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Abstract— Nonparametric models such as machine learning 

methods that are counterparts of parametric financial models 

were applied to pricing American index options. 10 year S&P 100 

Index American options were adopted as experimental dataset 

and the both training (in-sample) and test (out-of-sample) errors 

of machine learning and ad-hoc pricing which is a conventional 

financial pricing model were calculated and compared to each 

other. We found out that Bayesian neural network outperforms 

the other pricing methods. Furthermore, we suggested an 

ensemble method which takes advantage of both machine 

learning method and ad-hoc pricing method and as a 

consequence, it shows the best performance. 
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I.  Introduction 
Option, the right to buy or sell an asset at a pre-specified 

price by a pre-determined date, is one of the popularly traded 
financial derivatives in extensive financial markets. Among 
the various features, the type of option, European or American, 
is the most fundamental feature that determines the 
characteristics of an option. 

For European options, several pricing methods has been 
developed for the cases from the most traditional geometric 
Brownian [1] to the recent Levy models [2]. For American-
type options, however, there are no explicit pricing formulae 
for most cases, thus some approximations or heuristics are 
required. 

Tree models [3, 4] and finite difference methods [5, 6, 7] 
are popular ones for American-type option pricing, but both of 
them do not well-operate when the number of state variables 
becomes large. Other popular methods are Monte Carlo-based 
methods [8, 9, 10, 11]. Their computational complexity does 
not depend on the number of state variables but it requires a 
lot of computations to achieve accurate results. 

The machine learning methods can be alternatives for 
those pricing methods. They have been successfully applied to 
the several nonlinear regression tasks including European 
option pricing [12, 13]. 

In this research, we explore the several machine learning 
methods to find American options pricing and compared the 
results with the ad-hoc approach which showed good 
performance for American option pricing [14, 15] as well as 
with one another. Furthermore, we construct the ensemble 
model combining the models explained above. 
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The remainder of the paper is as follows. In the next section, 
the data set used for the research and the screening methods 
are described. In section III, we briefly review the exploited 
machine learning methods. In section IV, we explain the 
experimental results. Finally, we conclude the paper with 
some future directions in section V. 

II. Data Description 

A. Data Description 
Table 1 contains the summary of the option data that we’ve 

used. Option from 2003/01/02 to 2013/08/30 were considered. 
Call option was not of our interest, because estimating put 
option is financially more complex than call option.  The 
underlying of the option is S&P 100 index. Obviously, the 
exercise type is American. The total number of instances is 
584,755 and the data is from Optionmetrics of IVY database. 
In the Optionmetrics data, there are 23 attributes for each 
option. 

The attributes are listed in Table 1. Among them only time 
to maturity and moneyness which is underlying over strike 
price were selected as most relevant attributes to predict 
option price. Therefore, we used only the two attributes to 
predict option price. 

TABLE 1 SUMMARY OF ATTRIBUTES FROM OPTIONMETRICS DATABASES 

Attribute Format Example 

Date YYYY/MM/dd 20030102 

Time to maturity Days 16 

Strike Price times 1000 - 405000 

Highest bid Dollar 0.4500 

Lowest offer Dollar 0.6000 

Volume - 126 

Imp. Vol. - 0.3582 

Dividend Continuously 
compounded rate (%) 

1.9797 

RV(10 days) - 0.2684 

RV(14 days) - 0.2379 

RV(30 days) - 0.2234 

RV(60 days) - 0.2285 

RV(91 days) - 0.2695 
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RV(122 days) - 0.2935 

RV(152 days) - 0.3016 

RV(182 days) - 0.3323 

RV(273 days) - 0.3016 

RV(365 days) - 0.2752 

RV(547 days) - 0.2566 

RV(730 days) - 0.2546 

RV(1825 days) - 0.2307 

Interest rate Continuously 
compounded rate (%) 

1.3730 

Underlying - 459.5 

B. Data Screening 
Before making a model for option price, some portion of 

data should be removed because such data is not valuable 
being predicted for some financial reason. Totally, 4 filters 
were used to reduce irrelevant data. 

