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Onset of thermal convection of a fluid-saturated 

porous medium in a vertical cylinder with mixed 

heating on lateral wall 
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Abstract—In this paper we examine the thermal-convective 

stability of a fluid-saturated porous medium filled within a vertical 

cylindrical container heated from below. The upper and lower 

surfaces of the cylinder are impermeable and are kept at constant 

but different temperatures. The lateral sidewall is impermeable and 

subject to mixed heating which is characterized by the Biot 

number. The threshold of Rayleigh number, above which the small 

disturbance becomes unstable, is sought from the characteristic 

equation. Our results show that the preferred mode at onset is 

always axisymmetric for all aspect ratios when Biot number 

approaches infinitely, and it becomes non-monotonic variation with 

respect to aspect ratio when Biot number is finite. 

Keywords—thermal convection, porous medium, Newtonian 

heating, cylindrical container, Biot number.  

I.  Introduction  
The study of natural convection in a fluid-saturated 

porous medium serves as an important field for the flow in 
thermal reservoir, thermal insulation design, geothermal 
energy restoration, and many other heat transfer processes of 
industrial applications. Horton and Rogers [1] and Lapwood 
[2] initiated the classical Rayleigh-Benard convection in an 
infinite horizontal layer of a fluid-saturated porous medium 
heated from below and they obtained a threshold value of 
Rayleigh number 4π

2
, above which the small disturbance 

may cause cellular motion. This thermal motion can not 
occur for infinitesimal disturbances when the Rayleigh 
number is below 4π

2
. The mode of convection just above the 

critical state is of no preferred direction in the case of 
infinite porous layer. However the critical Rayleigh number 
(Rac) and the preferred mode behave quite different in a 
finite domain from those in infinite porous layer. Beck [3] 
investigated the convection in a box of porous material 
saturated with viscous fluid and concluded that the roll (a 
cell with only two non-zero velocity components) is not the 
only cellular mode and the roll axis direction is such that 
there is the greatest degree of “squareness” in the cross 
section of each roll. He gave a picture showing the complex 
variation of critical Rayleigh number and preferred 
convection mode with respect to the two lateral dimensions.  
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The critical Rayleigh number is always greater than 4π
2
, 

the value corresponding to unbounded fluid-saturated porous 
medium. When the lateral dimension becomes large, the 
critical Rayleigh number quickly approaches to 4π

2
. Beck 

[3] also proved that the critical Rayleigh number from linear 
analysis meets that from nonlinear analysis, thus no 
subcritical instability is possible.  

Zebib [4] applied a linear stability analysis to the natural 
convection in a cylinder of water saturated porous medium 
with impermeable and isothermal conditions at both lower 
and upper surface, and impermeable and insulated lateral 
wall. His results illuminated that Rac was a combination of 
“cusps” with respect to aspect ratio defined as the ratio of 
radius to height of the cylindrical container. The cusp is 
characterized by the mode (m,n) where m and n represent 
the azimuthal and radial modes, respectively. The preferred 
mode with respect to aspect ratio in most cases shows non-
axisymmetric type (m≠0) rather than symmetric (m=0) even 
the container is symmetric. In addition the convection 
motion is truly three dimensional. Later on Wang [5] 
considered Zebib’s case [4] except for constant heat flux 
condition at lower surface, simulating the bottom heated by 
an electric heating device. An exactly the same mode change 
sequence was found, as that in Zebib [4], though the 
deviation in values of critical Rayleigh number prevailed. 
The minimum of Rac is 27.0976 occurring at several values 
of aspect ratio. This minimum is also prevalent when aspect 
ratio becomes very large, which is also the stability criterion 
for an infinite layer with constant heat flux from below. Bau 
and Torrance [6] also extend Zebib’s situation [4] to a 
permeable top surface, which reflects to the case of fluid 
overlaying the porous medium; i.e. the constant pressure 
case. Wang [7] re-examined his study [5] by using 
permeable top condition like Bau and Torrance [6], and he 
found that Rac approaches to 17.6537 when aspect ratio 
becomes unbounded. Kubitschek and Weidman [8] analyzed 
thermal convection of fluid-saturated porous medium in a 
vertical cylinder with a more general thermal heating 
condition; that is, the mixed heating or so-called Newtonian 
heating. When the Biot number becomes negligible, [8] 
reduces to Zebib case [4], and if Biot number increases 
without bound, [8] degenerates to Wang’s case [5]. The 
mode change sequences in [4-8] appear in the same manner 
because the azimuthal eigen-mode is completely determined 
by the lateral boundary condition, or the impermeable and 
insulating sidewall. The assumption for insulating sidewall 
exactly leads to the same mathematical condition as the 
condition for impermeable sidewall. Consequently, the 
original fourth-order ordinary differential equation 
degenerates to a second-order one. 

