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Abstract—System virtualization techniques are broadly 

used to distribute computing power, to boot different operating 
systems virtually on top of a host OS, to enable security 
features like encapsulation or to provide redundancy and 
migration concepts. Virtual machines (VMs) targeting different 
Instruction Set Architectures (ISA) are usually implement by 
efficient emulation or binary translation techniques. 

This paper uses reconfigurable hardware to support (guest) 
operating system virtualization and not virtualization of hw-
accelerators inside an operating system. The main idea of this 
paper is to replace emulation / binary translation by 
(re)configuration. Instead of emulating a processor-ISA on a 
CPU with another ISA, the required guest-processor will be 
configured into an FPGA and booted with a guest operating 
System (OS) as requested by a VM manager. 

This approach allows to overcome limitations of 
conventional system virtualization approaches, like the Popek 
and Goldberg theorem and provides the possibility to 
strengthen system security by means of hardware. The 
presented main idea is implemented and evaluated with a proof 
of concept demonstrator. 

Keywords—FPGA, Virtual Machine, Reconfigurable 
Computing 

I.  Introduction 
Reconfigurable hardware is a promising approach to turn 

increasing transistor densities into computing performance. 
Hence, reconfigurable computing has been an emerging 
research field for over a decade. The application areas of 
reconfigurable computing focus on accelerator units for 
embedded systems and high performance computing. A 
challenging question in the field of reconfigurable 
computing is, how to simplify the error prone development 
process of hardware component, so that it is also possible 
for a software developer to create applications that can take 
advantage of reconfigurable hardware in terms of execution 
speed. One approach to achieve this is to provide High-
Level-Synthesis compilers, that allow to directly translate 
parts of an application written in a high level language like 
C/C++ or Java into hardware. 

Another way is to provide abstractions and 
standardizations of reconfigurable hardware to a sw-
developer, so that he or she can implement their applications 
according to well known interfaces and techniques but 
without the need to get too much insights into the underlying 
hardware interdependencies.  
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Hence, operating systems have been developed in the 
context of reconfigurable computing to support this 
approach. This is the common way to interpret the terms 
virtualization and reconfigurable computing in combination. 

Another still emerging research area, coined with the 
term ‖virtualization‖ is Operating System Virtualization. 
Research in the area of operating system virtualization is 
focusing on the minimization of the computational 
performance loss due to the applied virtualization 
techniques. Depending on the capabilities of the host 
processor(s), one of the techniques discussed in the 
following could be applied to virtualize a guest operating 
system. 

If the guest operating system is expecting the same ISA, 
as the host processor provides, things are more easier, 
because direct native execution of the guest operating 
system is possible. However, care must be taken about the 
abilities of the underlying host processor. As a result of the 
Popek and Goldberg theorem [1], the execution of a 
privileged  instruction (An instruction that is only allowed to 
be executed, when the processor is in a privileged mode.)  
has to trap when executed in non-priviledged processor 
mode. This is required, because the guest operating system 
is an application running on top of the host operating system 
and therefore does not run in the intended privilege mode of 
the processor. The trapping of such a privileged instruction 
is required, because only then, the host operating system is 
able to emulate the intended behavior for the guest operating 
system. Inside the x86-architecture this hw-trap mechanism 
was introduced not before the mid 2000s. Till then, the 
workaround was to recompile the guest operating system 
with a replacement of the non-trapping privileged 
instructions (see [2] for further details). 

If the guest operating system is expecting another ISA, 
than the host processor provides, it is required to translate 
the guest ISA-instructions into host ISA-instructions. This 
techniques is called emulation. It can be enhanced by pre-
translating and storing repeatedly used translations, which is 
called binary translation. However, both approaches result in 
a computational performance penalty for the guest system 
caused by the emulation/translation process. 

