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Abstract - For a wheeled mobile robot in rough terrain, one of 

the known suspension systems is the rocker-bogie mechanism. 

The high mobility of the robot, moving in 3 dimensions with 6 

degrees of freedom makes the kinematics modelling as a 

challenging task. In this paper, a full 6-DOF kinematic model 

of a rocker-bogie mobile robot is presented. The A matrices 

has been derived based on Denavit-Hartenberg coordinate 

transformation approach. The kinematic equations and 

Jacobian matrices for the wheels are derived which relates the 

rover velocity vector with wheel angular velocities and joint 

angular rates. Furthermore, a rover-terrain model is 

developed to obtain the necessary joint angles and some 

attitude angles by solving nonlinear optimization equations. 

Finally, the robot model is also constructed in MD Adams and 

simulations are carried out to verify the kinematics model. The 

results show very close match of kinematic model and 

simulation in rough terrain trajectory. 
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I. Introduction 
Rescue operations and future space explorations will 

require high mobility robots to perform intricate tasks in 
challenging uneven terrain. Examples of rough terrain 
applications for such robotic systems can be found in the 
forestry, mining industries, and in hazardous material 
handling applications. The high mobility of these robots, 
moving in 3 dimensions with 6 degrees of freedom (X, Y, Z, 
pitch, yaw, roll), makes the kinematics modelling a 
challenging task than the robots which move on flat and 
smooth surface (3 degrees of freedom : X, Y, rotation about 
Z axis). 

So far a variety of approaches for kinematics modelling 
have been implemented which can be roughly divided into 
two methods-one related the geometric approach (Cox and 
Wilfong, 1990; Iagnemma et al., 1999) and the other 
concerning transformation approach. One of the earliest 
works on the formulation of wheeled mobile robot’s 
kinematics equations of motion has been studied by Muir et 
al. (1987). In this work, matrix coordinate transformation 
algebra is developed to derive the equations of the motion of 
mobile robots. Due to the simplifying assumptions, this and 
similar approaches are only applicable to motion in 2-
dimensional space, i.e. translation in the x-y plane and yaw 
rotation. A general approach to kinematic modelling of 
articulated rovers traversing uneven terrain was developed 
by Tarokh et al. (1999). Later on, three forms of kinematics, 

i.e. navigation, actuation and slip kinematics were identified 
and the equations and application of each were discussed. 
Kinematics analysis of six-wheeled rovers (such as the 
vehicle “Sojourner” of JPL) was studied by Chottiner 
(1992), Linderman and Eisen (1992), Hacot et al. (1998). 

In this paper the kinematics modelling of a six-wheel 

rocker-bogie mobile robot based on above literature is 

deduced. The kinematics model will be useful and 

fundamental to subsequent studies on trajectory tracking and 

motion control of the mobile robot.  

Fig. 1 shows the schematic diagram of a rocker bogie 

rover. The rover has different elements, which are assumed 

to be rigid. The suspension mechanism consists of several 

joints and by adjusting its joints the rover is capable of 

locomotion over various uneven terrains. The rocker bogie 

structure has six independently driven wheels which are 

mounted on an articulated passive suspension system. The 

suspension system consists of two rocker arms connected to 

the rover body. Each rocker has a rear wheel connected to 

one end and a bogie connected to the other end. The bogie is 

connected to the rocker with a free pivoting joint. At each 

end of the bogie there is a drive wheel. The rockers are 

connected to the rover body with a differential joint. 

 

 
Figure 1. Example of a Rocker-Bogie System 

II. Kinematics Formulation 

A.  Coordinate Frames 
According to the D-H method (Craig, 1989), a 

coordinate frame is introduced on each joint. We define 
coordinate frames as in Fig. 2. The subscripts for the 
coordinate frames are as follows: R : robot reference frame, 
D : differential joint,  : left and right bogies ( i = 1,2 ),  : 

steering coordinate frames    ( i = 1-6 ) and  : Axle of all 
wheels ( i = 1− 6 ). 
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a) Side View 

 
b) Perspective View 

 

Figure 2. Coordinate Frames for Rover Left Side 

 
The rover configuration vector  

is defined relative to the world coordinate frame W, where 
(X Y Z) is the position and  is the orientation 

with roll, pitch and heading respectively. The Rover joint 
variable vector (q) consists of suspension joints angles: 
steering angles ( ,  rocker angle (ρ), left and right 

bogie angles , . 