In practical situation, not all lateral conditions of above 
mentioned problem happen to be impermeable and 
insulated. Haugen and Tyvand [9] explored the thermal 
convection of fluid-saturated porous medium in a vertical 
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cylinder heated from below, specifying constant temperature 
at lateral surface rather than the insulating case studied 
before [3-8]. The constant temperature sidewall means that 
the lateral surface is perfectly conducting and the heat in the 
cylinder is permitted to leave from the lateral boundary. This 
thermal condition generally causes the onset of thermal 
convection to be delayed together with a higher critical 
Rayleigh number, and the prevailed mode changes present 
in a different manner as those in insulating case. The 
convection starts in the form of axisymmetric mode with all 
aspect ratios rather than the “cusp” variation for insulating 
lateral wall case [3-8].  

Motivated by previous literature we study the thermal 
convection of a homogeneous and isotropic porous medium 
saturated with a viscous fluid in a vertical cylinder, taking 
into account the later wall being impermeable and perfectly 
conducting. The variation of critical Rayleigh number and 
preferred mode change sequence are explored with respect 
to aspect ratio and Biot number. The results are presented in 
form of tables and figures. 

II. Problem Formulation 
We consider a vertical cylindrical container filled with a 

fluid saturated in a homogeneous and isotropic porous 

material. The height of the container is H and the radius is r0, 

with the aspect ratio being ɑ=r0/H. A cylindrical coordinate 

(r,ϕ,z) is employed with z-axis pointed upwards, opposed to 

the direction of gravity, as shown in Fig. 1. The velocity 

components (u,v,w) are in the directions of (r,ϕ,z), 

respectively. The sidewall of cylindrical container is 

impermeable and subject to Newtonian heating with the heat 

transfer coefficient h. The bottom z=0 is maintained at 

constant temperature T0 and the top surface z=H is kept at 

constant temperature T1, with ΔT=T0−T1. In a quiescent state, 

the basic velocity and temperature of take the form 

ub=(0,0,0), Tb=T0−ΔT z/H,                               (1)  

where b represents the quantity of the basic state. The basic 

temperature with a dimensional gradient −ΔT /H is assumed, 

which is due to pure conduction. The boundary condition at 

the side wall should be 

r=r0, k ∂T/∂r=h[T∞−T],                                 (2) 

where T∞ is the temperature outside the lateral wall. The 

condition of (2) states that the external heat flux delivered to 

the fluid-saturated porous medium at the lateral wall is 

q=h[T∞−T(r0)].  

The dimensionless equations governing the Darcy-

Boussinesq fluid saturated in a porous medium admit 

0 u  ,                                                   (3) 

  0P Ra T  u k ,                             (4) 

                    
2/T t T T    u ,                              (5) 

where u is the velocity vector, T is temperature, P is the 

pressure and t is time. The Rayleigh number is defined as 

Ra=gαKΔTH/νκm. Equations (3)-(5) have been made 

dimensionless using κm/H, H, (ρcp)mH
2
/κm, ΔT, and  ρ0νκm/K 

as the scales for velocity, length, time, temperature, and 

pressure, respectively. The physical quantities are: g the 

gravitational acceleration, α the coefficient of thermal 

expansion, cp the specific heat at constant pressure, ν the 

kinematic viscosity, κ the thermal diffusivity, K the 

permeability of the mixture, and ρ0 the reference 

temperature at T0. The subscript m denotes the properties 

belonging to the mixture of fluid and porous medium.  

