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SPACE 
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Abstract— Disturbances caused by impulsive mechanical 

source in a homogeneous, isotropic half-space are studied 

within the context of generalized thermoelastic diffusion with 

one relaxation time. A two dimensional half space with a 

permeating substance in contact with the bounding plane is 

considered in axisymmetric distribution. The chemical 

potential is assumed to be a known function of time. Integral 

transform technique is used to find the analytic solution in the 

transform domain by using direct approach. Inversion of 

transforms is done employing a numerical scheme. 

Mathematical model is prepared for Copper material and 

numerical results for temperature, stress, displacement, 

chemical potential and concentration are obtained and 

illustrated graphically. 

Keywords—: impulsive, half space, diffusion, generalized, 

thermoelastic, relaxation time. 

 Introduction 

Generalized thermoelasticity theories are successful in 
removing the paradox of infinite speed of propagation of 
thermal signals inherent in the classical coupled 
thermoelasticity introduced by Biot [1]. Lord and Shulman 
[2] developed a theory modifying the Fourier law of heat 
conduction by introducing the heat flux rate and a relaxation 
time for the special case of an isotropic body. The heat 
equation associated with this theory is of wave type.  

Diffusion in thermoelastic solids is a transport 
phenomena governed by Fick’s law which states that the 
passive movement of molecules or particles is along the 
concentration gradient. Thermoelastic diffusion involves the 
coupling of the fields of temperature, mass diffusion and 
strain. It has a wide range of applications in geophysics and 
industries. In particular, diffusion is used to form the base 
and emitter in bipolar transistors, form integrated resistors, 
form the source/drain regions in Metal oxide 
semiconductors (MOS) transistors and dope poly-silicon 
gates in MOS transistors. 

Study of phenomenon of diffusion is used to improve the 
conditions of oil extractions and is of great deal of interest 
for oil extraction companies. Nowacki [3-6] developed the 
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theory of thermoelastic diffusion. The theory of Nowacki 
uses Fick’s law. Sherief et al. [7] introduced the theory of 
thermoelastic diffusion in the framework of Lord-Shulman 
theory by introducing thermal relaxation time parameter and 
diffusion relaxation parameters governing the field 
equations. Many researchers [8-13] studied various types of 
problems in thermoelastic diffusion. Tripathi et al. [14, 15] 
studied problems on generalized thermoelasticity in a semi-
infinite solid circular cylinder with one relaxation time and 
discussed a problem of generalized thermoelastic diffusion 
in a thick circular plate with axisymmetric heat supply. 
Elhagary [16] solved a two dimensional generalized 
thermoelastic diffusion problem for a half-space subjected to 
harmonically varying heating.  

                         The objective of this work is to study the 
effects of impulsive mechanical source on thermoelastic 
diffusion interactions in a half space under axisymmetric 
distribution within the context of Lord-Shulman theory of 
generalized thermoelastic diffusion (TEDLS). The Classical 
coupled thermoelastic diffusion theory (TEDCT) is 
recovered as a special case. Analytic solutions for 
temperature, concentration, chemical potential, displacement 
and stresses are obtained in the Laplace transform domain 
using direct approach. Numerical inversion of Laplace 
transforms are performed using Gaver-Stehfast Algorithm 
[17-19] and all integrals were evaluated using Romberg’s 
integration technique [20] with variable step size. A 
mathematical model is prepared for Copper material and 
results are discussed along with the graphical representation.  

I. Formulation of the Problem 
We shall consider a homogeneous isotropic 

thermoelastic solid occupying the region 0z .The z-axis 

is taken perpendicular to the bounding plane pointing 
inwards. The problem is considered within the context of the 
theory of generalized thermoelastic diffusion with one 
relaxation time. We shall assume that the initial state of the 

medium is quiescent at a temperature 0T . An impulsive 

mechanical source is assumed to act at the origin of the 

cylindrical co-ordinate system ),,( zr  having isothermal 

boundary and the chemical potential is a known function of 
time.  

The problem is thus two-dimensional with all considered 
functions depending on the spatial variables r and z  as 
well as on the time variable t . 
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The displacement vector, thus, has the form ),0,( wuu 


. 

For the two dimensional problem, the components of 
strain tensors  can be written in the form, 
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and e is the cubical dilatation given by,  
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To facilitate the solution, the following dimensionless 
variables are introduced 
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where k/CE   is the dimensionless characteristic 

length,  21 c , is the speed of propagation of 

isothermal elastic waves. 

The boundary conditions of the problem in dimensionless 
form at 0z are taken as  
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where (.) denotes the Dirac delta function ,
0Q  is the 

magnitude of the force, )(rf is a known function and 

)(tH is a Heaviside unit step function. 

