

1

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

System Virtual Machines in the Context of

Reconfigurable Computing
Marcel Eckert, Jan Haase, Dominik Meyer, Bernd Klauer

Abstract—System virtualization techniques are broadly

used to distribute computing power, to boot different operating
systems virtually on top of a host OS, to enable security
features like encapsulation or to provide redundancy and
migration concepts. Virtual machines (VMs) targeting different
Instruction Set Architectures (ISA) are usually implement by
efficient emulation or binary translation techniques.

This paper uses reconfigurable hardware to support (guest)
operating system virtualization and not virtualization of hw-
accelerators inside an operating system. The main idea of this
paper is to replace emulation / binary translation by
(re)configuration. Instead of emulating a processor-ISA on a
CPU with another ISA, the required guest-processor will be
configured into an FPGA and booted with a guest operating
System (OS) as requested by a VM manager.

This approach allows to overcome limitations of
conventional system virtualization approaches, like the Popek
and Goldberg theorem and provides the possibility to
strengthen system security by means of hardware. The
presented main idea is implemented and evaluated with a proof
of concept demonstrator.

Keywords—FPGA, Virtual Machine, Reconfigurable
Computing

I. Introduction
Reconfigurable hardware is a promising approach to turn

increasing transistor densities into computing performance.
Hence, reconfigurable computing has been an emerging
research field for over a decade. The application areas of
reconfigurable computing focus on accelerator units for
embedded systems and high performance computing. A
challenging question in the field of reconfigurable
computing is, how to simplify the error prone development
process of hardware component, so that it is also possible
for a software developer to create applications that can take
advantage of reconfigurable hardware in terms of execution
speed. One approach to achieve this is to provide High-
Level-Synthesis compilers, that allow to directly translate
parts of an application written in a high level language like
C/C++ or Java into hardware.

Another way is to provide abstractions and
standardizations of reconfigurable hardware to a sw-
developer, so that he or she can implement their applications
according to well known interfaces and techniques but
without the need to get too much insights into the underlying
hardware interdependencies.

Marcel Eckert, Jan Haase,Dominik Meyer, Bernd Klauer

Helmut-Schmidt-University

Hamburg, Germany

Hence, operating systems have been developed in the
context of reconfigurable computing to support this
approach. This is the common way to interpret the terms
virtualization and reconfigurable computing in combination.

Another still emerging research area, coined with the
term ‖virtualization‖ is Operating System Virtualization.
Research in the area of operating system virtualization is
focusing on the minimization of the computational
performance loss due to the applied virtualization
techniques. Depending on the capabilities of the host
processor(s), one of the techniques discussed in the
following could be applied to virtualize a guest operating
system.

If the guest operating system is expecting the same ISA,
as the host processor provides, things are more easier,
because direct native execution of the guest operating
system is possible. However, care must be taken about the
abilities of the underlying host processor. As a result of the
Popek and Goldberg theorem [1], the execution of a
privileged instruction (An instruction that is only allowed to
be executed, when the processor is in a privileged mode.)
has to trap when executed in non-priviledged processor
mode. This is required, because the guest operating system
is an application running on top of the host operating system
and therefore does not run in the intended privilege mode of
the processor. The trapping of such a privileged instruction
is required, because only then, the host operating system is
able to emulate the intended behavior for the guest operating
system. Inside the x86-architecture this hw-trap mechanism
was introduced not before the mid 2000s. Till then, the
workaround was to recompile the guest operating system
with a replacement of the non-trapping privileged
instructions (see [2] for further details).

If the guest operating system is expecting another ISA,
than the host processor provides, it is required to translate
the guest ISA-instructions into host ISA-instructions. This
techniques is called emulation. It can be enhanced by pre-
translating and storing repeatedly used translations, which is
called binary translation. However, both approaches result in
a computational performance penalty for the guest system
caused by the emulation/translation process.