We perturb the basic quantities with 

( ) ( , , , )b z r z t u u u , ( ) ( , , , )bT T z r z t   , 

   ( ) ( , , , )bP P z p r z t   .                                            (6)  

Substituting (6) in (3)-(5), eliminating the pressure, and 

neglecting higher-order terms from the resultant equations, 

we obtain the linearized version with dropping the primes: 
2 2

1 0w Ra     ,                                                  (7) 

2 0w   ,                                                             (8) 

The corresponding boundary conditions take the form 

0w  , 0      at z=0, 1,                                          (9) 

0u   ,  /  0r Bi      at r= ɑ,                     (10) 

where ɑ=r0/H is the aspect ratio, and Bi=hH/k is the Biot 

number. Equation (9) results from the impermeable and 

perfectly conducting conditions at both upper and lower 

surfaces, whereas (10) reflects to the consequence of 

impermeable and mixed heating at lateral wall. In the 

limiting case of large Biot number, we recover the case of 

Haugen and Tyvand [9] for isothermal cylinder wall, 

whereas the situation reduces to Zebib [4] for constant heat 

flux lateral wall when Biot number becomes negligibly 

small. We note that the onset of convection can be proved as 

stationary type and thus the time-derivative term is absent. 

The stability problem (7)-(10) are coupled in velocity and 

temperature. We may decouple them to the form  

                   
4 2

1 0w Ra w   
,                                      (11) 

                    
4 2

1 0Ra    
.                                        (12) 

We employ a sinusoidal function sin(nπz) to satisfy the 

boundary conditions (9). Thus the horizontal Lapalcian 

operator 1
2
 may be replaced by 

2
+n

2
π

2
, where n is a 

positive integer. Then (11) and (12) become 
4 2 2 2 0w Ra w Ra n w     ,            (13) 

                    
4 2 2 2 0Ra Ra n        .              (14). 

The most unstable mode prevails for the lowest mode in the 

vertical direction, we set n=1. Factorizing above two 

equations leads to 
2 2( )( ) 0b c w     ,                            (15) 

2 2( )( ) 0b c      ,                             (16) 

where the parameters satisfy the relation: 

               b c Ra  , 
2bc Ra .                                (17) 

The constants b and c can be explicitly solved and they are 

both positive if Ra4
2
. We now deal with the temperature 

equation only. The eigenfunctions of (16) must satisfy the 

two Helmholtz equations  
2( ) 0b    ,                                            (18) 

2( ) 0c    .                                            (19) 

The total solution of the present convection problem should 

be a linear combination of solution for each Helmholtz 

equation, and it will be the complete solution if b and c are 

different. If b=c, we have Ra=4
2
 which is exactly the Rac 

for thermal convection of an infinite fluid layer saturated in 

porous medium (Horton and Rogers [1], Lapwood [2]) or 

the Rac in the limiting case of large aspect ratio with 
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insulating walls (Beck[3], Zebib[4]). We note that the Rac is 

the smallest one with respect to all possible wavenumbers 

for an infinite fluid layer without lateral boundaries. 

However, it will be the smallest one for discrete 

wavenumber depending upon the geometry of the container 

when lateral boundary is concerned. Heat conduction at the 

lateral walls usually takes away the heat and thus delays the 

onset of convection, leading to critical Rayleigh number 

Ra=4
2
. The analytical approaches con-firmed this 

argument, the readers are referred to Zebib [4], Kubitschek 

and Weidman [8], Haugen and Tyvand [9], Nilsen and 

Storesletten [10]. Incorporated with the curl of Darcy’s law, 

the first boundary condition in (10) becomes  

0
w

Ra
r r

 
 

 
  at  r=ɑ.                           (20) 

Taking differentiation of heat equation with respect to r 

yields 

                  
2 0

w

r r


 
  

 
                                         (21) 