This paper combines both, operating system 
virtualization and reconfigurable computing. This is 
achieved by avoiding the execution or even emulation of the 
guest operating system on the same processor as the host 
operating system, but providing a dedicated processor (and 
essential devices like timer and interrupt handler) for the 
guest operating system by the means of reconfigurable 
hardware. It is important for the reader to remember the 
difference: This paper uses reconfigurable hardware to 
support (guest) operating system virtualization and not 
virtualization of hw-accelerators inside an operating system. 
By applying this approach, it is expected, to reduce the 
computational performance costs, caused by the 
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virtualization; to allow the bypassing of the Popek and 
Goldberg theorem; to provide more security within a 
virtualization system because guests and host are no longer 
executed on the same processor. 

The paper focuses the following topics: in Section II 
related work is discussed, in Section III the architectural 
requirements to implement a hardware supported 
virtualization system are given in detail. Section IV gives a 
summarized presentation of the implemented proof of 
concept demonstrator. Section V evaluates the proof of 
concept demonstrator in relation to the expected benefits. 

II. Related Work 
The idea of this work is to combine virtualization and 

FPGAs. This idea is not new in general. The novelty of the 
idea presented here, is to fully support operating system 
virtualization with FPGAs.  

According to [3] virtual machine technology allows 
single computers in the sense of real machines to host 
multiple virtual machines with individual operating systems. 

The term ‖virtualization‖ is used in the context of 
FPGAs since the mid 1990s. However, it is used to 
emphasize the abstraction of reconfigurable and 
exchangeable hardware by an operating systems. BORPH 
[4] allows to execute an application (process) on it’s 
dedicated hardware and provides mechanisms for inter-
process communication between sw- and hw-processes. 
Other systems like ReconOS [5], CapOS [6] or RTSM [7] 
enable to support threads with reconfigurable and 
exchangeable hardware and also provide communication 
mechanisms for the sw- and hw-threads. 

However, these works focus on process virtual 
machines, whereas this paper focuses on system virtual 
machines. According to Smith and Nair [2] a process virtual 
machine allows to execute applications virtualized, whereas 
a system virtual machine allow to virtualize an entire 
operating system. 

Xia et al. [8] extended the idea of the above mentioned 
operating systems for reconfigurable computing to allow a 
paravirtualized system virtualization in their Mini-Nova 
system. However, the paravirtualized operating systems are 
still executed on the static processors. In Mini-Nova, only 
reconfigurable accelerator modules can be provided to the 
guest operating systems, as opposed to the idea presented 
within this paper, where an entire machine is provided for 
each guest operating system. 

The work presented within this paper does not focus on 
paravirtualization but hypervisors. Furthermore, an entire 
hardware machine is provided to the guest, not only some 
specialized and exchangeable accelerators. 

III. ARCHITECTURAL CHALLENGES 
FOR FPGA BASED SYSTEM VMs 

The overall architecure of a hardware supported 
virtualization system is shown in Figure 1 and extends a 
conventional computer architecture by a virtualization 
facility. 

Hardware supported virtual machines are constructed by 
instantiating a required number of computers inside the 
virtualization facility. On these additional computers a guest 
operating system (or also a natively executed application) 
are executable. However, this paper focuses on the 
possibility to run a guest operating system on these 
additional computers. 

Figure 1.  Overall architecure of a hw-supported virtualization system. 

How has such a virtualization facility to be constructed? 
It is possible to build a fixed virtualization facility in silicon, 
but changing demands regarding the number of needed 
machines and how they are constituted (such as the number 
of processor cores, the amount of memory, the number and 
type of devices) are expected. This strongly implies to take 
advantage of reconfigurable logic (in form of FPGAs) to 
implement such a highly adaptable virtualization facility. 
Hence, the following two paradigms are defined: 

 Reconfigurable logic is used on purpose and by 
principle to instantiate entire computers. Those 
instantiated systems can be seen as a guest system in 
terms of system virtual machine concepts. 
(instantiation paradigm) 

 All dedicated resources of the overall system are 
managed by the host operating system (virtual 
machine manager), as done by conventional virtual 
machine managers. This is an essential requirement 
to see the overall system as virtualization system. 
(virtualization paradigm) 

If the first paradigm is not fulfilled, a conventional 
virtual machine is implemented. If the second paradigm is 
not fulfilled, separate and independent systems are used; the 
only benefit would be the instantiation of guest systems by 
the host, without further control or supervision mechanisms. 