This paper combines both, operating system
virtualization and reconfigurable computing. This is
achieved by avoiding the execution or even emulation of the
guest operating system on the same processor as the host
operating system, but providing a dedicated processor (and
essential devices like timer and interrupt handler) for the
guest operating system by the means of reconfigurable
hardware. It is important for the reader to remember the
difference: This paper uses reconfigurable hardware to
support (guest) operating system virtualization and not
virtualization of hw-accelerators inside an operating system.
By applying this approach, it is expected, to reduce the
computational performance costs, caused by the

2

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

virtualization; to allow the bypassing of the Popek and
Goldberg theorem; to provide more security within a
virtualization system because guests and host are no longer
executed on the same processor.

The paper focuses the following topics: in Section II
related work is discussed, in Section III the architectural
requirements to implement a hardware supported
virtualization system are given in detail. Section IV gives a
summarized presentation of the implemented proof of
concept demonstrator. Section V evaluates the proof of
concept demonstrator in relation to the expected benefits.

II. Related Work
The idea of this work is to combine virtualization and

FPGAs. This idea is not new in general. The novelty of the
idea presented here, is to fully support operating system
virtualization with FPGAs.

According to [3] virtual machine technology allows
single computers in the sense of real machines to host
multiple virtual machines with individual operating systems.

The term ‖virtualization‖ is used in the context of
FPGAs since the mid 1990s. However, it is used to
emphasize the abstraction of reconfigurable and
exchangeable hardware by an operating systems. BORPH
[4] allows to execute an application (process) on it’s
dedicated hardware and provides mechanisms for inter-
process communication between sw- and hw-processes.
Other systems like ReconOS [5], CapOS [6] or RTSM [7]
enable to support threads with reconfigurable and
exchangeable hardware and also provide communication
mechanisms for the sw- and hw-threads.

However, these works focus on process virtual
machines, whereas this paper focuses on system virtual
machines. According to Smith and Nair [2] a process virtual
machine allows to execute applications virtualized, whereas
a system virtual machine allow to virtualize an entire
operating system.

Xia et al. [8] extended the idea of the above mentioned
operating systems for reconfigurable computing to allow a
paravirtualized system virtualization in their Mini-Nova
system. However, the paravirtualized operating systems are
still executed on the static processors. In Mini-Nova, only
reconfigurable accelerator modules can be provided to the
guest operating systems, as opposed to the idea presented
within this paper, where an entire machine is provided for
each guest operating system.

The work presented within this paper does not focus on
paravirtualization but hypervisors. Furthermore, an entire
hardware machine is provided to the guest, not only some
specialized and exchangeable accelerators.

III. ARCHITECTURAL CHALLENGES
FOR FPGA BASED SYSTEM VMs

The overall architecure of a hardware supported
virtualization system is shown in Figure 1 and extends a
conventional computer architecture by a virtualization
facility.

Hardware supported virtual machines are constructed by
instantiating a required number of computers inside the
virtualization facility. On these additional computers a guest
operating system (or also a natively executed application)
are executable. However, this paper focuses on the
possibility to run a guest operating system on these
additional computers.

Figure 1. Overall architecure of a hw-supported virtualization system.

How has such a virtualization facility to be constructed?
It is possible to build a fixed virtualization facility in silicon,
but changing demands regarding the number of needed
machines and how they are constituted (such as the number
of processor cores, the amount of memory, the number and
type of devices) are expected. This strongly implies to take
advantage of reconfigurable logic (in form of FPGAs) to
implement such a highly adaptable virtualization facility.
Hence, the following two paradigms are defined:

 Reconfigurable logic is used on purpose and by
principle to instantiate entire computers. Those
instantiated systems can be seen as a guest system in
terms of system virtual machine concepts.
(instantiation paradigm)

 All dedicated resources of the overall system are
managed by the host operating system (virtual
machine manager), as done by conventional virtual
machine managers. This is an essential requirement
to see the overall system as virtualization system.
(virtualization paradigm)

If the first paradigm is not fulfilled, a conventional
virtual machine is implemented. If the second paradigm is
not fulfilled, separate and independent systems are used; the
only benefit would be the instantiation of guest systems by
the host, without further control or supervision mechanisms.

