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Abstract—The nondominated sorting genetic algorithm with 

elitism (NSGA-II) is widely used due to its good performance on 

solving multiobjective optimization problems.  In each iteration 

of NSGA-II, truncation selection is performed based on the rank 

and crowding distance of each solution. There are, however, 

drawbacks in this process. These drawbacks to some extent cause 

overlapping solutions in the population and have an affection on 

the spread of nondominated solutions, which reduces the 

diversity of the obtained solution set. In this paper, 4 causes for 

generation of the overlapping solutions are investigated firstly. A 

new technique for alleviating this phenomenon is incorporated to 

enhance the capability of NSGA-II. The improved algorithm is 

referred to as NSGA-II+ in this paper. In NSGA-II+, overlapping 

solutions are removed during the truncation selection from the 

merged population (which is a combination of parent population 

and offspring population) after ranking in each iteration. The 

overlapping solutions and the ones with small crowding distance 

are removed one by one. The crowding distance is recalculated 

once a solution is removed. The performance of the improved 

algorithm is evaluated on four difficult test problems. Then 

NSGA-II+ is applied to the optimization of a composite wing 

structure with 2 objectives. Numerical results are reported which 

demonstrate the effectiveness of NSGA-II+. 

Keywords—nondominated sorting genetic algorithm, 

overlapping solutions, truncation selection, composite wing 
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I.  Introduction 
Nondominated sorting genetic algorithm (NSGA) 

proposed by Srinivas and Deb
[1]

 suffers from the 
computational complexity O(MN

3
) (where M is the number of 

objectives and N is the population size) and the difficult 
specifying of the share parameter σsh. The NSGA-II of Deb et 
al.

 
[2,3] incorporates a fast nondominated sorting approach 

with O(MN
2
) computational complexity. And the crowding 

distance is introduced to identify better solutions with the 
same rank, which eliminates the specifying of the share 
parameter. These features make NSGA-II a well-known and 
frequently-used evolutionary multiobjective optimization 
(EMO) algorithm. 
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There are drawbacks during the evaluation of crowding 
distance and truncation selection of NSGA-II. During the 
truncation selection those with lower rank and larger crowding 
distance are chosen as the next parent population. Instead, 
those with higher rank and smaller crowding distance should 
be removed. Once a solution is removed, the crowding 
distance of its neighbor should be reevaluated. And a large 
number of overlapping solutions are observed in the 
population at later iterations on many test problems. The 
crowding distance of an overlapping solution is not always 
zero. Its crowding distance is larger sometimes. Therefore, 
overlapping solutions with lower rank can survive and 
continue to recombine in the next iteration. Overlapping 
solutions, however, is adverse to the diversity preservation. An 
improved NSGA-II is proposed to overcome the above 
drawbacks. 

II. NSGA-II 
NSGA-II is a fast and elitist multiobjective  genetic 

algorithm in discrete and continuous domain. Simulated binary 
crossover (SBX)

[4,5]
 operator and polynomial mutation

[6]
 are 

used for real-valued problems. Mating selection is performed 
on parent population by binary tournament scheme with 
replacement. The winners recombine to generate offspring 
with prescribed probabilities. Truncation selection is 
conducted to identify a set of solutions from the merged 
population comprised of parent and offspring population. The 
ranking and the crowding measure are embedded in the 
truncation selection. Those selected comprise the next parent 
population. The process continues until a terminated criterion 
is met. And a nondominated solution set is obtained. The 
Schematic of the NSGA-II procedure

[7]
 is given in Fig. 1. 
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Figure 1.  Schematic of NSGA-II procedure. 

A. Investigate the Generation of 
Overlapping Solutions 
On many test problems, a lot of overlapping solutions are 

observed in the population at later iterations. The redundant 
solutions are adverse to the diversity preservation and the 
exploration of the design space.  

Since the initial population is often generated randomly, 
the overlapping solutions do rarely emerge at that time and are 
mainly produced in the recombination and selection phase. 
Offspring are generated by crossover and mutation of the 
parent mates with probabilities less than 1.0, say 0.9 for 
crossover and 1/n (n is the number of design variables) for 
mutation. With above crossover probability some offspring 
come directly from parents without crossover. And mutation 
maybe skipped on them due to the lower mutation probability. 
Thus, some offspring are identical to their parents, and 
overlapping solutions may emerge. 