The arising questions, problems and the corresponding 
solutions focusing on the overall architectural implications 
are discussed in the following sections. The outline of this 
discussion is based on the basic parts of a computer 
architecture: the processor(s), memory, and devices. 

A. Number of Guest Systems 
The number of guest systems is generally not limited. 

Limitations arise from the size of the available 
reconfigurable logic area and the area required for 
instantiating a guest machine. 

In the following Sections, problems and ideas are 
discussed for a single guest environment. However, the 
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proposed solutions would also apply to multi guest 
environments. 

B. Processor Issues 
Instantiating the guest processor in reconfigurable logic 

allows to have different central processing elements for host 
and guest operating systems and applications (summarized 
as software). This not only avoids conflicts between guest 
and host software but additionally introduces a physical 
barrier by design between them. On a conventional virtual 
machine system this barrier can only be achieved 
logically[2]. 

C. Memory Issues 
Concerning the memory demands of the guest machines, 

some questions/problems arise: 

 How much memory is required by the guest system? 
Can this amount of memory be provided by the 
reconfigurable area? 

 How is the virtualization paradigm of the main idea 
(all resources are managed by the host operating 
system) enforced for the guest’s memory? 

1) Providing enough Physical Memory for the Guest System: 
It is not reasonable to use reconfigurable logic to instantiate 
large amounts (several hundred MByte or more) of memory, 
rather to use BlockRAM, also provided by today’s FPGAs. 
Therefore, it is necessary to provide the possibility of 
accessing the overall system’s main memory by the guest 
system. From a traditional computer architectures 
perspective, this can be seen as dedicated DMA channels for 
the guest systems. 

2) Virtualization of the Guests Virtual Memory: Modern 
operating systems support virtualization of physical memory 
for giving an application the perception of having its own 
memory. This virtual memory concept has to be supported 
by both - guest and host operating system. The challenge for 
a virtualization system is that the virtual memory concept of 
a guest operating system has to be virtualized by the host 
system. This is one of the main additional problems that 
must be addressed when executing a guest operating system 
instead of an application inside the virtualization facility. In 
essence, the virtual addresses of the guest are translated by 
the guest’s MMU to real addresses, which are subsequently 
translated to physical addresses by the host’s MMU.  

On conventional system virtual machines, the virtual-to-real 
and real-to-physical mapping for the guest VM is enforced 
by the same Memory Management Unit(s), as host OS and 
guest OS are executed on the same processor(s). In 
virtualization systems following the concept of this paper, 
host OS and guest OS run on different processors (as a 
consequence of the instantiation paradigm). Hence, other 
mechanisms to implement real-to-physical memory mapping 
for guest systems are necessary. To support this mapping, 
additional hardware, the Guest Memory Management Unit 
(GMMU) is introduced, as shown in Figure 2. Such a 
GMMU has to be available for each guest machine.  

The usage of such a GMMU also provides the possibility 
to supervise the memory accesses of a guest system and 
especially allows to enforce the memory limitations of the 

guest system physically. Conventional virtual machine 
systems enforce this only logically [2]. 

Figure 2.  Introducing a Guest Memory Management Unit (GMMU). 

In general, there are two possibilities to solve the 
problem of translating a guest’s real addresses to the 
physically associated ones, as shown in Figure 3. Both 
solutions are adopted solutions of the real to physical 
mapping problem for multiprocessor virtualization [2]. 

a) Contiguous Chunk of Memory: This solution assumes the 
physical memory associated with the guest system to be 
contiguous. This assumption allows the GMMU to be 
implemented easily and straightforward. It just contains two 
registers, defining the first (Guest Memory Base Register, 
GMBR) and last address (Guest Memory Limit Register) of 
the physical memory area to be used by the guest system 
(see Figure 3)).  