The arising questions, problems and the corresponding
solutions focusing on the overall architectural implications
are discussed in the following sections. The outline of this
discussion is based on the basic parts of a computer
architecture: the processor(s), memory, and devices.

A. Number of Guest Systems
The number of guest systems is generally not limited.

Limitations arise from the size of the available
reconfigurable logic area and the area required for
instantiating a guest machine.

In the following Sections, problems and ideas are
discussed for a single guest environment. However, the

3

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

proposed solutions would also apply to multi guest
environments.

B. Processor Issues
Instantiating the guest processor in reconfigurable logic

allows to have different central processing elements for host
and guest operating systems and applications (summarized
as software). This not only avoids conflicts between guest
and host software but additionally introduces a physical
barrier by design between them. On a conventional virtual
machine system this barrier can only be achieved
logically[2].

C. Memory Issues
Concerning the memory demands of the guest machines,

some questions/problems arise:

 How much memory is required by the guest system?
Can this amount of memory be provided by the
reconfigurable area?

 How is the virtualization paradigm of the main idea
(all resources are managed by the host operating
system) enforced for the guest’s memory?

1) Providing enough Physical Memory for the Guest System:
It is not reasonable to use reconfigurable logic to instantiate
large amounts (several hundred MByte or more) of memory,
rather to use BlockRAM, also provided by today’s FPGAs.
Therefore, it is necessary to provide the possibility of
accessing the overall system’s main memory by the guest
system. From a traditional computer architectures
perspective, this can be seen as dedicated DMA channels for
the guest systems.

2) Virtualization of the Guests Virtual Memory: Modern
operating systems support virtualization of physical memory
for giving an application the perception of having its own
memory. This virtual memory concept has to be supported
by both - guest and host operating system. The challenge for
a virtualization system is that the virtual memory concept of
a guest operating system has to be virtualized by the host
system. This is one of the main additional problems that
must be addressed when executing a guest operating system
instead of an application inside the virtualization facility. In
essence, the virtual addresses of the guest are translated by
the guest’s MMU to real addresses, which are subsequently
translated to physical addresses by the host’s MMU.

On conventional system virtual machines, the virtual-to-real
and real-to-physical mapping for the guest VM is enforced
by the same Memory Management Unit(s), as host OS and
guest OS are executed on the same processor(s). In
virtualization systems following the concept of this paper,
host OS and guest OS run on different processors (as a
consequence of the instantiation paradigm). Hence, other
mechanisms to implement real-to-physical memory mapping
for guest systems are necessary. To support this mapping,
additional hardware, the Guest Memory Management Unit
(GMMU) is introduced, as shown in Figure 2. Such a
GMMU has to be available for each guest machine.

The usage of such a GMMU also provides the possibility
to supervise the memory accesses of a guest system and
especially allows to enforce the memory limitations of the

guest system physically. Conventional virtual machine
systems enforce this only logically [2].

Figure 2. Introducing a Guest Memory Management Unit (GMMU).

In general, there are two possibilities to solve the
problem of translating a guest’s real addresses to the
physically associated ones, as shown in Figure 3. Both
solutions are adopted solutions of the real to physical
mapping problem for multiprocessor virtualization [2].

a) Contiguous Chunk of Memory: This solution assumes the
physical memory associated with the guest system to be
contiguous. This assumption allows the GMMU to be
implemented easily and straightforward. It just contains two
registers, defining the first (Guest Memory Base Register,
GMBR) and last address (Guest Memory Limit Register) of
the physical memory area to be used by the guest system
(see Figure 3)).

Figure 3. Options to solve the problem of translating a guest’s real
addresses to the physically associated addreses.

b) Page based Chunks of Memory (Non-Contiguous): The
contiguous chunk of memory solution lacks some problems
because of its simplicity. There is no dependency regarding
the MMU of the host system. Hence, the memory area,
associated with the guest system must not be swappable by
the host system. Additionally, no differentiation regarding
memory protection is possible, for example to mark some
regions of the guest’s memory as read only for the guest.
This would be possible by introducing a GMMU that can be
seen as an extension of the host’s MMU (part of the host
machine’s CPU). Therefore, the GMMU has to implement
the same memory management mechanisms as the host
MMU. A GMMU based on this solution operates similar to
an Input/Output Memory Management Unit (IOMMU)[9]
used in processors today.

http://www.dict.cc/englisch-deutsch/subsequently.html

4

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

D. Device Issues
In this section, device virtualization related questions are

discussed. As a starting point, devices are classified into two
categories:

 System vital, non sharable devices: These devices are
essential for the functionality of the host or a guest
system. Hence, sharing of such devices is usually
senseless, as for example for an interrupt
management controller or a timer. Therefore, they
have to be duplicated for each guest system.

