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Abstract—Multi-resolution analysis has been a very popular with 

compression specially in video streaming because it eliminates the 

blocking effects of the DCT which become more prominent in 

videos. Wavelets are based on the multi-resolution but it is well 

acknowledged that wavelets are far more expensive in terms of 

hardware and software as compared to DCT. DCT, however, has 

been used to compress image but not for multi resolution image 

analysis. We propose a multi-resolution discrete cosine 

Transform based method for image compression. This paper is 

an attempt to explore the possibilities of using DCT for multi-

resolution image analysis. Naive implementation of block DCT 

for multi-resolution expansion has many difficulties that lead to 

signal distortion. One of the main causes of distortion is the 

blocking artifacts that appear when reconstructing images 

transformed by DCT. The algorithm is based on line DCT which 

eliminates the need for block processing. The line DCT is one 

dimensional array based on cascading the image rows and 

columns in one transform operation. Several images have been 

used to test the algorithm at various resolution levels. The 

reconstruction mean square error rate is used as an indication to 

the success of the method. The proposed algorithm has also been 

tested against the traditional block DCT.  

Keywords - Discrete Cosine Transform, Image Compression, 

Multi-Resolution Analysis and DCT. 

I. INTRODUCTION 

Discrete cosine transform (DCT) has become the most popular 

technique for image compression over the past several years. 

One of the major reasons for its popularity is its selection as 

the standard for JPEG. DCTs are most commonly used for 

non-analytical applications such as image processing and 

signal-processing DSP applications such as video 

conferencing, fax systems, video discs, and HDTV. Mapping 

an image space into a frequency space is the most common 

use of DCTs. For example, video is usually processed for 

compression/decompression as 8 x 8 blocks of pixels. Large 

and small features in a video picture are represented by low 

and high frequencies. An advantage of the DCT process is that 

image features do not normally change quickly, so many DCT 

coefficients are either zero or very small and require less data 

during compression algorithms. DCTs are fast and, like FFTs, 

require calculation of coefficients. The entire standards 

employ block based DCT coding to give a higher compression 

ratio. The aim here is to see if we can get the same results in 

compression using DCT as we can get by using the wavelets. 

The word multi-resolution refers to the simultaneous presence 

of different resolutions. The basic difference between DCT 

and wavelets is that in wavelets rather than creating 8 X 8 

blocks to compress, wavelets decompose the original signal 

into sub-bands. Wavelets are basically an optimizing 

algorithm for representing a lot of change in the pictures. With 

DCT algorithm, the 8 X 8 blocks can lose their crisp edges, 

whereas, with wavelets the edges are very well defined. Now, 

if the wavelets produce much better results than DCT then 

why do we need to try DCT for multi-resolution? The reason 

is that there are certain drawbacks to WAVELETS especially in 

terms of computation time required. For the highest 

compression rates, it takes a longer time to encode. The other 

reason is that MPEG is already a standard using DCTs and 

computer hardware comes with MPEGs built in. There is 

hardly any hardware available in the market these days which 

comes with wavelets as a built in standard.  

The above arguments are our motivation for this paper to 

come up with an algorithm of multi-resolution analysis for 

image processing which will have the efficiency and cost of 

the DCT and the compression results of the wavelets.  

II. MULTI-RESOLUTION ANALYSIS 

The concept of multi-resolution analysis was formally 

introduced by Mallat [1989] and Meyer [1993] [2]. Multi-

resolution analysis provides a convenient framework for 

developing the analysis and synthesis filters [1]. The basic 

components for a multi-resolution analysis are: an infinite 

chain of nested linear function spaces and an inner product 

defined on any pair of functions. Multi-resolution has been 

widely used recently with great success with the wavelets. 

Wavelets and multi-resolution analysis have received immense 

attention in the recent years. There have been a lot of problems 

which have made use of wavelets and multi-resolution 

analysis and thus making it a popular scheme for compression. 

The basic idea behind multi-resolution analysis, as explained 

in [1], is to decompose a complicated function into smaller 

and simpler low resolution part together with wavelet 

coefficients. These coefficients are very important to recover 

the original signal when we apply the inverse.  

Mallat [1989] described multi-resolution representation as a 

very effective method for analyzing the information content 

for images. The original scale and size of objects in an image 

depends upon the distance between the image and the camera. 

