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Numerical implementation a stochastic operational
matrix based on triangular functions for solving a
stochastic nonlinear differential equation

[ Zahra Sadati ]

Abstract— In this paper, an efficient method to determine a
numerical solution of a stochastic nonlinear differential equation
(SNDE) is proposed. The method is illustrated by using a
stochastic operational matrix based on the triangular functions
(TFs). In this proposed method, the SNDE is reduced to a
stochastic nonlinear system of equations and unknowns. Then,
the error analysis is demonstrated by using some preliminaries.
Finally, the method is evaluated with some numerical examples..
(Abstract)
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I. Introduction

Different fields of problems in physics, mechanics,
economics, sociology, biological lead to the SNDE that are
dependent on a noise source, on a Gaussian white noise. In the
last years, many methods are proposed and applied for
approximate solutions of the stochastic differential equations
(see [5, 8, 9, 10, 13]), because most the stochastic differential
equations can not be solved analytically and hence it is of
great importance to provide numerical solution. In the
presented method we use from the stochastic operational
matrix based on properties of the TFs in combination with the
collocation technique, because equation is reduced to the

stochastic nonlinear system with better accuracy in
comparison with other methods.
In paper, we consider
dX (s) = g(s, X(s))ds + h(s, X(s))dB(s), se<(0,T)
X(0) = X,
()

or,

X (1) = X, + | 9(s, X (s))ds + [ h(s, X (s))dB(s), (2)
te(0,T),T<1,
where g(s, X(s)), h(s, X(s)):(0,T)xR —->R and
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X (t) are the stochastic processes and unknown on
probability space (€2,0,P) . Also, B(S) is the standard

Brownian motion (SBM) defined on probability space.
Note that Eq. (2) play an important role in many application
in mathematical finance, biology, medical, social, etc ( [2]).

Rest of paper is organized as follows: In Section 2, the first

we state some essential preliminaries and conditions of
existence a unique solution for Eq. (2), then we introduce
the TFs by using properties of the block pulse functions
(BFs). In Section 3, properties of the TFs is applied for
solving Eqg. (2), so, equation is reduced to the stochastic
nonlinear system. In Section 4, the proposed method is
illustrated by some numerical examples. Finally, in Section
6, provides the conclusion.

II. Preliminaries
Let {B(t), t > 0} be the SBM with properties as following:

B(t)—B(s) , for t>s, is independent of the past
(Independence of increments).

B(t)—B(S) has Normal distribution with mean 0 and
variance t—s, i.e. B(t)—B(0) has N(O,t) distribution
(Normal increments).

B(t),t >0 are continuous functions (Continuity of paths).

Definition 2.1 Let v =v(S,T) be the class of functions
g(t,w) :[0,00) xQ — R such that:
(t,w) > g(t,®), be BxF -measurable, where B denotes

the Borel o -algebra on [0,00) and F be the o -algebra on
Q.
g(t, w) is F, -adapted, where F, is the o -algebra generated

by the random variables B(S), for S<t.

T 2
E[f,o°(t, @)dt] <o,
Theorem 2.2 (The It6 isometry). Let f €v(S,T), then

(X
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T 2 Teo2
EL(], f (t, @)dB()(@))’]= EL[_ f*(t, @)dt].
Now, we state some essential condition on the coefficients of
Eq. (2) as following:
A . Let the function g(t, X) hold in Lipschitz conditions
and Linear growth, i.e. there are constants k;, k, >0 such
that:

with

T 1,
T 1.

T1(t) =[T, ),...,

and

T2(t) = [T (®),...,

2 . Let the function f(x) e L?([0,T)), then

{Ig(t X)—9(tY) <k, | X =Y, (Lipschitz continuity ), f (t) ~ ZFl,T, (t)+ZF2,T, (t) = FI".T1(t) + F2" T 2(t)

| g(t, X) < k,(2+] X |), (lineargrowth).

A, . Let the function h(t, X) hold in Lipschitz conditions
and Linear growth, i.e. there are constants K, , K, such that:

{| h(t, X)—h(t,Y) < ks | X =Y |, (Lipschitz continuity ), Fo = (F2). ., =(f@i+Dh)_, (i=

| h(t, X) [< k,(3+] X ), (lineargrowth).

For X,y eRandte(0,T).
Theorem 2.3 Let g(t, X (t)) and h(t, X(t)) hold in

conditions A, A, and E| X, [?< oo, then, there exists a
unique solution for Eqg. (2).

Proof. See [2, 12].

Finally, we introduce some essential properties of the TFs
that are needful for this paper. For more details see [3, 4, 6, 7].
1.1In[1]is defined

t—ih . .
Til(t):{l—T ih St<(|+1))h,

0 elsewhere,
and
t—ih . .
T2()=4 1 ih<t<(i+1))h,
0 elsewhere,
where h = l
m
THO) +TA(t) = 4 (1), where
1 (h<t<(i+1)h,
$(t) =
0 elsewhere,
is the i th block pulse function and
D(x) = (y(X), Dy (X),..., D (X),..., D, (X)) denotes
the BPFs .