 Sharable devices: All other devices. For the main
concept of this paper, only shareable devices are of
interest concerning the question: How can device
sharing between host and guest system be
implemented?

1) Physical Interface Sharing

In general, there are three different possibilities to
implement the physical sharing of the interface of a device:

 Explicit Hardware Switch: This solution (shown in
Figure 4) provides the possibility to physically switch
between the host and guest machine. The switching
itself has to be controllable by the host operating
system to ensure the virtualization paradigm.

Figure 4. Explicit hardware switch solution.

 Switching by Reconfiguration: Instead of physically
switching between guest and host machines, the
connection between a guest and a device or the host
and a device can by instantiated by means of
reconfiguration, as shown in Figure 5. The
reconfiguration of the switch is initiated and
controlled by the host operating system.

Figure 5. Switching by reconfiguration solution.

 Hardware Supported Mutual Exclusion: The previous
solutions only provided mechanisms, where the guest
and host machine can access a device exclusively (a
device is physically connected to the system bus of
exactly one machine at the same time). The hardware
supported mutual exclusion solution allows the
device to be attached to the guest’s and host’s system
bus at the same time, as shown in Figure 6. Mutual
exclusion has to be enforced on a hardware supported
base, by implementing some kind of a hardware
semaphore inside the switch. The host’s supervising
policies can be strengthened by enabling the host to
suspend the mutex mechanisms.

Figure 6. Hardware supported mutual exclusion solution.

2) Physically Supported Emulation

The solutions presented above try to share the physical
interface of a device between a host and guests. For
conventional system virtual machines, physical sharing is
not required, as there is only one physical system bus. On a
conventional system virtualization environment, the host
operating system provides mechanisms to enable the guest
system to use devices: A guest system, trying to access a
device, traps to the host system, which itself supervises and
handles the device access for the guest.

The mechanisms of virtualizing a physical device or
emulating virtual ones, can also be applied to virtualization
systems, covered by this paper’s main concept, but require
adaptations.

A guest operating system cannot cause a trap to be taken
on the hosts processor because guest operating system(s)
and host operating system are not executed on the same
processor. For this reason additional hardware has to be
used. This additional hardware provides a physical interface
to the guest system, which allows the guest to signal a
device request to the host system. This interface also has to
be accessible by the host system to emulate the guests
requests. It has to provide several addressable device
registers and might include interrupt line(s) to avoid busy
waiting. Figure 7 gives an example.

 For the guest system, this interface behaves just like a
conventional one for the interaction with a device
controller. The host system (or more precisely the
host operating system) needs a driver for emulating a
device controllers behavior for physically non
existing devices or translate the guest’s request to the
physical device it is associated with.

5

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

Figure 7. Physically supported device emulation.

Which of the above introduced possibilities to share or
provide an interface to a device is the best? There can be no
final decision, because this depends on the device itself and
especially on the needed time granularity of sharing. Three
timing aspects have to be taken into account here: the time
needed to perform a reconfiguration; the time to
register/unregister a device and load/unload a corresponding
device driver and finally the time a device is used, before it
is switched to another system.

IV. PROOF OF CONCEPT
It has already been stated that an extension of a

conventional computer architecture by a virtualization
facility is necessary to implement a hardware supported
virtualization system (see Figure 1). At the beginning of
Section III it was also proposed to implement the
virtualization facility in an FPGA, resulting in a general
architecture as given in Figure 8a).