Figure 3.  Options to solve the problem of translating a guest’s real 
addresses to the physically associated addreses. 

b) Page based Chunks of Memory (Non-Contiguous): The 
contiguous chunk of memory solution lacks some problems 
because of its simplicity. There is no dependency regarding  
the MMU of the host system. Hence, the memory area, 
associated with the guest system must not be swappable by 
the host system. Additionally, no differentiation regarding 
memory protection is possible, for example to mark some 
regions of the guest’s memory as read only for the guest. 
This would be possible by introducing a GMMU that can be 
seen as an extension of the host’s MMU (part of the host 
machine’s CPU). Therefore, the GMMU has to implement 
the same memory management mechanisms as the host 
MMU. A GMMU based on this solution operates similar to 
an Input/Output Memory Management Unit (IOMMU)[9] 
used in processors today. 

http://www.dict.cc/englisch-deutsch/subsequently.html
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D. Device Issues 
In this section, device virtualization related questions are 

discussed. As a starting point, devices are classified into two 
categories: 

 System vital, non sharable devices: These devices are 
essential for the functionality of the host or a guest 
system. Hence, sharing of such devices is usually 
senseless, as for example for an interrupt 
management controller or a timer. Therefore, they 
have to be duplicated for each guest system. 

 Sharable devices: All other devices. For the main 
concept of this paper, only shareable devices are of 
interest concerning the question: How can device 
sharing between host and guest system be 
implemented? 

1) Physical Interface Sharing 

In general, there are three different possibilities to 
implement the physical sharing of the interface of a device: 

 Explicit Hardware Switch: This solution (shown in 
Figure 4) provides the possibility to physically switch 
between the host and guest machine. The switching 
itself has to be controllable by the host operating 
system to ensure the virtualization paradigm.  

Figure 4.  Explicit hardware switch solution. 

 Switching by Reconfiguration: Instead of physically 
switching between guest and host machines, the 
connection between a guest and a device or the host 
and a device can by instantiated by means of 
reconfiguration, as shown in Figure 5. The 
reconfiguration of the switch is initiated and 
controlled by the host operating system.  

Figure 5.  Switching by reconfiguration solution. 

 Hardware Supported Mutual Exclusion: The previous 
solutions only provided mechanisms, where the guest 
and host machine can access a device exclusively (a 
device is physically connected to the system bus of 
exactly one machine at the same time). The hardware 
supported mutual exclusion solution allows the 
device to be attached to the guest’s and host’s system 
bus at the same time, as shown in Figure 6. Mutual 
exclusion has to be enforced on a hardware supported 
base, by implementing some kind of a hardware 
semaphore inside the switch. The host’s supervising 
policies can be strengthened by enabling the host to 
suspend the mutex mechanisms.  

Figure 6.  Hardware supported mutual exclusion solution. 

2) Physically Supported Emulation 

The solutions presented above try to share the physical 
interface of a device between a host and guests. For 
conventional system virtual machines, physical sharing is 
not required, as there is only one physical system bus. On a 
conventional system virtualization environment, the host 
operating system provides mechanisms to enable the guest 
system to use devices: A guest system, trying to access a 
device, traps to the host system, which itself supervises and 
handles the device access for the guest. 

The mechanisms of virtualizing a physical device or 
emulating virtual ones, can also be applied to virtualization 
systems, covered by this paper’s main concept, but require 
adaptations. 

A guest operating system cannot cause a trap to be taken 
on the hosts processor because guest operating system(s) 
and host operating system are not executed on the same 
processor. For this reason additional hardware has to be 
used. This additional hardware provides a physical interface 
to the guest system, which allows the guest to signal a 
device request to the host system. This interface also has to 
be accessible by the host system to emulate the guests 
requests. It has to provide several addressable device 
registers and might include interrupt line(s) to avoid busy 
waiting. Figure 7 gives an example. 