We arrive at a single expression for velocity and 

temperature condition from (20) and (21) 

2[  ] 0Ra
r

 


  


 at  r=ɑ.                                (22) 

III. Method of Solution 
The eigenvalue problem for temperature perturbation 

composed of (18), (19), (10) and (22) is solved by using 
separation of variables. We assume two eigen-functions 
corresponding to the two Helmholtz equations in the form 

1 ( )cos sinmJ pr m z   ,                                 (23) 

2 ( )cos sinmJ qr m z   ,                                 (24)  

where Jm is the Bessel function of order m of the first kind, 
and m is a non-negative integer. The two wavenumbers p>0 
and q>0 are related to b and c through the two Helmholtz 
equations by: 

b=p
2
+π

2
  and  c=q

2
+π

2
.                               (25) 

They can be recast in terms of Ra as 

p
2
+q

2
=Ra−2π

2
  and  pq=π

2
.                       (26) 

The total solution will now be a linear combination of 
the two eigen-functions θ1 and θ2 as 

1 1 2 2A A     ,                                     (27) 

where A1 and A2 are constants. 

Substituting (27) into (10) and (22) and utilizing (26), we 
get 

1

2

( ) ( ) ( ) ( )
0

( ) ( )

m m m m

m m

pJ pa BiJ pa qJ qa BiJ qa A

J pa J qa A

     
        (28) 

where the primes denote differentiation with respect to their 
respective argument. To have non-trivial solution for A1 and 
A2, we can obtain the characteristic equation by vanishing 
the determinant of (28)  

 
( ) ( ) ( )

[ ( ) ( ) ( ) ( )] 0

m m

m m m m

p q J pa J qa

Bi J pa J qa J qa J pa

  

  
.        (29) 

The corresponding temperature can now be expressed as 

 

1 [ ( ) ( )
( )

           ( ) ( )]cos sin

m m

m

m m

A
J qa J pr

J qa

J pa J qr m z



 






.               (30) 

Two limiting cases for above equation can be deduced. 
By letting Bi→∞ or the perfectly heat-conducting wall, the 

condition (29) becomes (Haugen and Tyvand [9]) 

( ) ( ) ( ) ( ) 0m m m mJ qa J pa J pa J qa  
 .                         (31) 

For negligible Biot number (Bi→0), i.e. the case of 

insulating wall, we have 

 
( ) ( ) ( ) 0m mp q J pa J qa  

,                                     (32) 

which can be reduced to Zebib [4]. 

We may replace q by π
2
/p from (26). Once the solution 

of (29) is searched numerically, the corresponding Rayleigh 
number is given by  

 2 4 2 2 2 2/ 2 ( / )Ra p p p p       .                              (33) 

Regarding (33), the smallest allowable Rayleigh number 
is the critical Rayleigh number and it takes the value of 4π

2
, 

which is exactly the critical Rayleigh number for infinite 
porous layer. This condition occurs only when p=q=π. 
However, this is not the case if a is finite. Since the 
Rayleigh number is an increasing function of p when q is 
greater than π, in view of (33), the search for critical 
Rayleigh number is equivalent to finding the smallest 
possible value of p requiring the zero determinant. To verify 
our numerical result, some values of p for several azimuthal 
modes m, aspect ratio a and infinite Biot number Bi→∞ are 

compared with those of Haugen and Tyvand [9] (not shown). 
The agreement is excellent. Table 1 gives the results of Rac 
and (m,n) for a specific a at Bi=0. These tables show an 
excellent agreement compared with existing data. We note 
that when Bi→ 0, i.e. the insulating wall, the critical 

Rayleigh number shows a non-monotonic variation of aspect 
ratio a (Zebib [4]), but it shows a smooth relation with a 
when Bi→∞ , i.e. the perfectly heat-conducting wall 

(Haugen and Tyvand [9]). In addition, the Rayleigh number 
for insulating case is always smaller than that for perfectly 
heat-conducting case, implying that heat may lose through 
the perfectly heat-conducting boundary and result in a 
higher Rayleigh number.  

