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Stagnation point flow, heat and mass transfer over a 

nonlinear stretching sheet withSuction/Injection 
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Abstract— The present paper is to investigate the combined 

effects of the heat and mass transfer on the unsteady two-

dimensional boundary layer flow over a nonlinear stretching 

sheet in the presence of Stagnation point and Suction/ 

Injection.The governing nonlinear partial differential equations 

have been reduced to the coupled nonlinear ordinary differential 

equations by the similarity transformations. The resulting 

equations are solved numerically by using Keller box method. 

The velocity, temperature and concentration distributions are 

discussed numerically and presented through graphs. 

Keywords— Boundary layer flow; nonlinearstretching sheet; 

Stagnation point; Suction/Injection, Magneto hydrodynamics; 
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 1. INTRODUCTION 

Cassonnanofluid in cylindrical geometry has important in 

blood flow. Mathematicians as well as medical researchers are 

widely working on Cassonnanofluid model. Boundary layer 

flow of Casson fluid over different geometries is considered 

by many authors in recent years. Nadeem et al. [1] presented 

the MHD flow of Casson fluid over an exponentially shrinking 

sheet. The analytical solution arising differential system has 

been computed by the Adomain Decomposition Method. 

Fredrickson [2] studied the steady flow of a Casson fluid in a 

tube. Magyari and Keller [3] provided both analytical and 

numerical solutions for boundary layer flow over an 

exponentially stretching surface with an exponential 

temperature distribution. Hayat et al. [4] investigated the Soret 

and Dufour effects on the MHD flow of the Casson fluid over 

a stretchedsurface. The relevant equations are first derived, 

and the series solutions are constructed by the homotopic 

procedure. Shehzad et al [5] analysed the effect of mass 

transfer in the magnetohydrodyanamic flow of a Casson fluid 

over a porous stretching sheet in the presence of a chemical 

reaction and suction. It is observed that the Cassion parameter 

and Hartman number have similar effects on the velocity in a 

qualitative sense. It is further analysed that the concentration 

decreases rapidly in comparison to the fluid velocity when the 

values of the suction parameter are increased. 
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Many processes in engineering occur at high temperatures 

and the full understanding of the effect of radiation on the rate 

of heat transfer is necessary in the design of equipment. The 

effect of radiation on the boundary layer flow was studied by 

Elbashbeshy and Dimian [6], Hossain et al.[7], Bataller [8] 

and Cortell [9  ]. The radiation effect is considered by Bataller 

[8] in the study of boundary layer flow over a static flat plate 

(Blasius flow) andCortell [10] 

In the present study, heat and mass transfer in MHD Nano fluid 

over a nonlinear stretching sheet in presence of suction/injection have 

been investigated. The governing partial differential equations of the 

flow are converted into nonlinear coupled ordinary differential 

equation by the technique of similarity transformation and then 

solved numerically. The effect of parameters on velocity, temperature 

and concentration profiles are discussed and presented through 

graphs. 

  2.MATHEMATICAL FORMULATION 

Consider a steady two-dimensional MHD flow of viscous, 

incompressible, electrically-conducting and radiating fluid 

over a vertical stretching surface in the presence of heat 

source/sink and mass transfer. The x-axis is coincident with 

the vertical surface and the y-axis is perpendicular to the 

surface. U and v are defined as the velocity components along 

the x-and y-axes, respectively. The stretching sheet velocity is 

assumed to be in the form of
maxu

where a  is positive 

constant. The velocity at short distance from the surface 

allows a thin boundary layer to develop near the surface. The 

surface temperature, wT
is assumed to follow the power law 

n

w bxTT    where b is a constant and T
is the ambient 

temperature. The surface concentration, wC
  is assumed to 

follow the power law 
n

w cxCC    where C
is the 

ambient concentration. It is also assumed that the magnetic 

Reynolds number is small in such a way that the induced 

magnetic field is negligible. Both viscous dissipation and 

Ohmic heating terms are neglected because their values are 

generally small. Under these assumptions along with 

Boussinesq and boundary layer approximations, the governing 

equations of partial differential equations for the conservation 

of mass, momentum, energy and species are 
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The boundary conditions for the velocity, temperature and 
concentration fields are 
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where T  and C is the fluid temperature and temperature in 

the boundary layer, 
)(xB

 is the variable magnetic field 

strength, is the kinematic viscosity,


is the density of the 

base fluid ,    is the electric conductivity, k is the thermal 

conductivity, pc

k


 

 is the thermal diffusivity, 


 is the 

coefficient of thermal expansion, 0q
is the heat generation or 

absorption coefficient such that 0q
> 0corresponds to heat 

generation while 0q
< 0 corresponds to heat absorption,

g
is 

the acceleration due to gravity, pc
 is the specific heat at 

constant pressure, rq
is the radioactive heat flux, Tk

 is the 

thermal diffusion ratio, sc
is the concentration 

susceptibility, BT
 is the mean fluid temperature and BD

is the 
mass diffusivity. 