 For the guest system, this interface behaves just like a 
conventional one for the interaction with a device 
controller. The host system (or more precisely the 
host operating system) needs a driver for emulating a 
device controllers behavior for physically non 
existing devices or translate the guest’s request to the 
physical device it is associated with.  
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Figure 7.  Physically supported device emulation. 

Which of the above introduced possibilities to share or 
provide an interface to a device is the best? There can be no 
final decision, because this depends on the device itself and 
especially on the needed time granularity of sharing. Three 
timing aspects have to be taken into account here: the time 
needed to perform a reconfiguration; the time to 
register/unregister a device and load/unload a corresponding 
device driver and finally the time a device is used, before it 
is switched to another system. 

IV. PROOF OF CONCEPT  
It has already been stated that an extension of a 

conventional computer architecture by a virtualization 
facility is necessary to implement a hardware supported 
virtualization system (see Figure 1). At the beginning of 
Section III it was also proposed to implement the 
virtualization facility in an FPGA, resulting in a general 
architecture as given in Figure 8a).  

The FPGA provides the requirements to host one or 
more hardware based guest systems. However, to investigate 
systems based on the main concept of this paper, it is 
necessary to have a testing framework that also offers full 
flexibility regarding the host systems hardware.  

 

Figure 8.  Architectures for implementing the concept. A) FPGA(s) as 
extension of a conventional system b) FPGA as prototyping environment 
for the overall virtualization system. (PRA-partial reconfigurable area) 

Again, FPGAs are well suited for this purpose. The overall 
virtualization system hardware is configured onto an FPGA. 
The reconfigurable area is provided to the static part (host 
machine) of the overall system by means of a partially and 
dynamically reconfigurable area, as shown in Figure 8b). 

The proof of concept demonstrator is based on the 
architecture shown in Figure 8b and is based on the Partial 
Reconfigurable Heterogeneous System (PRHS) framework 
[10].  The PRHS framework is a collection of VHDL 
modules. It allows to construct entire computer systems 
based on a self-implemented softcore (ARM-ISA, 
compatible to the ARM810 and achieves up to 120 MHz and 
includes optional Caches and Memory Management Units). 
The framework also includes an adapted Linux kernel 

(version 4.1, to be used with the self-implemented softcore) 
and allowing for busybox or Embedian as Linux 
distributions. 

A. Demonstrator Architecture 
A simplified overall Architecture for the proof of 

concept demonstrator is given in Figure 9. Host and guest 
system are built around the softcore included in the PRHS 
framework. The host System consists of the processor, 
several I/O devices, a reconfiguration interface (Reconf-IF) 
and a memory supervision element. The latter one is used to 
implement the Contiguous Chunk of Memory solution for 
memory sharing between the host and the guest system. The 
partial reconfiguration area, which can hold exactly one 
guest machine is controllable by the reconfiguration 
interface (Reconf-IF). This includes an Internal 
Configuration Access Port (ICAP) to perform the 
reconfiguration itself. Furthermore, the Reconf-IF can set 
the partial reconfiguration area into one of three states: 

 off: The global reset line of the partial 
reconfiguration area is asserted and all outgoing lines 
(from reconfigurable area to host system) are tied to 
low. The first mechanism allow to reset the guest 
system, the second one is required when a 
reconfiguration takes place. 

 on, disabled: The guest system contains a dedicated 
emulation interface (Emul-IF) and communication 
interface (Comm-IF). The Emul-IF implements the 
Physically Supported Emulation solution for 
emulating the guests hard disk. The Comm-IF 
enables to interact with the guest operating systems 
console from the host side. Figure 9 shows that both 
devices are connected to the device buses of both, the 
guest and the static system. However, for proper 
device driver handling inside the guest system it is 
necessary to bring up both devices inside the host 
operating system, before the guest operating system 
is started. Hence, the on, disabled state deasserts the 
global reset line of the partial reconfiguration area 
but keeps the clock enable lines of the guest machine 
disabled and the asserts the clock enable line of the 
host system attached device side. 

 on, enabled: Compared to the on, disabled state, this 
state allows the guest machine to execute, eventually.  