A transformation matrix can be defined between two 
consequent frames, using the D-H parameters, , , , . 
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Where c (α) =cos (α), s (α) =sin (α). 

The transformations from the robot reference frame (R) 
to the wheel axle frames ( ) are obtained by cascading the 
individual transformations which gives the position of each 
wheel in rover reference frame. Then the transformation 
matrix for each wheel is obtained as: 

 

(2) 

(3) 

(4) 

 
Table 1 shows D-H parameters representing 

transformation between two consequent frames. 

 

TABLE I.    D-H PARAMETERS FOR COORDINATE FRAMES. 

 
α(deg) a(cm) d(cm) θ(deg) Frame 

-90 K2 K1 0 D 

0 K6 K3 K9+ρ B1 

0 K6 -K3 K9-ρ B2 

90 -K4 K3 ρ S1 

90 -K4 -K3 -ρ S2 

90 -K11 0 1-K9β S3 

90 -K11 0 2-K9β S4 

90 K7 0 1-K9β S5 

90 K7 0 2-K9β S6 

0 0 -K5 1ψ A1 

0 0 -K5 2ψ A2 

0 0 -K8 0 A3 

0 0 -K8 0 A4 

0 0 -K8 0 A5 

0 0 -K8 0 A6 

1 2 3 4

5 6 7

8 9 10

11
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B. The Wheel and Terrain Contact 
Model 

Assuming a single contact point between wheels and the 
ground, for each wheel a coordinate frame is defined at 
contact point. The contact coordinate frame  is obtained 

from the axle coordinate frame,  by rotating  about the 
axle, then translating by the wheel radius in the negative z 
direction. The corresponding transformation matrix from the 
axle  to contact  is given by: 

 

,

0

0 1 0 0

0

0 0 0 1

i i i

W R

i i i

c s rs

T
s c rc

  

  

 
 
 
  
 
 

              (5) 

 

Where  is contact angle of wheel i and r is radius of 
wheels. However, this transformation does not include 
rolling or slip, and thus does not reflect motion. In order to 
include motion, we consider the motion frames 

 and as shown in Fig. 4. 

 

 
Figure 3. Wheel Contact Coordinate Frame                        

  

 
 

Figure 4. Wheel Motion Model 

 
The transformation matrix for motion frames are 

derived using wheel rolling translation  along the 

x-axis, where  is the angular rotation and  is the rolling 

slip, a wheel side slip translation    (  ) along the y-axis, 

and a turn slip rotation ( about the z-axis. 
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C. Wheel Jacobian Matrices 
In order to describe the relative motion of the rover body 

with terrain, similar to the instantaneous coincident 
coordinate frame  we develop a rover body instantaneous 

coincident coordinate frame, .  is an identity matrix 

and its derivative, , has the following form: 
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Defining F as the terrain coordinate frame, then figure 6 

illustrates the relation of each part of the rover with the 
terrain. 

 

 
Figure 5. Transformation Loop 

In view of the fact that the inverse of the 

transformation matrix is equal to the inverse chain 

transformation matrix, one has the following: 

 

                        (8)                                                                                                                                          

 
By evaluating the partial derivatives and substituting 

 in equation (7), velocity components of joint angles are 

factorized in the right side of equation (8) and velocity 

vector  is extracted. The jacobian 

matrix for each wheel is derived as in equation (9): 

 

[  

 
Where q is the joint variable vector defined in section 

2.1 and its components is different for each wheel. Equation 

(9) describes the contribution of individual wheel motion 

and the connecting joints to the rover body motion. 
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D. Rover-Terrain Model 
The purpose of this subsection is to determine mobile 

robot’s configuration on an arbitrary terrain profile. Nine 

parameters are required to fully determine the rover’s 

configuration: 

 The position of a point on the robot body. (Here we 

choose the rover frame reference point (  

 The orientation of the rover body expressed in global 

frame ( . 

