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Abstract— In this paper, an efficient method to determine a 

numerical solution of a stochastic nonlinear differential equation 

(SNDE) is proposed. The method is illustrated by using a 

stochastic operational matrix based on the triangular functions 

(TFs). In this proposed method, the SNDE is reduced to a 

stochastic nonlinear system of   equations and   unknowns. Then, 

the error analysis is demonstrated by using some preliminaries. 

Finally, the method is evaluated with some numerical examples.. 
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I.  Introduction    
  Different fields of problems in physics, mechanics, 

economics, sociology, biological lead to the SNDE that are 

dependent on a noise source, on a Gaussian white noise. In the 

last years, many methods are proposed and applied for 

approximate solutions of the stochastic differential equations 

(see [5, 8, 9, 10, 13]), because most the stochastic differential 

equations can not be solved analytically and hence it is of 

great importance to provide numerical solution. In the 

presented method we use from the stochastic operational 

matrix based on properties of the TFs in combination with the 

collocation technique, because equation is reduced to the 

stochastic nonlinear system with better accuracy in 

comparison with other methods.  

   In paper, we consider  
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)(tX  are the stochastic processes and unknown on 

probability space ),,( Pô . Also, )(sB  is the standard 

Brownian motion (SBM) defined on probability space. 

  Note that Eq. (2) play an important role in many application 

in mathematical finance, biology, medical, social, etc ( [2]).  

 Rest of paper is organized as follows: In Section 2, the first 

we state some essential preliminaries and conditions of 

existence a unique solution for Eq. (2), then we introduce 

the TFs by using properties of the block pulse functions 

(BFs). In Section 3, properties of the TFs is applied for 

solving Eq. (2), so, equation is reduced to the stochastic 

nonlinear system. In Section 4, the proposed method is 

illustrated by some numerical examples. Finally, in Section 

6, provides the conclusion.  

 

II.  Preliminaries 
Let 0}> ),({ ttB  be the SBM with properties as following:  

 

)()( sBtB  , for ,> st  is independent of the past 

(Independence of increments). 

 

)()( sBtB   has Normal distribution with mean 0  and 

variance st  , i.e. (0))( BtB   has )(0,tN  distribution 

(Normal increments). 

 

0),( ttB  are continuous functions (Continuity of paths).  

  

Definition 2.1 Let ),(= TS  be the class of functions 

Rtg )[0,:),(   such that:   

),(),(  tgt  , be FB -measurable, where B  denotes 

the Borel  -algebra on )[0,  and F  be the  -algebra on 

 . 

),( tg  is tF -adapted, where tF  is the  -algebra generated 

by the random variables )(sB , for ts  . 

 

     <]),([ 2 dttgE
T

S
 .  

Theorem 2.2 (The Itô isometry). Let ),( TSf  , then  
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  Now, we state some essential condition on the coefficients of 

Eq. (2) as following: 

1A . Let the function ),( Xtg  hold in Lipschitz conditions 

and Linear growth, i.e. there are constants 0> , 21 kk  such 

that:  
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2A . Let the function ),( Xth  hold in Lipschitz conditions 

and Linear growth, i.e. there are constants 3k , 4k  such that:  
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For x , y  R  and )(0,Tt .  

 Theorem 2.3 Let ))(,( tXtg  and ))(,( tXth  hold in 

conditions 1A , 2A  and <|| 2

0XE , then, there exists a 

unique solution for Eq. (2).  

 Proof. See [2, 12]. 

    Finally, we introduce some essential properties of the TFs 

that are needful for this paper. For more details see [3, 4, 6, 7].   

1 . In [1] is defined  
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the BPFs .  

)(ˆ=))(()().( tTtTdiagtTtT T  , where )(tT  is called 

the 1D-TF vector as following:  
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 2 . Let the function ))([0,)( 2 TLxf  , then  
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 where the vector F  is called the 1D-TF coefficient vector, 
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 III.  Solving the SNDE via the TFs 
  Let  
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With substituting (6) in (5), we get  
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Now, with replacing   by = , the relation (9) is approximated 

via the collocation method in 1m  nodes 
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 where (11) is the nonlinear system of 22 m  equations and 

22 m  unknowns. After solving Eq. (11), we conclude that  
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Numerical examples 
 

Example 1 Let us consider the SNDE as  
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The numerical results have been shown in Table (1), where x  

and s  are error mean and standard deviation of error, 

respectively. 

Example 2 Let us consider the SNDE as  
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numerical results have been shown in Table (2), where x  and 

s  are error mean and standard deviation of error, respectively.  
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