To compress an image to a smaller size, we ought to keep the 

essential information of the image. In Mallat’s words a multi-
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resolution decomposition enables us to have a scale-invariant 

interpretation of the image [3]. Multi-resolution analysis 

provides a hierarchical structure. It means that in order to get 

to 15 % compression, the image is not compressed directly to 

15% as in block DCT, instead the image is compressed in 

stages; reducing the image to a half at every stage. At different 

resolutions the details of a signal generally characterize 

different physical aspects of the image. It is a common 

observation that at coarse resolutions the details correspond to 

larger overall aspects of the image while at fine resolutions the 

distinguishing features are prominent. Some of the common 

applications of multi-resolution analysis are image 

compression, edge detection, and texture analysis. Multi-

resolution analysis is not only restricted to the previously 

mentioned techniques but recently researchers also found 

some more applications of multi-resolution analysis and found 

good results. These applications include image restoration and 

noise removal. Multi-resolution analysis tries to understand 

the content of the image at different resolutions [4]. Based on 

the concept of multi-resolution, we have image pyramids. 

These pyramids are essentially simple structures for 

representing images at more than one resolution. The base of 

the pyramid, as we can guess, contains the image 

representations at the highest possible resolution, whereas the 

apex contains the low resolution approximation. The other 

technique that arises from the concept of multi-resolution 

analysis is sub-band coding. In this technique an image is 

decomposed into a set of components called the sub bands. 

These components are limited in their bandwidth, which 

means that they cannot be greater than a certain pre-defined 

size. This is where the importance of multi-resolution analysis 

lays, i.e. the reconstruction of the original image; 

reconstruction of the original image is done by up sampling, 

filtering and summing the individual sub-bands without the 

loss of any pertinent information [5].  

III.   DISCRETE COSINE TRANSFORM (DCT) 

DCT has been very popular transform for many years. The 

fact that DCT is a near optimal transform is the main reason 

for its popularity. The DCT transform de-correlates the image 

data [3]. In DCT, an image is typically broken into 8x8 blocks. 

These blocks are each transformed into 64 DCT coefficients 

[14]. In [7], the most commonly used DCT definition of one 

dimensional sequence of length N is given by equation (1): 
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The above equation is defined for u = 0, 1, 2, 3…..N-1. There 

are two kinds of DCT coefficients; AC and DC. The DC 

coefficient corresponds to the value of C (u) when u = 0. In 

other words, DC coefficient provides the average value of the 

sample data [3]. The rest of the coefficients are called AC 

coefficients. Based on the one dimensional DCT as described 

above, the two dimensional DCT can be achieved. The above 

equation shows the two dimensional DCT. It is clear from the 

above equation that it is derived by multiplying the horizontal  

one dimensional basis function with the vertical one 

dimensional basis function as given in equation (2). 
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Both one and two equations are one dimensional DCTs work 

in similar fashion. One dimensional DCT is used mainly in 

sound signals because of its one dimensional nature, whereas, 

two dimensional DCT is used in images because of their two 

dimensional nature. 

DCT has many important properties that help significantly in 

image processing, especially in image compression. One of 

these properties is energy compaction as shown in figure -1. 

 

 
Figure 1.  Images show Energy Compaction Property of DCT 

Energy compaction means that most of the pertinent 

information of the image is stored or compacted in top left 

corner of the image. In DCT, lower frequencies are on the top 

left corner and they contain most of the information. The high 

frequencies don’t have much of the information needed to 

reconstruct the image. With this property it is easier for the 

quantizer and encoder to simply leave out the high frequencies 

as a means of compressing the image without losing the 
information. Since some of the data is lost or neglected, DCT 

results in Lossy compression.  

Another important property of DCT is de-correlation. It was 

mentioned earlier that DCT is very good at removing the inter 

pixel redundancy. This property is used in reducing the 

amplitude of the signals [7]. Figure 2 shows the de-correlation 

property of DCT. 

 
Figure 2.  Decorrelation property of DCT 

One of the main problems and the criticism of the DCT is the 

blocking effect. In DCT images are broken into blocks 8 x 8 or 

16 x 16 or bigger. The problem with these blocks is that when 

the image is reduced to higher compression ratios, these 

blocks become visible. This has been termed as the blocking 

effect. This is evident in figure - 3. This image is compressed 

using 8 x 8 blocks and only 4 coefficients are retained. The 

blocking effect is very prominent in this image. This blocking 

effect creates a lot more problems in videos and it becomes 
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really hard to recognize the person in the image during 

teleconferencing as shown in figure - 3 

  
Figure 3.  Blocking effect of DCT using 8 x 8 blocks. 