The FPGA provides the requirements to host one or
more hardware based guest systems. However, to investigate
systems based on the main concept of this paper, it is
necessary to have a testing framework that also offers full
flexibility regarding the host systems hardware.

Figure 8. Architectures for implementing the concept. A) FPGA(s) as
extension of a conventional system b) FPGA as prototyping environment
for the overall virtualization system. (PRA-partial reconfigurable area)

Again, FPGAs are well suited for this purpose. The overall
virtualization system hardware is configured onto an FPGA.
The reconfigurable area is provided to the static part (host
machine) of the overall system by means of a partially and
dynamically reconfigurable area, as shown in Figure 8b).

The proof of concept demonstrator is based on the
architecture shown in Figure 8b and is based on the Partial
Reconfigurable Heterogeneous System (PRHS) framework
[10]. The PRHS framework is a collection of VHDL
modules. It allows to construct entire computer systems
based on a self-implemented softcore (ARM-ISA,
compatible to the ARM810 and achieves up to 120 MHz and
includes optional Caches and Memory Management Units).
The framework also includes an adapted Linux kernel

(version 4.1, to be used with the self-implemented softcore)
and allowing for busybox or Embedian as Linux
distributions.

A. Demonstrator Architecture
A simplified overall Architecture for the proof of

concept demonstrator is given in Figure 9. Host and guest
system are built around the softcore included in the PRHS
framework. The host System consists of the processor,
several I/O devices, a reconfiguration interface (Reconf-IF)
and a memory supervision element. The latter one is used to
implement the Contiguous Chunk of Memory solution for
memory sharing between the host and the guest system. The
partial reconfiguration area, which can hold exactly one
guest machine is controllable by the reconfiguration
interface (Reconf-IF). This includes an Internal
Configuration Access Port (ICAP) to perform the
reconfiguration itself. Furthermore, the Reconf-IF can set
the partial reconfiguration area into one of three states:

 off: The global reset line of the partial
reconfiguration area is asserted and all outgoing lines
(from reconfigurable area to host system) are tied to
low. The first mechanism allow to reset the guest
system, the second one is required when a
reconfiguration takes place.

 on, disabled: The guest system contains a dedicated
emulation interface (Emul-IF) and communication
interface (Comm-IF). The Emul-IF implements the
Physically Supported Emulation solution for
emulating the guests hard disk. The Comm-IF
enables to interact with the guest operating systems
console from the host side. Figure 9 shows that both
devices are connected to the device buses of both, the
guest and the static system. However, for proper
device driver handling inside the guest system it is
necessary to bring up both devices inside the host
operating system, before the guest operating system
is started. Hence, the on, disabled state deasserts the
global reset line of the partial reconfiguration area
but keeps the clock enable lines of the guest machine
disabled and the asserts the clock enable line of the
host system attached device side.

 on, enabled: Compared to the on, disabled state, this
state allows the guest machine to execute, eventually.

Figure 9. Overall proof of concept demonstrator architecutre (simplified).

6

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

B. Host OS Extension
The virtual machine manager is implemented as an

application of the host operating system. Therefore, device
drivers for handling the Reconf-IF, Emul-IF, Comm-IF and
memory supervision devices have been implemented. These
device drivers are usable as loadable kernel modules. The
virtual machine manger application has to perform the
following tasks, to start a guest machine:

 Set the Reconf-IF into off state.

 Load the partial bitstream into the partial
reconfiguration area.

 Set the Reconf-IF into on, disabled state.

 Register Comm-IF device. Load the corresponding
device driver if necessary.

 Register Emul-IF device. Load the corresponding
device driver if necessary. Afterwards, assign the
hard disk file associated with the guest system. This
hard disk file also contains the guest systems stage-
two bootloader and the intended OS kernel.

 Set up the memory supervision device to provide the
associated amount of memory. The entire associated
memory of the guest machine is zeroed.

 Finally, set Reconf-IF into on, enabled state to allow
the guest machine to execute.

The Reconf-IF states on, disabled and on, enabled can
be used to pause and resume the guest machine. This
provides the possibility to the host system to inspect the
guests memory contents. Care must be taken inside the
memory supervision device due to the possibility of pending
memory request, when pausing the guest system.