T(@t)TT (t) ~ diag(T (t)) =T (t) , where T(t) is called
the 1D-TF vector as following:

T =[T1(0), T2(t)],

=[FLF2]".[T1(t), T2(t)] = F' T(t),
where the vector F is called the 1D-TF coefficient vector,

F1=(FL)np, = (F()5.,

and
0,1,..,m-1).
3 j; T(s)ds ~ P. T (t), where
P1 P2
P =|P1 P2 :
with
011
0 1
h
Pl=—|0 0 O :
2 .
000 .. 0 e
and
11
" 01
P2=—|0 O
2 .
0 0O 1

4. In [11] is proved that

[[T1(s)dB(s) = PLT1(t) + PLT 2(0),
and

j; T2(s)dB(s) = P2, TL(t) + P2, T 2(t),

where
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a(0) pO) AO) 5(0)
0 ) AW (L)
0 0 a@ 5(2)
Pl = ,
o 0 0 B(m—2)
0 0 O a(m-1))
and
7(0) p0) p(0) p(0)
0 (1) p@Q) p(1)
0 0 72 p(2)
P2, = ,
O 0 0 p(m—2)
0O 0 0 y(m-1))
with
a(i) = (i +1)[B((i + 0.5)h) — B(ih)] - j
A = (+DB(G+Dh) - B - [ dB(),
y(i) = —i[B((i + 0.5)h) — B(ih)] + I —dB()
p(i) = ~[B(( +1)h) - B(in)] + [ 2 dB(s).

5. In [11] is proved that

dB(S) {P(t) =g(t. X, +PTRT(®) +QTRT (1)),

[T (5)dB(s) ~ P, (T1+T2) = R,T (1),

where

P1, Pl
P, =| P2, P2,

II1. Solving the SNDE via the TFs

Let
{p(S) = g(s, X(9)),
q(s) = h(s, X(s)),
with substituting (4) in Eq. (2), we get

X ()= X,+ [ pe)ds+ [q(s)dB(s). (&)

(4)

By using properties of the TFs, we can write

{p(s) ~ P T(s), )

a(s) = Q".T(s),

where

P =(R)ama = (P(0), p(h),...

p(2h),..., p(mh)) 4.
and

Q =(Q)zma = (q(0). a(h),...
q(2h),...,q(mh)) -
With substituting (6) in (5), we get
X (1)~ X, + I;PT T(s)ds+ j;QT T(s)dB(s), (@)
or,
X(t)= X, +PTRT({)+Q"PT(t). 8)
Also, by substituting (8) in (4), we obtain

, P((M=1)h), p(h),

,q((m—=1)h),q(h),

a0 =N X, +PPTO+QPTR).

Now, with replacing = by =, the relation (9) is approximated
j

—m+1
T

via the collocation method in M+1 nodes tj =

(j=0,1,. follows:
p(t;) = (t,,x +PTPT(t )+QTRT(t;)),
q(t;) =h(t;. X, + PTRT () +Q"RT(t))),

or,
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P'T(t;)=g(t;, X, +PTRT(t;)+Q"RT(t,))
Q'T(t;) =h(t;, X, + PTPTT(tj)+QTPST(tj)),(11

where (11) is the nonlinear system of 2m+ 2 equations and
2m+ 2 unknowns. After solving Eq. (11), we conclude that TABLE I.

X(t) =X, (t)=X,+P"PT(t)+Q"PT(t). (12)

%95 confidence interval for mean
. t —
Numerical examples XEe Se Lower Upper
. 0.05 8.676300 3.237015 7.2576152 1.00949
Example 1 Let us consider the SNDE as % 10-5 % 10-5 < 10-5 % 104
1 1 0.1 4.353135 7.585946 4.0206662 4.6856037
dX (S) =ms X(S)dS—Z—OS X(S)dB(S),SE(O,T),T <1, w104 w 1p~% w104 w 10-4
-1 015 1.444730 2.427305 1.3383486 1.55111
X(0)=—, ¥ 107F w1074 % 107F 1w 102
50 0.2
3.122060 2.095779 3.0302084 3.213911
with the exact solution ®x 107° % 107% x107F %1072
-1 1 1 1 ¢
X (t) = —=exp( t* — t" —— | s%dB(s))
50 4000 2800 207
The numerical results have been shown in Table (1), where X
and S are error mean and standard deviation of error,
respectively.
Example 2 Let us consider the SNDE as
3 3
dX (s) = (23/X 2(s) +——3/X (s))ds —
2 256 TABLE. II

%%/Xz(s)dB(s),S c(0,T),T <1,

%095 confidence interval for mean

X (O) = O’ t ;E SE Lower Upper
0.05 8.676300 3.237015 7.2576152 1.00949
1 1 x 10°3 % 10°% % 10°% % 10~4
with the exact solution X (t)==(t—=B(t))® . The
8 8 o1 4.353135 7.585946 4.0206662 4.6856037
_ . —4 -5 ) -3
numerical results have been shown in Table (2), where X and x 10 * 10 10 x 10
S are error mean and standard deviation of error, respectively. 015 | 1444730 2.427305 1.3383486 155111
¥ 1073 w104 ¥ 1073 1% 102
02 3.122060 2.095779 3.0302084 3.213011
x 1072 % 1074 x 1072 w1032
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