In effect, elitism operator combines the old population 
with the newly created one and chooses to keep better 
solutions from the combined population. In other words 
elitism helps preserve promising building blocks. Each parent 
should participate in recombination in order to generate new 
solutions as many as possible. And the crossover probability 
can reach to 1.0. Even so, some overlapping solutions still 
exist on experiment. One reason lies in the binary tournament 
selection with replacement during mating. That mating 
strategy cause some parent to breed more than once, and some 
have no chance to breed. To some extent the overlapping 
solutions can not be avoided. 

Another two reasons may lead to overlapping solutions in 
NSGA-II. The first is SBX and the second truncation 
selection. Promising solutions can be effectively generated by 
SBX and polynomial mutation operation for real-valued 
problems. In case of a single design variable, SBX is a 
simulation of single point crossover of binary string. In case of 
more than one design variable, SBX is a simulation of uniform 
crossover of binary string. A random number belonging to 
[0,1] is generated in the later case. If the number is less than 
0.5, SBX is performed on this design variable. Otherwise, 
SBX is skipped for this design variable. This process can also 
lead to overlapping solutions. The less, the number of design 
variables are, the larger the chance of generating overlapping 
solutions is. This phenomenon is observed in [7] on test of 
SCH1. The above 0.5 can be increased to 1.0 to eliminate this 
chance. But another problem occurs. The SBX mechanism is 
destroyed. We do test on ZDT4[2,3,8], the experimental 
results show that the performance of NSGA-II deteriorates 
when above 0.5 is change to 1.0. 

B.  Problems with Truncation Selection 
Truncation selection is performed on the merged 

population in NSGA-II. Promising solutions are selected into a 

mating pool to breed. If the number of solutions in the mating 

pool exceeds the population size, and no overlapping solutions 

exist, the most crowded solutions should be removed. This 

kind of removal rule is applicable to solutions of all ranks. 

And we take the solutions on the nondominated rank (the first 

rank ) as an example to illustrate the detail process. 

Nondominated solutions of a two-objective minimization 
problem are shown in Fig 2. Eight circles denote eight 
nondominated solutions, and are labeled as A1, A2…A8. Six 
solutions are to be selected. The crowding distance of A2 is 
2.0, A6 1.77, and A7 1.58 following the density estimation of 
NSGA-II. Only six solutions with larger crowding distance are 
chosen when truncation selection is performed in NSGA-II. 
They are A1, A2…A5, A8. 

On the other hand, if the most crowded solution is 
removed, A7 is the one because of its smallest crowding 
distance 1.58. After A7 is deleted, the crowding distance of A5 
and A6 should be recalculated. the crowding distance of A6 is 
updated to 2.50 that is larger than its old value 1.77. Thus, the 
next removed solution is A2 which is now the most crowded 
one. The left six solutions are A1, A3…A6, A8 that is different 
from those selected by NSGA-II. 
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Figure 2.  An illustration of truncation selection 

A further investigation shows that the distance between A5 

and A8 is larger than that between A1 and A3, which justifies 
the remaining of A6 rather than A2. The selection of A1, A3…A6, 
A8 into mating pool will help to increase the chance to 
generate new solutions at sparse space. And a uniformly 
spread solutions set could be obtained finally. The above 
simple illustration demonstrates that the solutions with larger 
crowding distance may not be correctly identified during the 
truncation selection in NSGA-II. By removing the most 
crowded solution one by one instead, this problem can be 
overcome. And the appropriate solutions can be identified. 

III. NSGA-II+ 

A.  Removal of Overlapping Solutions 
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As stated above, crossover probability can be set to a 
higher level if elitism is adopted in the algorithm. Thus, the 
crossover probability is set to 1.0 in the paper.. 