IV.  MULTI-RESOLUTION DCT 

 Multi-resolution analysis (MRA) has been very popular with 

compression specially in video streaming because it eliminates 

the blocking effects of the DCT which become more 

prominent in videos. In this new approach for DCT first of all 

we will eliminate the blocking completely. Instead of using the 

blocks as done in the standard DCT, we will use the full rows 

and columns of the image. Once we have the rows and 

columns of the image, we will apply the techniques of multi-

resolution on it to achieve the required compression. The idea 

here is not to prove that this new approach is better than the 

block DCT or the wavelets for compression purposes. In fact, 

the idea here is to show that multi-resolution analysis can be 

applied to DCT. 

The New Algorithm: The steps of the new algorithm are as 

follows:  

i. Read the image and convert into a double using 

MTALAB function “im2double”.  

ii. Divide the image into rows and columns [row col] = 

size(a). 

iii. Compute the total size of the image 2(row*col).  

iv. Concatenate the rows and columns to each other and 

make a long linear line of data.  

v. Apply 1-D Dct to the data obtained from step 4.  
vi. Apply multi-resolution analysis and discard the 50% 

of the data obtained from step 5.  

vii. Repeat the process until the desired compression is 

reached.  

viii. Apply inverse 1-D DCT  

ix. Separate the rows and columns from the data 

received from step 8.  

x. Reconstruct the original image matrix by averaging 

pixels from the rows and the columns. This averaging 

is necessary to remove any distortion or noise 

introduced in the process.  

xi. Compute the mean square error and compare it with 

the block DCT. 

As it has been mentioned earlier, the results obtained from the 

above algorithm will be compared against block DCT. The 

blocks used in block DCT will be at least 16 x 16 or more. 

There are two main parts to this algorithm which are of 

immense importance. The first step deals with eliminating the 

blocking artifacts which has been a problem with the block 

DCTs. The other part deals with applying multi-resolution 

analysis to the coefficients obtained after applying the DCT. In 

steps 2 and 4 it is clear that instead of making the blocks for 

the DCT we are taking the whole rows and columns and 

making a big one dimensional array for the pixels as shown in 

figure – 4. 

 
Figure 4.  Rows and columns of the image separated. 

The size of both columns and rows is N
2. 

So the total size of 

the image will be 2N
2

figure 4. The rows are concatenated to 

each other to form a one big horizontal line of pixels. The 

columns are also concatenated to each other in the same way. 

Now we concatenate concatenated columns to the end of the 

concatenated rows forming a 1-D signal of size 2N
2

. All these 

steps have been taken to eliminate the need of making the 

blocks for running DCT. This procedure is termed as 

“cascading rows and columns”. This process is shown 

pictorially in the following figure - 5. 

 
Figure 5.  Cascading the rows and columns into a 1-D array 

Once we have all the pixels arranged in a 1-D array then DCT 

is applied on it. We use the MATLAB built-in function “dct2”. 

This function computes a 2-D DCT but we can use it to 

compute the one dimensional DCT by using a matrix size of 

Nx1. After the DCT coefficients are obtained, we apply the 

multi-resolution analysis to the DCT coefficients to obtain the 

desired compression. Here the compaction energy property of 

the DCT is utilized. It has been established in the previous 

chapters that most of the information in DCT is retained at 

lower frequencies, meaning at the top left corner of the blocks. 

This property makes it easier and simpler to apply multi-

resolution analysis on DCT coefficients. Figure - 6 shows the 

energy compaction property of the DCT. On the X-axis there 

is frequency and the amplitude is plotted on the Y-axis. It is 

evident from the graph that much of the image information is 

stored in the left corner of the graph which is the low 

frequency. 
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Figure 6.  Shows the energy compaction property of DCT coefficients 

It means that in DCT coefficients most of the information is 

represented in the lower frequencies. This property plays a 

very important role while applying the multi-resolution 

analysis. In multi-resolution analysis we discard the 50% of 

the coefficients at each level until we get to the desired 

compression. Based on figure - 6, this process becomes easier 

as we can simply discard half of the coefficients at higher 

frequencies without losing much of the information because 

we have already established that most of the information is 

compacted at the lower frequencies. 