Swapping between several guest machines on one partial
reconfiguration area is not implemented. This would require
a stop, save, restore and resume mechanism. The save and
restore steps would require the extraction/setting of the
entire hardware state (contents of flip-flops) inside the
reconfigurable area. This feature is currently not
implemented.

C. Guest OS Adaptation
One of the advantages of true system virtualization is the

possibility to execute the guest operating system without any
modifications. This also holds for the proof of concept
demonstrator. Of course, the emulation interface (Emul-IF)
needs an appropriate driver to use the intended functionality.
However, from the guest operating system perspective, this
is simply another block-device driver for interacting with a
hard disk. The driver handling of the communication
interface (Comm-IF) is also just another TTY-driver.

V. EVALUATION
After having presented the proof of concept

demonstrator in detail, information on reconfigurable
resource usage for the demonstrator is given in Table I. The
resource footprint is given for the evaluation boards, the
proof of concept demonstrator is available for.

In the following, some benchmarks are presented which
have been taken for the proof of concept demonstrator on a
VC707 evaluation board.

TABLE I. RECONFIGURABLE RESOURCE FOOTPRINT FOR PROOF OF

CONCEPT DEMONSTRATOR

board name XUPv5 ML605 VC707 Nexys4DDR

FPGA xc5vlx110t xc6vlx240t xc7vx485T xc7a100t

slices host system 6.352 (37%) 9.429 (25%) 10.078 (13%) 5.132 (32%)

slices guest system 3.054 (17%) 3.799 (10%) 3.522 (5%) 2843 (18%)

slices host + guest 9.406 (54%) 13.228 (35%) 13.600 (18%) 7.975 (50%)

fCLK (host + guest) 80MHz 50MHz 80MHz 50MHz

Hard disk type CF-Card CF-Card SD-Card SD-Card

overall memory 256MB 512MB 1GB 128MB

guest memory 32MB 32MB 32MB 32MB

Values in brackets give the slice count in relation to the overall slice
count of the FPGA

A. Processor Performance
Performance investigations regarding the processor have

been done using the Dhrystone benchmark[11]. (Dhrystone
measurement is done in Dhrystone million instructions per
second (DMIPS). Version 2.1 of the benchmark has been
used, compiler optimizations were disabled.) Dhrystone is
sufficient here, because two systems with nearly identical
architectures are compared. Three different values were
measured. Pstatic is the result for the host part of the system
with reconfigurable area switched off. Phost is the
performance of the host part with reconfigurable area
switched on, enabled and Pguest is the benchmark result
taken within the guest system. Relative values are given
here, because the discussion has to focus on performance
differences between the host and the guest system. The peak
performance (100 %) was achieved with the host system
running and guest (reconfigurable area) switched off. The
results are:

Pstatic = 100%

Phost = 95% related to Pstatic

Pguest = 95% related to Pstatic

Comparing Phost with Pguest shows, that the guest systems
and the host systems computational performances are
identical. So there is no performance loss caused by the
virtualization mechanism. However, a performance loss
compared to Pstatic is measured. The reason for this is the
shared memory controller, so when both machines try to
access main memory simultaneously, one has to wait. This
waiting is implemented fair: when one time the guest waits
for the host, the other time it is vice versa.

B. Memory Access Time
Memory access time is measured on the basis of the

ramspeed benchmark [12]. This benchmark measures the
read and write cache/memory access performance in
MegaBytes per second based on an increasing blocksize for
reads and writes. The results are shown in Figure 10. R(x) is
the read performance, W(y) is the write performance.

7

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

Figure 10. ramspeed benchmark results

Performance is given as a relative value again. The
reference value is the peak value of all measured results.
This value is used as a reference for read and write
performance calculation. For the interpretation of the results,
it necessary to mention, that a 16 kB direct mapped cache
with write-through strategy is used inside the processors.
The cache size can be easily figured out in the read
performance chart. The write through strategy is the reason
for the constant lines in the write performance chart. The
general conclusion for the cache/memory access
performance measurement is: Both, the host and the guest
system perform identical. Reduced memory access
performance for both systems results from the shared
memory controller. The amount of performance reduction is
the same for both.