If truncation selection is directly performed according to 
the rank and crowding distance of each solution in the merged 
population as does in NSGA-II, some overlapping solutions 
will survive to the next iteration. Instead some copies of 
overlapping solutions should be removed firstly to preserve 
diversity of the population. We assign rank 1 to solutions in 
the first front, rank 2 to those in the second front, and so on. 
The lower front a solution belongs to, the better it is. After 
identifying all the nondominated solutions (those in the first 
front) in the merged population, they are copied to a mating 
pool. And crowding distance of each solution in the mating 
pool is estimated in objective space. 

In case of nondominated solutions exceeds the population 
size in the mating pool, some overlapping solutions with the 
smaller values of crowding distance are removed. In this 
context, only the most crowded overlapping solution is 
removed. This process continues until the number of left 
solutions is equal to the population size or no overlapping 
solutions are remained in the mating pool. Note that the 
crowding distance of the adjoining solutions should be re-
estimated each time a solution is left out. For simplicity it can 
be reestimated for all the remained solutions of this rank in the 
mating pool in the implementation. 

If the number of nondominated solutions is less than the 
population size in the mating pool, it is necessary to pick up 
all the dominated solutions in the second front. And they are 
copied to the mating pool. If it is not enough yet, those in the 
following front (the third front) are identified and added to the 
mating pool, too. This procedure is repeated until the number 
of solutions in mating pool is not less than the population size. 
Then the above overlapping solutions’ elimination procedure 
is performed on the solutions in the highest front in the mating 
pool. 

The truncation selection in the following subsection will 
start if the number of solutions in the mating pool is still more 
than the population size after removal of the overlapping 
solutions. 

B.  Truncation Selection 
After removal of the overlapping solution, the truncation 

selection is performed on those in the highest front in the 
mating pool. The most crowded solutions are removed one by 
one. Once a solution is left out, the crowding distance of the 
adjoining solutions should be reestimated. This process 
continues until the appropriate number of solutions is left. This 
selection procedure will help to increase the chance to 
generate new solutions at sparse space. 

IV. Structure of NSGA-II+ 
The flow of NSGA-II+ is described as follows: 

(1) Set population size Npop, the crossover probability Pc, the 
mutation probability Pm, the distribution index ηc for crossover 

operator, the distribution index ηm for mutation operator, the 
maximum iteration number tmax, and generate the initial 
population P(0) randomly, set t=0; 

(2) Perform mating selection on P(t) with binary tournament 
scheme. Generate offspring population O(t) by crossover 
operators with probability Pc; 

(3) Perform polynomial mutation on solutions in O(t) with 
probability Pm; 

(4) Create a mixed population M(t) by merging P(t) and O(t). 
After ranking M(t), start the removal of overlapping solutions 
as described in subsection 2.1. Then start the truncation 
selection as described in subsection 2.1 if needed; 

(5) If the termination criteria are not met, let t = t+1 and go to 
step (2), otherwise output the obtained solution set. 

V. Examples 
The performance of NSAG-II+ is evaluate and compared 

to NSAG-II on two unconstrained and two constrained test 
problems using the coverage metric C and spacing metric Δ 
[9,10]

. The coverage metric, C, maps the ordered pair (A, B) to 
the interval [0,1]. The value C(A, B) =1 means that all 
solutions in B are dominated by A. The opposite, C(A, B) = 0, 
represents the situation when none of the solutions in B are 
covered by the set A. Note that always both directions have to 
be considered, since C(A, B) is not necessarily equal to 1 – 
C(B, A). In the case that 0 < C(A, B) < 1 and 0 < C(B, A) < 1, 
we say that neither A dominates B nor B dominates A. The 
spacing metric, Δ, gauges how evenly the solutions in the 
obtained nondominated set are distributed in the objective 
space. The smaller the spacing metric value is, the more 
evenly distributed the nondominated solutions are. The desired 
value for this metric is zero, which means that the elements of 
the set of nondominated solutions are equidistantly spaced.  

The running parameters of the two algorithms are as 
follows: the crossover probability is 1.0, the mutation 
probability is 1/n (n is the number of design variables), the 
distribution index ηc=15 for crossover operator, the 
distribution index ηm = 20 for mutation operator. 