The filters are as follows. Only traded option were 
considered because non traded options are usually overpriced. 
Time to maturity of an option should be between 7days and 
90days because options with short time to maturity tend to be 
expensive due to time premium and options with long time to 
maturity are traded not frequently. The data of the first three 
year were removed because it shows unstable pattern. At last, 
only options that are more than 1($) were considered to 
alleviate the effect of price discreteness. After applying these 
exclusionary criteria, 83,700 instances remained which was 
originally 584,755. 

III. Nonparametric Methods 
There are a lot of researches to predict option price. In 

[16], GARCH volatility model and Black-Scholes model were 
combined to price American option. In [17] and [18], three 
machine learning methods, committee of neural networks, 
multi-layer perceptron and support vector machine, were 
applied to price American option. However, it used strike 
price and time to maturity as attributes so information of 
underlying asset was excluded, and this lead to poor 
performance. In  

In this paper, we used 4 parametric or nonparametric 
methods to price American option price. The first one is a 
parametric model. It is an ad-hoc black-Scholes model which 
is popular method to price European option. To apply an ad-
hoc scheme to American option case, a closed form valuation 
of American option is needed. So closed form approximation 
of American option which was suggested by [19] were used. 
Ad-hoc Black Scholes model is consist of 3 stages. At the first 
stage, volatility surface is generated from training points. At 
the next stage, the volatility surface substitute volatility part of 
closed form valuation. At the last stage, price of new point is 
predicted by using the volatility surface acquired at the second 
stage and the closed approximation [19]. 

The last three are nonparametric models that are state-of-
arts machine learning methods; support vector regression [20], 
Neural network [21], and Bayesian neural network [22].  

In support vector regression case, there are also three 
stages. At the first stage, data of window is separated into 2 
parts. The first part is validation set which is the most latest 
options and the remained data is used as training data. The 
next step is that parameters which best fit to the validation 
data are acquired by solving the corresponding optimization 
problem. At the second stage all the data of window become 
new training data and the corresponding model is calculated 
using the best parameters of previous stage. Finally option 
price is estimated at new points using the model of the 
previous stage. 

In Neural network case, option price is estimated in same 
way as support vector regression case. The only difference is 
that the machine learning model had been changed from SVR 
to Neural network. 

In Bayesian neural network case, the previous first stage 
and second stage are combined into one stage because it does 
not need validation set for early stopping. At the first stage, a 
model is calculated and at the second stage option price is 
estimated at new points using the model of the previous stage. 

IV. Ensemble Method 
By analyzing both errors of Bayesian neural network and 

ad-hoc pricing model, we have found out two things: (i) 
Variance of error of Bayesian neural network is higher than 
that of ad-hoc model. (ii) Large portion of error of Bayesian 
neural network is mainly due to over-fitting problem 
(However, ratio between the over-fitted data and the 
counterpart of it is significantly small). Therefore, we 
suggested the following ensemble method: 

 

Where α is a predefined threshold level, PBNN is an 
estimated price of Bayesian neural network and Padhoc is that 
of ad-hoc model. The pricing scheme of ensemble method is 
straight forward. As we could realize, the estimated price of 
ad-hoc model gives not best but consistently quite good 
approximation of options. Therefore, if the discrepancy 
between the two model prices is larger than \alpha, we could 
take it as a signal that the Bayesian model is suffering from 
over-fitting problem and use the price of ad-hoc model as the 
estimated price of ensemble model. If it is not the case, we use 
arithmetic mean of the two models as the estimated price of 
ensemble model, which is called bagging and generally 
improves performance of prediction. 

V. Experimental Results 
Table 2 contains mean average percentage error (MAPE) 

for each model and each window size. In sample error, 1 day 
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ahead forecast error and 7 day ahead forecast error were 
considered and for all cases Bayesian neural network was the 
best model for pricing option values. This is because the 
option data is sparse so Bayesian approach is more suit for 
option pricing than other machine learning methods. 