Using the relation of 
1 1( ) [ ( ) ( )] / 2m m mJ x J x J x 

   , 

the characteristic equation (29) becomes 

 

1 1 1 1

1 1

1 1

( )[ ( ) ( )][ ( ) ( )] / 2

     { ( )[ ( ) ( )]

                   ( )[ ( ) ( )]} 0

m m m m

m m m

m m m

p q J pa J pa J qa J qa

Bi J pa J qa J qa

J qa J pa J pa

   

 

 

  

 

  

.    (34) 

For axisymmetric mode m=0, the characteristic equation 
reduces to 
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       1 1

0 1 0 1

( ) ( ) ( )

[ ( ) ( ) ( ) ( )] 0

p q J pa J qa

Bi J qa J pa J pa J qa

 

 
.           (35)  

The velocity component w can be obtained from (8) and 
(27) as 

 

2 21

2 2

[( ) ( ) ( )
( )

( ) ( ) ( )]cos sin

m m

m

m m

A
w p J qa J pr

J qa

q J pa J qr m z



  

 


 

.      (36) 

The stream function can be calculated through the 
relation 

/ r rw   .                                (37) 

For axisymmetric mode m=0, the stream function 
becomes 

  

1
1 1 1 1

1

( )
[ ( ) ( ) ( ) ( )]sin

( )

A p q r
J qa J pr J pa J qr z

J qa
 


 

,    (38) 

where the integral 
0 1( ) ( )xJ x dx xJ x   and the identity  

0 1( ) ( )J x J x   have been employed. The corresponding 

radial velocity component in the case of axial-symmetry is 
given by 

1

1

1 1 1 1

( )1

( )

    [ ( ) ( ) ( ) ( )]cos

A p q
u

r z J qa

J qa J pr J pa J qr z






   





 .         (39) 

IV. Results and Discussions 
We consider the onset of thermal convection of a fluid-

saturated porous medium in a vertical cylinder subject to 

impermeable and constant temperature at both lower and 

upper surfaces. The balance between heat flux −k∂T/∂r and 

external heat rate delivered to the porous matrix h(T∞−T) at 

side wall is assumed. The characteristic equation (29) for the 

present thermal convection problem possesses the functional 

form 

F(Ra, Bi, a, m, n)=0                                   (40) 

that can be evaluate numerically over all modes (m,n) to 

determine the critical Rayleigh number Rac for fixed ɑ  and 

Bi. Here mode (m,n) is defined as a combination of 

azimuthal mode and radial mode, respectively. Suggested by 

Kubitschek and Weidman [8], we examine the thermal 

stability characteristics for selected Bi in the range 10
-4≤Bi

≤10
4
 covering the aspect ratio 0<a≤3 with a fine grid 

spacing 0.001. We plot the variation of Rac as a function of 

a and Bi=10
-4

, 0.1, 1, 10, and 10
4
 in the stability curves 

shown Fig. 2.  

The lowest curve at Bi=10
-4

 behaves in a close agreement to 

the result given in Fig. 1 of Zebib [4] which is subject to 

impermeable and insulating conditions at the lateral wall. 

The Rac presents a cusp-like variation with respect to a and 

the smallest Rac approaches 4π
2
 as a→∞. The cusp has 

discontinuities in derivative of curve in Rac~a diagram, 

separated by two consecutive modes (m,n) and (m*,n*), 

showing the non-monotonic relation between Rac and a. The 

mode change (m,n) from slender cylinder (small a) to wide 

one (a≈3) takes on the sequence: (1,1), (2,1), (0,1), (3,1), 

(4,1), (1,2), (5,1), (2,2), (0,2), (6,1), (3,2), (1,3), (7,1) and 

(4,2) with the corresponding local maximum (possibly) and 

aspect ratio between modes change (Rac, a) being at (0.751, 

41.9303), (1.089, 39.9798), (1.278, 39.5603), (1.505, 

40.0265), (1.693, 39.4789), (1.862, 39.8166), (2.088, 

39.4979), (2.184, 39.4891), (2.310, 39.5222), (2.469, 

39.5211), (2.633, 39.5177), (2.726, 39.4790) and (2.841, 

39.5394).   