C. Hard Disk Access Times
The hard disk device of the guest system is implemented

with the emulation interface (Emul-IF). Therefore, the hard
disk of the guest system is a file on the hard disk of the static
systems. The mapping between the Emul-IF and the HD-file
of the guest is implemented in the host operating system in a
similar way, the loop-block device in Linux is implementing
this issue. On the guest system side, the Emul-IF is used by

a dedicated block device driver. Figure 11 shows benchmark
results for hard disk accesses based on the bonnie++
benchmark [13]. Benchmark results have been measured on
the VC707, where the host hard disk is a SD-Card used in
SPI-Mode and the guest file systems hard disk image
residing on this SD-Card.

Static presents the test case, where the guest system is
switched off and the host machine is accessing its ‖real‖
hard disk (SD-Card). The case host is also measured on the
host system, but with a running guest system. The guest test
case measures the emulated hard disk access of the guest
system. A hard disk access of the guest system is issued to
the host via the Emul-IF. The host itself has to read/write the
required data from/to the SD-Card and signal completion to
the guest operating system. The guest systems hard disk is
therefore simply a file on the SD-Card.

Benchmark results for static and host are identical (as
expected) as both are measured on the host system. The
guest results are in some scenarios slower (block write),
sometimes identical (block rewrite) and sometimes faster
(block reads and random seeks). As the guest machines hard
disk is emulated by the host system, it was expected to
always have a slower benchmark result compared with the
host machines accesses. The reason for the unexpected
better results of the guest system is the filesystem cache of
the host machine. The host is caching the data of the guest
systems hard disk file. This caching mechanism of the host
system cannot be avoided by the benchmark tool, running on
the guest. Therefore, reading from the emulated hard disk
inside the guest system (and random seek is another form of
reading) seems to be faster than reading on the host system.
So, the general summary for hard disk access time is that the
emulation of a hard disk slows down the hard disk access
time of the guest system, but for filesystem cache reasons, it
can be faster in some cases.

Figure 11. bonnie++ benchmark results

D. Discussion of Results
The proof of concept demonstrator instantiated a guest

machine, that is identical to the host. This includes the
underlying core architecture (processor core) and the guest
operating system. The benchmark results show, that there is
no performance loss due to the virtualized execution for the

8

Proc. of The Fifth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2016
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-104-7 doi: 10.15224/ 978-1-63248-104-7-01

computational and memory performance. However, the used
processor is a softcore and therefore will always be an order
of magnitude slower than a modern hardwired core.

Nevertheless, the system virtualization approach
presented in this paper can be useful, when the instruction
set architecture (ISA) of the processor differs between guest
and host. For conventional system virtualization
mechanisms there is only one solution: emulation or binary
translation of the guest ISA with the host ISA resulting in a
significant performance loss. The approach within this paper
allows to replace emulation by instantiation of a processor
with the an appropriate ISA. This has not been shown by the
proof of concept demonstrator, but is obvious by design.

Furthermore, a Type-1 Hypervisor is only possible,
when the host processor fulfills the Popek and Goldberg
theorem (see introduction). With the vitualization approach
presented in this paper, the host processor does not need to
fulfill this theorem, as the proof of concept demonstrator
shows. The arm8-ISA implemented within the used
processor does not fulfill the Popek and Goldberg
theorem[14].

Conventional virtual machines provide security by
separating different guest virtual machines logically by
software. Virtualization systems, following the main idea of
this paper, enforce this separation even stronger as there is
physically separated hardware executing the guest systems
software. The introduction of the GMMU (see Section III-C)
adds an additional hardware mechanism for limiting a
guest’s possibility to access the host memory. By using
reconfigurable logic to instantiate a guest systems hardware,
it is possible to add special devices supervising the guests
hardware. It is possible to implement those supervision
devices in a way, that they are only manageable by the host
system.