TABLE 2 MEAN AVERAGE PERCENTAGE ERROR (MAPE) FOR EACH MODEL 

AND EACH WINDOW. THE DARKER SHADED REGION AND LIGHTER SHADED 

REGION ARE THE BEST FITTED MODEL AMONG MACHINE LEARNING AND AD-

HOC MODELS, RESPECTIVELY.  ALSO, THE BEST FITTED MODEL AMONG WHOLE 

MODELS ARE IN BOLD TYPE. 

 

Table 3 shows the best models in terms of in-sample error, 
for each time to maturity and moneyness. One can see that 
BNN performs consistently better than Ad-hoc and our 
proposed methods, for every value of time to maturity and 
moneyness. This result is obvious and expectable because 
objective of machine learning method is minimizing error 
between estimated and true price of option over in-sample data. 

Table 4 shows the best models in terms in 1-day ahead 
forecasting error, for each time to maturity and each 
moneyness. Unlike previous situation where BNN 
outperforms Ad-hoc and proposed method for every pair of 
time to maturity and moneyness, our proposed method has 
smaller error than BNN and Ad-hoc method when time to 
maturity is short or long. This phenomenon can be described 
as the effect of bagging, which reduces the effect of 
extrapolation with respect to time to maturity. On the other 
hand, for medium range of time to maturity BNN performed 
well relative to proposed and Ad-hoc method, since the model 
already interpolates well without ensemble. 

Table 5 shows the same for 7-day ahead forecasting error. 
One can see similar pattern with previous table, which used 1-
day ahead forecasting error. Here, unlike previous 1-day result, 
our proposed method works relatively well for short time to 
maturity only. This implies, for long-term prediction, our 
method only reduces the effect of extrapolation for relative 
short levels of time to maturity. 

 

TABLE 3 BEST FITTED MODEL IN TERMS OF IN-SAMPLE ERROR FOR EACH TIME 

TO MATURITY AND MONEYNESS. THE ERRORS OF BEST FITTED MODEL AMONG 

THREE MODELS (AD-HOC, BNN, AND PROPOSED ONE) ARE IN BOLD-TYPE. 

 

TABLE 4 BEST FITTED MODEL IN TERMS OF 1 DAY AHEAD ERROR FOR EACH 

TIME TO MATURITY AND MONEYNESS. THE ERRORS OF BEST FITTED MODEL 

THREE MODELS (AD-HOC, BNN, AND PROPOSED ONE) ARE IN BOLD-TYPE. 

  

TABLE 5 BEST FITTED MODEL IN TERMS 7 DAY AHEAD ERROR FOR EACH TIME 

TO MATURITY AND MONEYNESS. THE ERRORS OF BEST FITTED MODEL AMONG 

THREE MODELS (AD-HOC, BNN, AND PROPOSED ONE) ARE IN BOLD-TYPE. 

 

MAPE (Mean Average Percentage Error) 

Window 

Length (day) 
In-sample 

SVR NN BNN Ad-hoc 

1 0.700 0.296 0.008 0.070  

6 0.498 0.148 0.068 0.123  

11 0.510 0.164 0.096 0.146  

16 0.528 0.161 0.116 0.163  

21 0.543 0.167 0.136 0.178  
Window 

Length (day) 
1 day ahead forecast 

SVR NN BNN Ad-hoc 

1 0.765 0.436 0.119 0.136  

6 0.533 0.187 0.131 0.148  

11 0.542 0.192 0.136 0.164  

16 0.555 0.185 0.146 0.177  

21 0.567 0.191 0.159 0.190  
Window 

Length (day) 
7 day ahead forecast 

SVR NN BNN Ad-hoc 

1 0.839 0.659 0.297 0.225  

6 0.639 0.328 0.229 0.212  

11 0.634 0.259 0.202 0.218  

16 0.641 0.256 0.205 0.224  

21 0.650 0.253 0.211 0.230  

Best Model (in-sample) 