V. ALTERNATIVE APPROACH  

The above proposed algorithm is one way of eliminating the 

blocks i.e. by taking all rows and columns and concatenating 

them to make 1-D data. This approach has worked well and 

the results will be presented in the next section that 

consolidates our claim that the blocking artifacts can be 

avoided while still having acceptable errors. An alternate way 

of eliminating the blocks is explained as follows:  

Instead of taking rows and columns of the image matrix in this 

approach first we take only the rows of the original image 

matrix. The rows are concatenated to form a 1-D array of the 

pixels. DCT is applied to these 1-D row-wise pixels and using 

the energy compaction property to the DCT, half of the pixels 

are discarded. Next columns are taken from this compressed 

matrix and the process is repeated for concatenating, applying 

DCT and the multi-resolution part where half of the pixels are 

discarded. In the next resolution, we alternate this process and 

this time the columns are taken first and then the rows.  

This approach achieves 50% compression in two cycles; first 

for the rows and then for the columns as compared to the first 

approach in which 50% compression is achieved in one cycle 

because the rows and columns are taken at the same time. It is 

shown in the figure - 7 that from the original image matrix the 

rows are taken and reduced to half and then on the reduced 

coefficients the columns are taken and then reduced again to 

half to achieve the first 50% compression or the first 

resolution. The fact that this approach reduces the size of the 

image at each level, aliasing is introduced in this process. 

Since this approach is based on one dimensional DCT and we 

have already established in the previous chapters that MDCT 

also uses a similar approach. In order to use this approach 

properly, MDCT can be used because of its special technique 

of time domain alias cancellation (TDAC). 

 

 
Figure 7.  An alternate approach to eliminate blocks in DCT 

VI. EXPERIMENTAL RESULTS 

The main idea of this paper is to come up with a new 

algorithm that eliminates the blocking from the DCT as well 

as to show that multi-resolution analysis can be applied to the 

DCT. Several images have been used with our algorithm as 

well as the block DCT in order to compare the results. The 

block size used in block DCT is 32 x 32. We have not used 

any other block size because if a smaller block size is used 

then definitely the results will not be as good for the block 

DCT and it will not be a fair comparison. For both the images, 

we have run the test up to 6 resolutions. The mean square 

average is used to computer the errors for comparisons. 

Although the resolution is reduced at every level we keep the 

same size for the images as the original size in order to make 

easier comparisons. We obtain the same size as the original 

image in the reconstruction part by padding zeros to the 

reduced resolution to come up with the same size image. The 

results of the multi-resolution DCT as well as block DCT 

applied to the images can be seen in the following images as 

shown in figure - 8.  

 

 
(a) Level 1 

 
(b) Level 2 
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(c) Level 3 

 
(d) Level 4 

 
(e) Level 5 

 
(f) Level 6 

Figure 8.  Image of Lena at different resolutions (a-f) with Multiresolutuin 

DCT and Block DCT 

The above images represent the comparison between our new 

multi-resolution DCT algorithm and the block DCT at 

different levels. At each level after the DCT is taken, 50% of 

the high frequency DCT coefficients are discarded and 

replaced by zeros to keep the original size. IDCT is taken after 

that to reconstruct image. At the next level the DCT is taken 

again for the reconstructed image and the DCT coefficients are 

spread again across the image. The sharp edges will be in the 

high frequency range and the other important information in 

the lower frequency range. It is evident from the above images 

that; since we keep discarding the high frequency coefficients, 

meaning the edges, the images at each subsequent level get 

again for the reconstructed image and the DCT coefficients are 

spread again across the image. The sharp edges will be in the 

high frequency range and the other important information in 

the lower frequency range. It is evident from the above images 

that; since we keep discarding the high frequency coefficients, 

meaning the edges, the images at each subsequent level get 

blurrier. 

VII. CONCLUSION 

The purpose of this paper was to come with a new algorithm 

that would eliminate the blocking from the DCT as well as 

apply multi-resolution analysis to the DCT. The experimental 

results obtained proves our claims in the sense that the images 

reconstructed after compression do not have blocking artifacts 

and also we have shown that multi-resolution analysis can be 

applied to the DCT and, in fact, the results are very 

encouraging compared to our algorithm with the block DCT 

using 32 x 32 blocks. The reason for choosing this block size 

is that any blocks smaller would produce worse results and 

any blocks bigger would take quite longer time to do the 

processing. 
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