VI. CONCLUSION
A new type of operating system virtualization by the

usage of configurable logic FPGAs is introduced in this
paper. Additionally, a proof of concept demonstrator, based
on the PRHS Framework is presented and evaluated in this
paper. The advantages of the proposed system virtual
machine architecture are:

 The guest system does not suffer from computational
performance losses caused by the applied
virtualization techniques. However, care must be
taken on the performance penalties of device
emulation.

 The entire system can be heterogeneous. The guest
systems can take profit from different instructions
sets without the need of employing strong emulation
techniques on the host.

 Type-1 hypervisors are possible on processors, that
do not fulfill the Popek and Goldberg theorem.

Further investigations on the following topics are
required/ planned:

Resource sharing: The proof of concept demonstrator
only implements the physically supported emulation
mechanism to provide device sharing among host and guest.

Further possibilities are discussed in section III-D1 and need
to be evaluated.

Suspending mechanisms: The current implementation
only allows to start and stop one guest machine. There is
neither a possibility to suspend a guest machine nor to
resume a previously preempted machine that was brought
back into a reconfigurable area. Furthermore an extension of
the architecture to host several guests, including processors
with different ISAs, side by side is planned for the future.

Security: The proposed architecture for supporting
system virtual machines with dedicated hardware allows to
strengthen the isolation of guests and host by hardware and
not only by software. The benefits and drawbacks in the
areas of IT-Security and IT-Forensics should be evaluated in
more detail in the future.

References

[1] G. J. Popek and R. P. Goldberg, ―Formal requirements for
virtualizable third generation architectures,‖ Commun. ACM, vol. 17,
no. 7, pp. 412–421, Jul. 1974.

[2] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). San Francisco, CA, USA: Morgan
Kaufmann Publisher Inc., 2005.

[3] A. S. Tanenbaum and H. Bos, Modern operating systems. Prentice
Hall Press, 2014.

[4] H. So and B. University of California, BORPH: An Operating System
for FPGA-based Reconfigurable Computers. University of California,
Berkeley, 2007.

[5] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner,
and C. Plessl, ―Reconos: An operating system approach for
reconfigurable computing,‖ Micro, IEEE, vol. 34, no. 1, pp. 60–71,
Jan 2014.

[6] D. Gohringer, M. Hubner, E. Zeutebouo, and J. Becker, ―Cap-os:
Operating system for runtime scheduling, task mapping and resource
management on reconfigurable multiprocessor architectures,‖ in
Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1–8.

[7] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos,
―Hardware task scheduling for partially reconfigurable fpgas,‖ in
Applied Reconfigurable Computing, ser. Lecture Notes in Computer
Science, K. Sano, D. Soudris, M. Huebner, and P. C. Diniz,
Eds.Springer International Publishing, 2015, vol. 9040, pp. 487–498.

[8] T. Xia, J. C. Prevotet, and F. Nouvel, ―Mini-nova: A lightweight
armbased virtualization microkernel supporting dynamic partial
reconfiguration,‖ in Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE International, May 2015, pp. 71–
80.

[9] M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis, L. V. Doorn, A.
Mallick, and E. Wahlig, ―Utilizing iommus for virtualization in linux
and xen,‖ in In Proceedings of the Linux Symposium, 2006.

[10] M. Eckert, I. Podebrad, and B. Klauer, ―Hardware based security
enhanced direct memory access,‖ in Communications and Multimedia
Security, ser. Lecture Notes in Computer Science, B. De Decker, J.
Dittmann, C. Kraetzer, and C. Vielhauer, Eds. Springer Berlin
Heidelberg, 2013, vol. 8099, pp. 145–151.

[11] R. P. Weicker, ―Dhrystone: a synthetic systems programming
benchmark,‖ Commun. ACM, vol. 27, no. 10, pp. 1013–1030, Oct.
1984

[12] R. M. Hollander and P. V. Bolotoff, ―RAMspeed, a cache and
memory benchmarking tool,‖ http://alasir.com/software/ramspeed/,
2009.

[13] R. Coker, ―Bonnie++,‖ http://http://www.coker.com.au/bonnie++/,
2001.

[14] Advanced RISC Machines Ltd (ARM), ARM810 Data Sheet, 1996.