 The joint angles of the rocker-bogie suspension 

mechanism (ρ, . 

The transformation matrix between Global coordinate frame 

and contact frame is obtained using equations (10) and (11).  
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              (11)                                                                                      
 

Then the position and orientation of the contact coordinate 

frames in the global frame could be extracted: 

 

                (12)  

                                                                                        

  

 
Suppose that the terrain elevation is given by (X, Y). If 

the rover has a wheel in contact with the terrain then the 

elevation of the terrain at the wheel contact location must be 

equal to the Z-component of the contact location, thus six 

independent equations could be written as: 

 
 

                                                                             (13) 
 

By determining a desired path for the rover X, Y,  are 

treated as known parameters. Then the other six parameters 

are found by solving (13). Contact angles could be obtained 

by: 

 

         

                                                                           (14) 

 
              

                                                                           (15) 
 

              

                                                                           (16) 
 

Where  is the terrain slope at  along wheel 

heading . The system of equations (13) is highly 

nonlinear. We use fsolve optimization function provided by 

Matlab to solve (13). 

 

III. Results and Discussion 
In this section we study kinematics behaviour of rover 

and investigate the verification of the derived model as it 

moves over the simulated terrain. The MD Adams 

Constructed prototype rover and terrain topology used for 

simulation is shown in fig. 6 and consists of two parts. The 

right side has slopes with 16.7 degrees that the right side of 

rover (Wheels 2,4,6) are moving on and the left side is 

sinusoidal hill-like terrain that wheels 1,3,5 are moving on. 

The rover reference point is at position X=Y=0 at t=0.0 and 

moves straight ahead with a constant velocity of 2 (cm/sec) 

without any turning . 

 

 
 

Figure 6. Terrain Profile Used for Simulation 

 

Fig. 7 shows Rover pitch and roll angles for kinematics 

model and Adams simulations. The angles are in degree. 

The curves show good compatibility between kinematic 

model derived here and simulation results. We can see that 

as the front wheels reach the bumps both angles become 

negative. The pitch angle remains negative during the first 

half of the terrain and then turns positive as the robot 

crosses the top of the hill. 
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(a) Kinematics Model Results 

 

 
(b) Simulation Results 

Figure 7. Rover Pitch and Roll  

 
Fig. 8 shows rocker and bogie joint angles as the result 

of combined motion of six wheels. Again the calculated 

results agree with measured results. Right bogie angle is 

zero when all of the wheels are on the same surface but the 

left bogie has a harmonic curve on the hill and experiences 

transitions when the front and middle wheels touch the 

bump. 

 

 
(a)  Kiematics Model Results                                                    

 

 
(b) Simulation Results 

Figure 8. Rocker and Bogie Joint Angles 

 

Fig. 9 shows contact angle of front wheels. Both 

contact angles experience an abrupt change when the wheels 

hit the bump. The left contact angle then trends to a positive 

value after the rover climbed the hill. The right contact 

angle is zero at all times except when the wheel is shifted 

between slope and flat surface. 
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Figure 9. Contact Angle for Front Wheels 

IV. Conclusion 
In this paper kinematics modelling of a mobile robot 

with rocker-bogie suspension system was presented and 

velocity equations of rover moving on uneven terrain were 

extracted by introducing the contact angle. By using D-H 

notation and instantaneous coincident coordinate concept 

the Jacobian matrix for each wheel was derived which 

relates the rover velocity vector with wheel angular 

velocities and joint angular rates. Then, a rover-terrain 

model was developed to obtain the necessary joint angles 

and some attitude angles by solving a set of nonlinear 

equations through an optimization process. To verify the 

kinematic model the rover was simulated by MD ADAMS 

and it was shown that the output of the simulation is in agree 

with the results of the model. Finally the limitation of the 

modelling is that we assume a single contact point between 

each wheel and a continuous smooth terrain. Also in the 

modelling of rover-terrain interaction some wheels may not 

always be in contact with the ground. 
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