By using the Rosseland approximation is defined as [28], 

the radiative heat flux rq
is given by 

y

T

k
qr






4

*

*

3

4

                                          (6) 

Where 
*  is the Stefan-Boltzmann constant and 

*k  is the 
mean absorption coefficient. It is assumed that the temperature 

differences between the free stream T
 and the local 

temperature 
T

 is small enough expanding 

4T
 in a Taylor 

series about T
 and neglecting higher order terms results; 

434 34   TTTT
                                                      

(7) 

After substituting Eqs. (6) and (7) in Eq.(3), it will be 
reduces to 
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 The continuity Equ (1) is satisfied by the Cauchys 
Riemann equation 
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Where 
),( yx 

 is the stream function. When the 

variable magnetic field 
2/)1(

0)(  mxBxB
. 

The momentum, energy and spices equations along with 
the boundary conditions can be transformed into a system of 
coupled ordinary differential equations by the following 
transformation: 
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Where 
)(f

is the dimensionless stream function, 
)(

is 

the dimensionless temperature, 
)(

is the dimensionless 

concentration, 


 is the similarity variable. 

As such Equs.(9 - 10), Eqs. (2), (4) and (8) reduce to the 
following system of nonlinear ordinary differential equations. 
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The transformed boundary conditions can be written as  
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M - the magnetic parameter,  - the thermal buoyancy 

parameter,  - the solutal buoyancy parameter, xGr
-the 

thermal Grashof number, xGc
- the solutalGrashof number, 

Pr - the prandtl number, Le  - Lewis number, R - radiation 
parameter. 

 

         The quantities of physical interest for this problem 

are the skinfrictioncoefficient fC
, the   local   Nusselt number  

xNu
 , and the local Sherwood number xSh

, which are 
respectively defined as 
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where v

x
xux  )(Re 

is the local Reynolds number. 

 

3. NUMERICAL PROCEDURE 

 
The set of coupled non-linear governing boundary layer 

equations (11) – (13) together with the boundary conditions 
(14) – (15) are solved numerically by using Keller box 
method. First of all, higher order non-linear differential 
equations (11) – (13) are converted into simultaneous linear 

differential equations of first order.Linearize the resulting 
algebraic equations by using Newton’s method and write them 
in matrix form.Solve the system of Linear equations by the 
block tridiagonal elimination technique. 

 

    In this method the following initial guesses are chosen: 

  esf )1()(0 , 
  e)(0 ,        

  e)(0                                                                                    
(18)         

4.RESULT AND DISCUSSION            
The problem of boundary layer of a Casson fluid over a 

nonlinear stretching sheet subject to a transverse magnetic 
field in the presence of Suction/Injection is analysed. The 
governing non – linear ordinary differential equations are 
solved using Keller box method. 

Table 1 Numerical values of 
)0(''f

and - 
)0('

 at the 

sheet for different values of M when 

01Pr  SLeSrDfRandnm 
,C

omparison of the present results with that of  B. Nagabusanam 
Reddy et al. [18] 

M  B. Nagabusanam 
Reddy et al. [18] 
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Figure 1: Velocity profile against 


for different values of  S              
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Figure 2: Temperature profile against 


for different values of  S         

      

Figure 3: Concentration profile against 


for different values of  S       

   

Figure 4: Velocity profile against 


for different values of  M       

 

      

Figure 5: Temperature  profile against 


for different values of  M       

 

Figure 6: Temperature  profile against 


for different values of  M      

 

 

Figure 7: Velocity profile against 


for different values of  B  

 

 

Figure 8: Temperature profile against 


for different values of  B  

 

Figure 9: Concentration  profile against 


for different values of  B  

Figures 1 – 3 demonstrate the effects of suction parameter S  on 
velocity, temperature and nanoparticle volume fraction. When 

1&1  
 the fluid velocity decreases significantly with 

increasing values of suction parameter while it is found to enhance 
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with blowing. The presence of suction would result in the reduction 
of the thickness of the boundary layer. The absence of suction 
represent the case of non-porous stretching sheet. In the case of 

blowing 
)0( S

an opposite effect is observed. The effect of 
suction parameter on temperature and concentration is similar to that 
on the velocity.  

Figures 4 – 6 present the velocity, temperature and concentration 
for a variation of the magnetic parameter. It is observed that the 
presence of a magnetic field reduces the velocity 

when
1&1  

. Higher value of Lorentz force further reduces 
the velocity and consequently the thickness of boundary layer 

reduces. However the impact of M on temperature and 
concentration is less when compared to that on velocity. 

Figures 7 – 9 indicate the effect of the yield stress parameter/ 

Casson parameter. It is clear that the velocity decreases with B . It 

may be noted that increased value of B  imply a decrease in the yield 
stress of the Casson fluid and thus facilitates the flow of the fluid. It 
is observed that increasing values of the Casson parameter enhance 
the temperature as well as the nanoparticle volume fraction. 

5. CONCLUSIONS 
The present paper is analyses the influence of stagnation point 

and suction/ injection effects on MHD boundary layer flow, heat and 
mass transfer flow over a nonlinear stretching sheet. The resulting 
partial differential equations are nondimensionalised, simplified, and 
solved by implicit finite difference scheme, known as Keller box 
method. From the present numerical study the following conclusions 
can be drawn. 

(1) The Casson fluid parameter, magnetic parameter and 
suction parameter produce a reduction in the velocity and 
the boundary layer thickness. 

(2) The influence of Casson fluid parameter and magnetic 
parameter on temperature and nanoparticle volume 
fraction is to enhance temperature and concentration. 

(3) Temperature and concentration profiles decreased due to 
increases inSuction parameter 
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