A.  Test problems 
Four benchmark problems ZDT4, ZDT6, OSY and TNK 

from [2,3,8] are used to test the performance of multiobjective  
optimization algorithm. Among the four, two unconstrained 
problems are ZDT4 and ZDT6. The other two are constrained 
problems. 

B. Simulation Results and Discussion 
The results are from 50 independent runs of the two 

algorithms. Each experiment starts from a randomly generated 
population. Table 1 shows the mean of the coverage metric C 
obtained by NSGA-II+ and NSGA-II on the four test 
problems. For brevity, C(II+, II) is used to denote the coverage 
metric that nondominated sets obtained by NSGA-II+ 
dominates those of NSGA-II, C(II, II+) denotes the coverage 
metric that nondominated sets obtained by NSGA-II 
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dominates those of NSGA-II+. And Δ(II+) stands for the 
spacing metric of nondominated sets obtained by NSGA-II+, 
Δ(II) denotes that of NSGA-II. 

TABLE I.  MEAN OF THE COVERAGE METRIC C 

 ZDT4 ZDT6 OSY TNK 

C(II+, II) 0.342000 0.483800 0.222800 0.160800 

C(II, II+) 0.204000 0.037800 0.139400 0.117000 

TABLE II.  MEAN OF THE SPACING METRIC Δ 

 ZDT4 ZDT6 OSY TNK 

Δ(II+) 0.004807 0.004905 0.966510 0.004958 

Δ(II) 0.010031 0.002980 1.235110 0.008280 

From table 1 and table 2, we can see that NSGA-II+ performs 
better on ZDT4, ZDT6, OSY and TNK in terms of coverage 
metric. As for spacing metric, NSGA-II+ gets better spread of 
nondominated solutions on the four problems, too. We show 
the nondominated solutions obtained by a certain run on 
ZDT4, ZDT6, OSY and TNK in fig. 3, fig. 4, fig. 5 and fig. 6. 

 

Figure 3.  Nondominated solutions on ZDT4 

 

Figure 4.  Nondominated solutions on ZDT6 

 

Figure 5.  Nondominated solutions on OSY 

 

Figure 6.  Nondominated solutions on TNK 

We perform additional experiments by increasing the 
number of maximum generation to 500 with other parameters 
fixed. Table 3 and table 4 show the coverage metric and 
spacing metric respectively. 

TABLE III.  MEAN OF THE COVERAGE METRIC C 

 ZDT4 ZDT6 OSY TNK 

C(II+, II) 0.062000 0.019600 0.235400 0.175600 

C(II, II+) 0.053600 0.009600 0.088600 0.059200 

TABLE IV.  MEAN OF THE SPACING METRIC Δ 

 ZDT4 ZDT6 OSY TNK 

Δ(II+) 0.002392 0.002246 1.179084 0.003653 

Δ(II) 0.006868 0.008206 1.354876 0.008232 

After 500 generations, NSGA-II+ outperforms NSGA-II on 
OSY, TNK and ZDT6, and is competitive with NSGA-II on 
ZDT4 in terms of coverage metric. And NSGA-II+ gets better 
spread of nondominated solutions on 4 test problems. The 
nondominated solutions of ZDT4 and ZDT6 on a certain run  
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are shown in Fig. 7 and Fig. 8 respectively. There are axial 
translations for clarity in these two figures. It can be seen that 
the nondominated solutions set obtained by NSGA-II+ are 
more evenly spread than those of NSGA-II. 

 

Figure 7.  Nondominated solutions on ZDT4 after 500 generations 

 

Figure 8.  Nondominated solutions on ZDT6 after 500 generations 

Further additional experiments are run by increasing the 
number of maximum generation to 800 with other parameters 
fixed. Table 5 and table 6 show the coverage metric and 
spacing metric respectively. 

TABLE V.  MEAN OF THE COVERAGE METRIC C 

 ZDT4 ZDT6 OSY TNK 

C(II+, II) 0.031200 0.018800 0.218400 0.187400 

C(II, II+) 0.028200 0.012800 0.078400 0.041600 

TABLE VI.  MEAN OF THE SPACING METRIC Δ 

 ZDT4 ZDT6 OSY TNK 

Δ(II+) 0.002395 0.002203 1.210968 0.003227 

Δ(II) 0.007111 0.008482 1.388401 0.008170 

From table 5 and table 6, NSGA-II+ outperforms NSGA-II on 
the four test problems in terms of the two metrics after 800 
generations. 