II. Analytic Solution 
Applying the Laplace and Hankel transform to a 

function ),,( tzrf  defined by 
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On taking Laplace and Hankel transform of both sides of 
equations (2)-(5), after using equation (8) (supressing the 
primes for convenience) , we get, 
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Eliminating the transformed 
*e ,

*C and 
* from (13), (14) 

and (15), we obtain the following six order differential 
equation 

    0,, ***

3

2

2

4

1

6  CeaDaDaD                      (15) 

where the coefficients 1a , 2a , 3a are giving by  
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Equation (15) can also be written as, 
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The roots 321 and, kkk  are given by, 
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The solutions of equation (16) are of the form, 
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are parameters depending 
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Applying the inversion of Hankel transform to equations 
(18), (19) and (20), we get, 
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Applying Laplace transform to eqns. (2)–(3) and making use 
of eqns. (22)–(24), the solutions for the displacement 
components in the Laplace transform domain as 
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where  the parameters ),( sB  and ),( sC  depend on  and 

s only. 
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Applying Laplace transform to eqns. (6a)-(7) and making 
use of the solutions given in eqns. (22)-(26), we obtain the 
stress components and the chemical potential in the Laplace 
transform domain, 
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Applying Laplace transform and Hankel transform on both 
sides of boundary conditions (9)-(12) and using equations 
(22)-(31), we get, 
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Equations (32)-(35) is a system of linear equations 

with 1A , 2A , 3A and B as unknown parameters. Solving the 

above system of linear equations, the complete solution of 
the problem is obtained in the Laplace transform domain. 

III. Inversion of Double 
transforms 

The formula for the inverse of the Laplace transform as 
obtained by Gaver [17] and Stehfast [18, 19] is given below. 
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By this method the inverse )(tf  of the Laplace transform 

)(sf is approximated by, 
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where K is an even integer, whose value depends on the 
word length of the computer used. 2/KM  and m is the 

integer part of the 2/)1( j . The optimal value of K  was 

chosen as described in Gaver-Stehfast algorithm, for the fast 
convergence of results with the desired accuracy. This 
method is easy to implement and very accurate for functions 
of the type te  . The Romberg numerical integration 

technique [20] with variable step size was used to evaluate 
the integrals involved. All the programs were made in 
mathematical software Matlab. 

IV. Numerical results and 
discussion 

The chemical potential is taken as  

)()( 102 rrHPrf   

where 
0P  is constant. 

On taking Hankel transform, we get, 

)()/()( 101

*

2  JPrf  . 

Mathematical model is prepared with Copper material for 
purposes of numerical computations. The material constants 
of the problem are thus given in S.I. units [9]: 

,386,2.0,02.0,8954,293 111

0

3

0

  smJKkmkgKT 

,1078.1,1078.1 1515   KK Ct 

,10158.4,1076.7,1086.3 13

1

210210   mscNmNm 

,/109.0,/102.1 256224 skgmbksma   

,.1.383,/1088.0 1138   KKgJcmskgD E
 

Using these values it was found that, 2.73.8886  ms  

24.36,533.0,43.5,4,.0168.0 321

21    JNm . 

It should be noted that a unit of non-dimensional time 

corresponds to s12105.6   , while a unit of non-dimensional 

length corresponds to m8107.2  . The computations were 

carried out for non-dimensional time 05.0t . 

Figures 1-3 exhibit the variations of , C and
zz  with 

distance r. The variations of the various components with 
distance r are shown a) Solid line for TEDCT theory b) 
Dotted line for TEDLS theory. The numerical simulations 

are done at the bounding plane i.e. 0z .  

Fig. 1 exhibits the variation of  as a function of radius. It 

is observed that  follows a non-uniform pattern as distance 

r increases. TEDLS and TEDCT theories show large 
variations throughout the medium. It is seen that for TEDLS 

theory, temperature has a positive value at 0r  and then 

follows an oscillatory pattern whereas for TEDCT theory, 

the values of temperature at 0r is negative and then it 

gradually increases and follows an oscillatory pattern 

thereafter. As the disturbance travels through the medium, it 
encounters sudden changes, resulting in a non uniform 
pattern of the curves which shows the effect of coupling of 
the fields of temperature, diffusion and strain. 

In figure 2, the concentration C shows an oscillatory 
behavior throughout the medium. The values of 

concentration fall sharply till 3r and then gradually 

decrease to zero with the increase in radial distance. The 
magnitudes of values of concentration for TEDLS theory are 
more than TEDCT theory throughout the medium. 

Particularly, if we observe the region 63  r , the non-

uniformity in the graphs is clearly visible. This can be 
attributed to the effect of coupling between the fields of 
temperature, diffusion and strain. 

Figure 3 exhibits the variation of 
zz  along the radial 

direction. One can observe that the variation in values of 

zz  for TEDLS and TEDCT theory is seen throughout the 

medium. The axial stress values are tensile in the medium. A 

sharp fall in 
zz values is seen till 3r and then is 

gradually decreases. It is also observed that the values of 
axial stress are more for TEDLS theory than TEDCT theory 

up to 4r and then TEDCT theory predicts higher axial 
stress as compared to TEDLS theory. It is also observed that 
the axial stresses for TEDLS theory become compressive 

after 8r .  

V. Conclusion  
In this work, the effect of an impulsive mechanical source 

on a two dimensional thermoelastic half-space in contact 

with a permeating substance was investigated. The method 

used in this study provides quite a successful approach in 

dealing with thermoelastic diffusion problems without any 

assumed restriction on the field variables. Coupling of the 

diffusion field, temperature and strain plays an important 

role in the deformation of an elastic body. As the 

disturbance travels through the medium, it encounters 

sudden changes, resulting in a non uniform pattern of the 

curves. It was observed that the chemical potential of the 

diffusive material attains a steady state. The results of this 

problem are very useful in the two dimensional problems in 

axisymmetric half-space which have various geophysical 

and industrial applications. 
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 Fig.1.Temperature   distribution along the radial direction 

 

Fig.2. Concentration C distribution along the radial direction 

Fig.3. Axial stress zz distribution along the radial direction 
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