selected arms and joint spaces. The smallest 
deviations in the manufacturing affect high amount on 
repeat accuracy of the system. 

Triglide robot, a bit more simplified version of the delta 
robot, is a three degree of freedom parallel robot. Triglide 
robot has three arms and these arms can be moved by linear 
motors, seen in Figure 1. The biggest advantage of triglide 
robot is to allow an infinite range of motion in the z 
direction (Mustafa & Misuari 2007; Stan & Manic 2008). 

 

 

 

 

 

 

 

 

 

FIGURE 1. Triglide paralel robot (Stan & Manic 2008). 

1, 2 and 3 indexes represent the points of contact to the 
fixed and mobile platforms of each parallelogram. Fixed 
columns are positioned with 120 ° angle to each other. 

 

 

 

 

 

 

 

                 FIGURE 2. Fixed platform. 
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A fixed platform shown in “Fig.2” is chosen as the 

bottom point of fix columns where the linear motor moves. 

Then, the fixed axis frame is located to the midpoint of the 

fixed platform as shown in “Fig.2”. Finally, z direction is 

selected on the direction of gravity. 

 

 

 

 

 

 

 

 

 

 
FIGURE 3. Mobile platform. 

As shown in “Fig.2” and “Fig.3”, the fixed and mobile 

platforms are circular, and their radius are R and r 

respectively. Touching places to the fix columns of the fixed 

platform are
1A ,

2A  and 
3A . The points connected to the 

parallelogram of mobile platform are
1B , 

2B  
and 

3B .    

Dynamic simulation works about Triglide is provided by 
Rat & Neagoe (2011). In literature, many studies are labored 
as to the development, optimal design, and the inverse 
kinematics of the triglide robot, and also to the virtual reality 
interface and control via SimMechanics model (Stan & 
Manic 2008; Budde & Last 2007; Budde & Rose 2008; 
Verdeş & Stan 2009). 

In this study, dynamic equations are analytically 
obtained by utilizing abbreviation symbols for Triglide 
robot. The Lagrangian method are used for calculatings. 

III. Dynamic Calculations for 
Triglide Parallel Robot 

Forward kinematics solutions are needed for dynamic 
calculations of Triglide robot. These solutions are obtained 
by Aydin & Alli (2012) and they have been given below. 
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        a, b and c in equation (2.1) are expressed respectively 

as follows. 
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TABLE 1. The coordinates of the center of gravity of Triglide paralel robot.                          
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The coordinates of the center of gravity of Triglide 

paralel robot are given in Table 1. Dynamics of the system 

are obtained by using the coordinates of the center of gravity 

of elements by the Lagrangian method. The frictions are 

ignored. 

The total kinetic energy of the system can be written by 

taking into considerations of engines, parallelograms and 

mobile platform and  it is shown in equation (2.7). 
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In the same way, the total potantial energy are calculated 
in equation (2.8).                   
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Consequently, the Lagrangian function has been 
expressed in equation (2.9). 

            VTL                                      (9) 

Equation of motion for 1q  (first arm) can be found from 

equation (2.10). 
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motorm , 
pm ve 

tablam  in equation (11) are constant values 

and they are masses of engine, parallelogram and mobile 
platform respectively. Also, 

1F   is torque of the first engine. 

The equivalence of expression 
1A  is given in equation 

(12). 
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If expressions 1q , 2q  ve 3q in equation (11) are 

gathered in common bracket, the equation of motion for 

1q is expressed as follows by using abbrevations. 
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In the above equation, expressions 
1B , 

1C  and 
1D are 

given in equations (14), (15) and (16). 
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px can be expressed as in equation (17). 
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E in the above equation has been shown as follows. 
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py can be written as below. 
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G in equation (19) are given in equation (20). 
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When px  and py  statements are located in equation (13), 

equation (21) is obtained. 
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pz can be written as follows 
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In the above equation, expressions H, J, K and L are 

given in equations (23), (24), (25) and (26) respectively. 
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




 

 

)4(4

)22))(22(2)4(42(
22

2

1

22

acba

bbcacacacabbacbaacba






 
(26) 

 

a  are expressed as in equation (27). 

 

    PqOqNqMa  321
                        (27) 
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M, N, O and P in equation (2.30) are respectively shown 

below. 

2

321

)(9

)2(4

rR

qqq
M




                             (28) 















2

321

)(9

)2(4

rR

qqq
N                         (29) 















2

321

)(9

)2(4

rR

qqq
O                       (30) 

2

332123211321

)(9

)2(4)2(4)2(4

rR

qqqqqqqqqqqq
P







 (31) 

Expression b  is simplified as in equation (32). 

UqTqSqRb  321
                         (32) 

Expressions R, S, T and U in the above equation are given 

in equations (33), (34), (35) and (36) orderly. 


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
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1
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)2)(2(4
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
               (36) 

c  can be expressed as in equation (37). 

ZqYqVqWc  321
                        (37) 

Expressions W, V, Y and Z in the above equation are 

given in equations (38), (39), (40) and (41) respectively. 
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(41) 

The abbreviated form of pz  is found, if equation (22) is 

rearranged by writing equations (27), (32) and (37). 

321 )()()( qKYJTHOqKVJSHNqKWJRHMzp
   

LKZJUHP                            (42) 

When the expression pz given above is located  in 

equation (21), the equation of motion for 1q  is obtained in 

equation (43). 

1312111 dqcqbqa                          (43) 

The equivalence of the statements 1a , 1b , 1c  and 

1d are given below as equations (44), (45), (46) and (47) 

orderly. 
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)( 111111111 AGCEBLQKZQJUQHPQFd   (47) 

1Q is expressed in equation (48). 







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
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



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)(2
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qqq
BQ    (48) 

Also, similar steps can be used for the other arms of 

Triglide parallel robot. The equations of motion for 2q  and 

3q  are found as follows. 

2212 qbqa   32qc  2d                        (49) 

2313 qbqa   33qc  3d                         (50) 

After the obtained equations of motion for 1q , 2q  and 

3q  are written in matrix form, 1q , 2q  and 3q  are given as 

in equations (51), (52) and (53). 

     
 123213132312231321

233211331212213

1
aaaaaa cbcbcbcbcbcb

cbcbdcbcbdcbcbd
q




 (51) 
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     
 123213132312231321

233211221313312
2

aaaaaa cbcbcbcbcbcb

cacadcacadcacad
q




  (52) 

     
 123213132312231321

233211331212213

3
aaaaaa cbcbcbcbcbcb

babadbabadbabad
q




  (53) 

IV. Conclusions 
In this work, dynamic equations and accelerations for 

three degree of freedom triglide parallel robot have been 

calculated. The obtained equations provide to be known well 

about dynamic behaviors of the robot. 

In the future works, Triglide parallel robot will be 

controlled by using suitable nonlinear methods via dynamic 

equations and accelerations obtained in this paper. 
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