NSGA-II+ needs more CPU-time cost than NSGA-II due 
to the removal of overlapping solutions and truncation 
selection scheme. For a single run on Intel Q6600 2.40GHz 
PC with 4G memories, the time cost is given in the following 
table. 

TABLE VII.  TIME COST OF THE TWO ALGORITHMS 

 ZDT4 ZDT6 OSY TNK 

NSGA-II+ 

200 0.62 0.64 0.67 0.58 

500 1.76 2.11 1.77 1.45 

800 2.92 4.28 2.84 2.32 

NSGA-II 

200 0.56 0.58 0.57 0.53 

500 1.42 1.42 1.42 1.32 

800 2.23 2.23 2.21 2.08 

In the above table, 200, 500 and 800 are the generations, and 
the other digits are the time cost in seconds. Although NSAG-
II+ is more time consuming, the additional time costs can be 
negligible in engineering applications where the CPU time is 
mainly consumed by function evaluations (such as finite 
element analysis of a structure). 

C. Optimization of a Composite Wing 
Structure 
Fig. 9 shows the wing structure of a high altitude long 

endurance UAV. The root chord and tip chord are 1.372m and 
0.494m respectively. The dual spars wing structure has a semi-
span of 11.665m. The front and rear spars  are located at 34 % 
and 67 % along the root chord respectively. There are 28 ribs 
and the spacing between every two adjacent ribs is about 700 
mm. The top and bottom skins are made of carbon fiber. The 
fibers of composite material are oriented at 0°, - 45°, + 45°and 
90° to reduce manufacturing costs. For simplicity the 
thickness of each orientation is identical. The material of the 
spars are 30CrMnSiA. The stringers are made of LY12. 

 

Figure 9.  Shape of the wing structure 

There are nine design variables x1, x2, …, x9, among which 
x1, x2, …, x6 are the thicknesses of the skin from root to tip and 
x7, x8 and x9 are the thicknesses of the spar web from root to 
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tip. The objectives of optimization design are to minimize the 
mass and the maximum vertical displacement of wing 
structure under a certain flight condition. The structural 
analyses of the wing structure are conducted by Aeronautic 
and Astronautics Structure Analysis (AASA) Software. The 
optimization formulation is written as: 

)(min 1 XWf   

)(2 max
Xf   

  s.t . ][ ii                i=1,2,3,4 

                       5.1max                                                         (1) 

ii xx 1              i=1,…,5 

ii xx 1              i=7,8 

max,min, iii xxx       i=1, …,9 

Here, [σi] is the allowable stress for different elements, W 
represents the structure mass, δmax denotes the maximum 
vertical displacement of the wing structure, xi,max and xi,min are 
upper and lower bounds on each design variable. And xi,min 
=1.2mm, xi,max=12mm, i=1,…, 9. 

After running 150 generations with population size 100, 
the crossover probability 1.0, the mutation probability 1/9, the 
distribution index ηc=15 for crossover operator, the 
distribution index ηm = 20 for mutation operator, the obtained 
nondominated solutions set is shown in Fig. 10. it can be seen 
that a very evenly distributed set is found. 

 
Figure 10.  Nondominated solutions in objective space 

VI. Conclusions 
(1) 4 causes for the generation of overlapping solutions in 
NSGA-II are investigated. 

(2) A technique for overcoming drawbacks during the 
evaluation of crowding distance and truncation selection and 
alleviating the problem of overlapping solutions is 
incorporated to improve NSGA-II. 

(3) The performance of the improved algorithm NSGA-II+ is 
evaluated on four difficult test problems. The simulation 
results reveal that NSGA-II+ can approximate the true Pareto-
optimal front closely and get a uniformly spread of 
nondominated solution set than NSGA-II. 

(4) NSGA-II+ is applied to the optimization of a composite 
wing structure. A widely spread and uniformly distributed 
nondominated solution set is obtained. 
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