Figure 9.  Overall proof of concept demonstrator architecutre (simplified). 
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B. Host OS Extension 
The virtual machine manager is implemented as an 

application of the host operating system. Therefore, device 
drivers for handling the Reconf-IF, Emul-IF, Comm-IF and 
memory supervision devices have been implemented. These 
device drivers are usable as loadable kernel modules. The 
virtual machine manger application has to perform the 
following tasks, to start a guest machine: 

 Set the Reconf-IF into off state. 

 Load the partial bitstream into the partial 
reconfiguration area. 

 Set the Reconf-IF into on, disabled state. 

 Register Comm-IF device. Load the corresponding 
device driver if necessary. 

 Register Emul-IF device. Load the corresponding 
device driver if necessary. Afterwards, assign the 
hard disk file associated with the guest system. This 
hard disk file also contains the guest systems stage-
two bootloader and the intended OS kernel. 

 Set up the memory supervision device to provide the 
associated amount of memory. The entire associated 
memory of the guest machine is zeroed. 

 Finally, set Reconf-IF into on, enabled state to allow 
the guest machine to execute. 

The Reconf-IF states on, disabled and on, enabled can 
be used to pause and resume the guest machine. This 
provides the possibility to the host system to inspect the 
guests memory contents. Care must be taken inside the 
memory supervision device due to the possibility of pending 
memory request, when pausing the guest system. 

Swapping between several guest machines on one partial 
reconfiguration area is not implemented. This would require 
a stop, save, restore and resume mechanism. The save and 
restore steps would require the extraction/setting of the 
entire hardware state (contents of flip-flops) inside the 
reconfigurable area. This feature is currently not 
implemented. 

C. Guest OS Adaptation 
One of the advantages of true system virtualization is the 

possibility to execute the guest operating system without any 
modifications. This also holds for the proof of concept 
demonstrator. Of course, the emulation interface (Emul-IF) 
needs an appropriate driver to use the intended functionality. 
However, from the guest operating system perspective, this 
is simply another block-device driver for interacting with a 
hard disk. The driver handling of the communication 
interface (Comm-IF) is also just another TTY-driver. 

V.  EVALUATION 
After having presented the proof of concept 

demonstrator in detail, information on reconfigurable 
resource usage for the demonstrator is given in Table I. The 
resource footprint is given for the evaluation boards, the 
proof of concept demonstrator is available for. 

In the following, some benchmarks are presented which 
have been taken for the proof of concept demonstrator on a 
VC707 evaluation board. 

TABLE I.  RECONFIGURABLE RESOURCE FOOTPRINT FOR PROOF OF 

CONCEPT DEMONSTRATOR 

board name XUPv5 ML605 VC707 Nexys4DDR 

FPGA xc5vlx110t xc6vlx240t xc7vx485T xc7a100t 

slices host system 6.352 (37%) 9.429 (25%) 10.078 (13%) 5.132 (32%) 

slices guest system 3.054 (17%) 3.799 (10%) 3.522 (5%) 2843 (18%) 

slices host + guest 9.406 (54%) 13.228 (35%) 13.600 (18%) 7.975 (50%) 

fCLK (host + guest) 80MHz 50MHz 80MHz 50MHz 

Hard disk type CF-Card CF-Card SD-Card SD-Card 

overall memory 256MB 512MB 1GB 128MB 

guest memory  32MB 32MB 32MB 32MB 

Values in brackets give the slice count in relation to the overall slice 
count of the FPGA 