Other mode change sequences and corresponding (Rac, a) 

for various Bi are given in Table 3. We observe that the 

number of modes appeared decreases in the region 0<a≤3. 

The modes (6,1) and (7,1) are absent for case Bi=0.1 

compared to the case Bi=10
-4

. Moreover the non-

axisymmetric mode (4,1) shifts from (1.505, 40.0265) to 

(2.841, 39.6907) at Bi=10
-4

, which reflects to the fact that 

some specific modes do not really disappear in the stability 

diagram. They would possibly occur at larger value of a 

when Biot number increases. The mode change sequence 

becomes (1,1) (not shown in Fig. 2), (0,1), (1,2), (0,2), (1,3) 

and (0,3) as Bi reaches the value 10. One may acquire 

another fact from Fig. 2 that the critical Rayleigh number at 

large Bi is always larger than that at small Bi when a keeps 

fixed. The thermal condition approaches to insulating 

condition when Bi is negligible and to perfectly heat- 

conducting condition when Bi is very large. This is because 

that heat is not permitted to leave from the fluid to the wall 

for insulating condition (Bi=0) and is allowed to transfer 

across the wall for increasing Bi. Thus the potential to 

destroy the thermal equilibrium becomes weaker when the 

Biot number raises, and consequently results in a higher 

value of Rac.  

The highest curve of Rac at Bi=10
4
 depicts a smoothly 

decreasing function of a rather than the cusp-like variation 

at Bi=10
-4

, 0.1, 1 and 10. We find that the preferred mode of 

convection is axisymmetric (m=0) for all range of 0<a≤3 

except that the non- axisymmetric modes (m=1) are present 

at very narrow patches of a (1.637, 1.663) and (2.673, 

2.703) approximately. Other non-axisymmetric modes do 

not prevail in our computational range. Haugen and Tyvand 

[9] gave a mathematical analysis to confirm that only 

axisymmetric mode of convection is prevalent in slender-

cylinder limit for perfectly heat-conducting side wall. The 

smooth relation between Rac and a was found by Nilsen and 

Storesletten [10] for thermal convection in a two-

dimensional box with conducting walls and also verified by 

Rees and Lage [11] for natural convection in a vertical 

porous insulation layer. The case at Bi=10
4
 also presents a 

nearly smooth relation between Rac and a because large Bi 

corresponding to perfectly heat-conducting case. When Bi 

takes the value of infinity, our results agree with Haugen 

and Tyvand [9]. 

V. Conclusion 
 

In this study we have examined the onset of thermal 

convection of a vertical circular porous cylinder with 

impermeable and mixed heating at cylindrical wall. Owing 

to assumption of mixed heating at sidewall, our results 

reduce to Zebib [4] for insulating case when Bi→0 and to 



 

16 

 

Proc. of The Fifth Intl. Conf. On Advances in Applied Science and Environmental Technology - ASET 2016 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-106-1 doi: 10.15224/ 978-1-63248-106-1-33 

 

 

Haugen and Tyvand [9] for perfectly conduction case when 

Bi→∞. The following are main findings: 

(1) The stability curve presents a cusp-like variation with 

respect to aspect ratio for finite Biot number but it becomes 

a smooth variation for very large Biot number; that is, non-

axisymmetric mode prevails for finite Biot number and 

axisymmetric mode becomes the only mode for infinite Biot 

number. 

(2) The number of mode change with respect to aspect 

ratio decreases when Biot number raises.  

(3) For fixed aspect ratio, the critical Rayleigh number 

increases as Biot number enhances due to the allowance of 

heat leaving across the sidewall. 
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Table 1 Mode change sequence (m,n) and the corresponding 

(Rac, ɑ) from slender cylinder ɑ≈0 to wide cylinder ɑ≈3. 

 

 
 

 

 
 

Figure 1.  Physical configuration and coordinates system.  

 

              Figure 2   Stability curves versus a for various Bi. 
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