Time to 

maturity, 

τ,(day) 

Model 

Moneyness, S/K=κ 

ITM ATM OTM 

κ<0.94 0.94< 
κ<0.97 

0.97< 
κ<1.00 

1.00< 
κ<1.03 

1.03< 
κ<1.06 

1.06< κ 

τ <30 

Ad-hoc 0.019 0.026 0.049 0.078 0.070 0.107 

BNN 0.002 0.002 0.005 0.013 0.016 0.022 

Proposed 0.009 0.013 0.026 0.041 0.038 0.059 

60< τ<90 

Ad-hoc 0.023 0.032 0.041 0.040 0.052 0.105 

BNN 0.001 0.001 0.003 0.005 0.009 0.010 

Proposed 0.011 0.016 0.021 0.021 0.028 0.056 

90< τ 

Ad-hoc 0.022 0.031 0.032 0.036 0.054 0.146 

BNN 0.001 0.001 0.001 0.002 0.003 0.005 

Proposed 0.011 0.015 0.016 0.018 0.027 0.075 

Best Model (1 day ahead) 

Time to 

maturity, 

τ,(day) 

Model 

Moneyness, S/K=κ 

ITM ATM OTM 

κ<0.94 0.94< 
κ<0.97 

0.97< 
κ<1.00 

1.00< 
κ<1.03 

1.03< 
κ<1.06 

1.06< κ 

τ <30 

Ad-hoc 0.025 0.038 0.076 0.144 0.166 0.225 

BNN 0.050 0.034 0.068 0.183 0.180 0.240 

Proposed 0.032 0.031 0.066 0.129 0.155 0.213 

60< τ<90 

Ad-hoc 0.034 0.049 0.063 0.076 0.102 0.184 

BNN 0.039 0.032 0.041 0.059 0.086 0.152 

Proposed 0.031 0.036 0.048 0.064 0.088 0.149 

90< τ 

Ad-hoc 0.040 0.053 0.057 0.065 0.092 0.365 

BNN 0.053 0.049 0.051 0.064 0.083 0.240 

Proposed 0.038 0.043 0.045 0.054 0.075 0.266 

Best Model (7 day ahead) 

Time to 

maturity, 

τ,(day) 

Model 

Moneyness, S/K=κ 

ITM ATM OTM 

κ<0.94 0.94< 
κ<0.97 

0.97< 
κ<1.00 

1.00< 
κ<1.03 

1.03< 
κ<1.06 

1.06< κ 

τ <30 

Ad-hoc 0.031 0.052 0.110 0.265 0.345 0.453 

BNN 0.062 0.044 0.092 0.259 0.399 0.539 

Proposed 0.035 0.041 0.092 0.240 0.326 0.436 

60< τ<90 

Ad-hoc 0.039 0.059 0.095 0.149 0.200 0.299 

BNN 0.053 0.037 0.065 0.120 0.187 0.304 

Proposed 0.037 0.043 0.074 0.127 0.184 0.283 

90< τ 

Ad-hoc 0.046 0.069 0.090 0.123 0.161 0.389 

BNN 0.058 0.042 0.063 0.095 0.133 0.232 

Proposed 0.044 0.050 0.072 0.104 0.140 0.298 
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VI. Conclusion and Discussion 
Throughout this paper, we have shown that machine 

learning approach out-performs ad-hoc pricing model, which 
means it gives academic insight: there could be a better 
financial stochastic process which explains option market 
better than current financial model. 

Also we have suggested an ensemble method which 
exploits only advantages of both financial models and machine 
learning models and the result of it improved accuracy of 
prediction. 

For future work, we are planning to try other machine 
learning methods including multi-layer perceptron, neural 
network using 1-norm regularization, and find a model which 
does not violate arbitrage condition. 
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