A. Processor Performance 
Performance investigations regarding the processor have 

been done using the Dhrystone benchmark[11]. (Dhrystone 
measurement is done in Dhrystone million instructions per 
second (DMIPS). Version 2.1 of the benchmark has been 
used, compiler optimizations were disabled.) Dhrystone is 
sufficient here, because two systems with nearly identical 
architectures are compared. Three different values were 
measured. Pstatic is the result for the host part of the system 
with reconfigurable area switched off. Phost is the 
performance of the host part with reconfigurable area 
switched on, enabled and Pguest is the benchmark result 
taken within the guest system. Relative values are given 
here, because the discussion has to focus on performance 
differences between the host and the guest system. The peak 
performance (100 %) was achieved with the host system 
running and guest (reconfigurable area) switched off. The 
results are: 

Pstatic  = 100% 

Phost  = 95% related to Pstatic 

Pguest = 95% related to Pstatic 

Comparing Phost with Pguest shows, that the guest systems 
and the host systems computational performances are 
identical. So there is no performance loss caused by the 
virtualization mechanism. However, a performance loss 
compared to Pstatic is measured. The reason for this is the 
shared memory controller, so when both machines try to 
access main memory simultaneously, one has to wait. This 
waiting is implemented fair: when one time the guest waits 
for the host, the other time it is vice versa.  

B. Memory Access Time 
Memory access time is measured on the basis of the 

ramspeed benchmark [12]. This benchmark measures the 
read and write cache/memory access performance in 
MegaBytes per second based on an increasing blocksize for 
reads and writes. The results are shown in Figure 10. R(x) is 
the read performance, W(y) is the write performance.  
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Figure 10.  ramspeed benchmark results 

 

Performance is given as a relative value again. The 
reference value is the peak value of all measured results. 
This value is used as a reference for read and write 
performance calculation. For the interpretation of the results, 
it necessary to mention, that a 16 kB direct mapped cache 
with write-through strategy is used inside the processors. 
The cache size can be easily figured out in the read 
performance chart. The write through strategy is the reason 
for the constant lines in the write performance chart. The 
general conclusion for the cache/memory access 
performance measurement is: Both, the host and the guest 
system perform identical. Reduced memory access 
performance for both systems results from the shared 
memory controller. The amount of performance reduction is 
the same for both. 

C. Hard Disk Access Times 
The hard disk device of the guest system is implemented 

with the emulation interface (Emul-IF). Therefore, the hard 
disk of the guest system is a file on the hard disk of the static 
systems. The mapping between the Emul-IF and the HD-file 
of the guest is implemented in the host operating system in a 
similar way, the loop-block device in Linux is implementing 
this issue. On the guest system side, the Emul-IF is used by 

a dedicated block device driver. Figure 11 shows benchmark 
results for hard disk accesses based on the bonnie++ 
benchmark [13]. Benchmark results have been measured on 
the VC707, where the host hard disk is a SD-Card used in 
SPI-Mode and the guest file systems hard disk image 
residing on this SD-Card. 

Static presents the test case, where the guest system is 
switched off and the host machine is accessing its ‖real‖ 
hard disk (SD-Card). The case host is also measured on the 
host system, but with a running guest system. The guest test 
case measures the emulated hard disk access of the guest 
system. A hard disk access of the guest system is issued to 
the host via the Emul-IF. The host itself has to read/write the 
required data from/to the SD-Card and signal completion to 
the guest operating system. The guest systems hard disk is 
therefore simply a file on the SD-Card. 

