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Abstract—In this paper, two main theorem dealing 

with infinite and factored Fourier series, which 
generalizes some known results, has been generalized 

to | , ; |n kA p   summability method. This new theorem 

also includes several known and new results. 
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                I. Introduction 
 
Definition 1. Let  na be a given infinite series with 

partial sums )( ns . Let )( np be a sequence of positive 

numbers such that 
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The sequence-to-sequence transformation 
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(2)         

defines the sequence ( )nt of the Riesz mean or simply the 

 npN ,
 
mean of the sequence )( ns generated by the 

sequence of coefficients )( np  (see [11]). 

Definition 2. The series  na is said to be summable 

knpN , , 1k  if  (see [3]) 
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(3)         

In the special case when 1np
 
for all values of n 

(resp. 1k  ), 
knpN , summability is the same as 

k
C 1, (resp. npN , ) summability (see [10]). 
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Definition 3. The series  na is said to be summable 

, ;n k
N p  , 1k   and 0   if  (see [7]) 
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(4)         

where  1 1
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In the special case, when 1np
 
for all values of n 

(resp. 0  ), , ;n k
N p  summability is the same as 

,1;
k

C   (resp. , n k
N p ) summability. 

 

               II. Known Results 

 
Many works dealing with some absolute summability 

methods of infinite and Fourier series have been done (see 

[1-2], [4-8], [12-15],[21]). Among them, in [16] Özarslan 

has proved  the following theorem. 

Theorem 1. Let 1k . If the sequence )( ns  is bounded 

and the sequences ( )n  and )( np  satisfy the following 

conditions  
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                1 ( ),n np O p   (7)  

then  the  series n n na P  is summable 
knpN , , 1.k   

 

An Application of Absolute Matrix 

Summability  to Fourier  Series 

 
Let ( )f x be a periodic function with period 2 and 

Lebesgue integrable over ( , )  . The Fourier series of 

( )f x  is  
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(8)  

       

 

where ( )na  and ( )nb  denote the Fourier coefficients. 

The convergence of Fourier series can be ensured by local 

hypothesis, that is to say, the behavior of the convergence of 

Fourier series for a particular value of x  depends on the 

behavior of the function in the immediate neighbourhood of 

this point only (see [20]). 

Theorem 2. ([16]) Let 1k .The summability  
knpN , of 

the series ( )n n nC x P  at a point is a local property of a 

generating function  if the conditions (5) and (6) are 

satisfied.  

Definition 4. Let  na be a given infinite series with the 

partial sums )( ns . Let  nvaA   be a normal matrix, i.e., 

a lower triangular matrix of nonzero diagonal entries. Then 

A defines the sequence-to-sequence transformation, 

mapping the sequence ( )ns s  to ( ( ))nAs A s , where 
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The series  na is said to be summable 
k

A , 1k if (see 

[19]) 
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(10)         

and it is said to be summable 
knpA, , 1k , if (see [18]) 
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(11)         

 

where 
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If we take 1np for all values of  n, 
knpA,  

summability is the same as 
k

A summability. Also, if we 

take 

n

v
nv

P

p
a  , then 

knpA, summability is the same as 

knpN , summability. 

and  also it is said to be summable , ;n k
A p  , 1k , and 

0   if (see [17]) 
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               III. Main Results 
 

The aim of this paper is to prove a more general theorem 

which includes some of the above-mentioned result as a 

special cases. 

Theorem 3. Let 1k  and 10
k

   . Let )( ns be a 

bounded sequence and suppose that  nvaA   is a positive 

normal matrix such that 
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If  a  sequence ( )n  and  )( np  holds the following 

conditions, 
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then the series  n n na P  is summable | , ; |n kA p  . 

Theorem 4.  Let 1k  and 10
k

  . The summability  

| , ; |n kA p   of the series ( )n n nC x P  at a point is a 

local property of a generating function  if all the conditions 

of  Theorem 3 are satisfied.  

We need  the following lemma for the proof of our theorem. 

Lemma 5 (see [16])  If  the sequences ( )n  and )( np  

satisfy the conditions (5) and (6) of Theorem 1, then 

| | (1)m mP O   as m . 
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Proof of Theorem 3 

 

( )nI denotes the A-transform of the series 
n n na P . 

Then, we have 
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 Applying Abel's transformation to this sum, we get that 
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To complete the proof of Theorem 3, it is sufficient to show 

that 
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Proof of Theorem 4 
 

The convergence of  the Fourier series at  t x  is a local 

property of  f  (i.e., it depends only on the behaviour of f  

in an arbitrarily small neighbourhood of  x ), and hence the 

summability of  the Fourier series at  t x  by any regular 

linear summability method  is also a local property of f . 

Since the behaviour of  the Fourier series, as far as 

convergence is concerned, for a particular value of x  

depends on the behaviour of  the function in the immediate 

neighbourhood of  this point only, hence the truth of 

Theorem  4  is a consequence of  Theorem 3 and Lemma 5 

(see [9]). 

 

               IV. Conclusions 
 

Corollary 1. If we take 0   in Theorem 3, then we 

obtain  Theorem 1  dealing with 
knpA, summability. 

Corollary 2.  If  we take 
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v
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 in Theorem 3, then we 

obtain a new theorem concerning with , ;n
k

N p 
 

summability  factors of Fourier series. 

Corollary 3. If we take 

n

v
nv

P

p
a   and 1np for all 

values of n in Theorem 3, then we get a result concerning 

,1;
k

C  summability factors of  Fourier series (see [10]). 
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