Benchmark results for static and host are identical (as 
expected) as both are measured on the host system. The 
guest results are in some scenarios slower (block write), 
sometimes identical (block rewrite) and sometimes faster 
(block reads and random seeks). As the guest machines hard 
disk is emulated by the host system, it was expected to 
always have a slower benchmark result compared with the 
host machines accesses. The reason for the unexpected 
better results of the guest system is the filesystem cache of 
the host machine. The host is caching the data of the guest 
systems hard disk file. This caching mechanism of the host 
system cannot be avoided by the benchmark tool, running on 
the guest. Therefore, reading from the emulated hard disk 
inside the guest system (and random seek is another form of 
reading) seems to be faster than reading on the host system. 
So, the general summary for hard disk access time is that the 
emulation of a hard disk slows down the hard disk access 
time of the guest system, but for filesystem cache reasons, it 
can be faster in some cases.  

Figure 11.  bonnie++ benchmark results 

D. Discussion of Results 
The proof of concept demonstrator instantiated a guest 

machine, that is identical to the host. This includes the 
underlying core architecture (processor core) and the guest 
operating system. The benchmark results show, that there is 
no performance loss due to the virtualized execution for the 
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computational and memory performance. However, the used 
processor is a softcore and therefore will always be an order 
of magnitude slower than a modern hardwired core. 

Nevertheless, the system virtualization approach 
presented in this paper can be useful, when the instruction 
set architecture (ISA) of the processor differs between guest 
and host. For conventional system virtualization 
mechanisms there is only one solution: emulation or binary 
translation of the guest ISA with the host ISA resulting in a 
significant performance loss. The approach within this paper 
allows to replace emulation by instantiation of a processor 
with the an appropriate ISA. This has not been shown by the 
proof of concept demonstrator, but is obvious by design. 

Furthermore, a Type-1 Hypervisor is only possible, 
when the host processor fulfills the Popek and Goldberg 
theorem (see introduction). With the vitualization approach 
presented in this paper, the host processor does not need to 
fulfill this theorem, as the proof of concept demonstrator 
shows. The arm8-ISA implemented within the used 
processor does not fulfill the Popek and Goldberg 
theorem[14]. 

Conventional virtual machines provide security by 
separating different guest virtual machines logically by 
software. Virtualization systems, following the main idea of 
this paper, enforce this separation even stronger as there is 
physically separated hardware executing the guest systems 
software. The introduction of the GMMU (see Section III-C) 
adds an additional hardware mechanism for limiting a 
guest’s possibility to access the host memory. By using 
reconfigurable logic to instantiate a guest systems hardware, 
it is possible to add special devices supervising the guests 
hardware. It is possible to implement those supervision 
devices in a way, that they are only manageable by the host 
system. 

VI. CONCLUSION 
A new type of operating system virtualization by the 

usage of configurable logic FPGAs is introduced in this 
paper. Additionally, a proof of concept demonstrator, based 
on the PRHS Framework is presented and evaluated in this 
paper. The advantages of the proposed system virtual 
machine architecture are: 

 The guest system does not suffer from computational 
performance losses caused by the applied 
virtualization techniques. However, care must be 
taken on the performance penalties of device 
emulation. 

 The entire system can be heterogeneous. The guest 
systems can take profit from different instructions 
sets without the need of employing strong emulation 
techniques on the host. 

 Type-1 hypervisors are possible on processors, that 
do not fulfill the Popek and Goldberg theorem.
  

Further investigations on the following topics are 
required/ planned: 

Resource sharing: The proof of concept demonstrator 
only implements the physically supported emulation 
mechanism to provide device sharing among host and guest. 

Further possibilities are discussed in section III-D1 and need 
to be evaluated. 

Suspending mechanisms: The current implementation 
only allows to start and stop one guest machine. There is 
neither a possibility to suspend a guest machine nor to 
resume a previously preempted machine that was brought 
back into a reconfigurable area. Furthermore an extension of 
the architecture to host several guests, including processors 
with different ISAs, side by side is planned for the future. 

Security: The proposed architecture for supporting 
system virtual machines with dedicated hardware allows to 
strengthen the isolation of guests and host by hardware and 
not only by software. The benefits and drawbacks in the 
areas of IT-Security and IT-Forensics should be evaluated in 
more detail in the future. 
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